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Hybrid Routing Transformer for Zero-Shot Learning

De Chengf, Gerong Wang?, Bo Wang, Qiang Zhang=, Jungong Han, Dingwen Zhang.

Abstract—Zero-shot learning (ZSL) aims to learn models that
can recognize unseen image semantics based on the training of
data with seen semantics. Recent studies either leverage the global
image features or mine discriminative local patch features to
associate the extracted visual features to the semantic attributes.
However, due to the lack of the necessary top-down guidance
and semantic alignment for ensuring the model attending to the
real attribute-correlation regions, these methods still encounter
a significant semantic gap between the visual modality and
the attribute modality, which makes their prediction on unseen
semantics unreliable. To solve this problem, this paper establishes
a novel transformer encoder-decoder model, called hybrid rout-
ing transformer (HRT). In HRT encoder, we embed an active
attention, which is constructed by both the bottom-up and the
top-down dynamic routing pathways to generate the attribute-
aligned visual feature. While in HRT decoder, we use static
routing to calculate the correlation among the attribute-aligned
visual features, the corresponding attribute semantics, and the
class attribute vectors to generate the final class label predictions.
This design makes the presented transformer model a hybrid of 1)
top-down and bottom-up attention pathways and 2) dynamic and
static routing pathways. Comprehensive experiments on three
widely-used benchmark datasets, namely CUB, SUN, and AWA2,
are conducted. The obtained experimental results demonstrate
the effectiveness of the proposed method.

Index Terms—Zero-Shot Learning, Hybrid Routing, Trans-
former, Attention.

I. INTRODUCTION

Deep learning has made great progress in a variety of
vision tasks when the models are trained on large-scale labeled
datasets. However, the real-world natural images follow a
long-tailed distribution so that the data-hungry characteristic
of CNN-based models limits their ability to recognize rare
object classes, specially for the fine-grained animal species [1].
Meanwhile, an increasing number of newly defined visual con-
cepts and products come to the fore so quickly, and the speed
of data annotation for model training cannot keep up with the
pace of new things emerging, thus the CNN-based models
cannot be generalized to these new classes for testing. In
contrast, a child can learn from only a few samples, summarize
knowledge, and even draw inferences about other cases from
one instance to recognize unseen objects. Therefore, building
zero-shot learning (ZSL) models to transfer knowledge from
seen classes to unseen classes is significant and indispensable.

Zero-shot learning (ZSL) mimics the human ability to
recognize objects only from a description in terms of concepts
in some semantic vocabulary [2], and aims to recognize the
unseen classes, of which the labeled images are unavailable
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during model training [3], [4]. Existing works on ZSL mainly
leverage the global features [S] or patch features [6], [7]
to construct visual-semantic alignment models. In these ap-
proaches, images and attributes are embedded with compati-
bility function. Despite good performances on coarse-grained
datasets (e.g., Animal with Attribute dataset [3]), these ap-
proaches gradually degenerate when dealing with fine-grained
datasets (e.g., Caltech-UCSD Birds-200-2011 dataset [8]),
since much more local discriminative information is re-
quired to distinguish these fine-grained classes. Several recent
works [9], [10], [11], [12], [13] try to focus on discriminative
visual feature learning, by introducing attention mechanism
into zero-shot classification problem, such as the spatial and
channel attention [9], region attention [10], [14]. However,
there still exists significant semantic gap between the visual
modality and the attribute modality in the existing passive
attention mechanisms as these methods generate attention
weights purely in the bottom-up forward passing manner,
which lacks the necessary top-down guidance and semantic
alignment for attending to the real attribute-correlation regions.
In this paper, We reveal a fundamental issue that establishing
an active connection between the visual feature and attribute
vector rather than a simple passive link is a key point to
facilitate zero-shot learning.

Specifically, when trying to recognize an image from unseen
classes, humans will involuntarily try to establish a connection
between the attribute semantics with the corresponding local
image regions. Besides, humans achieve semantic alignment
by ruling out the irrelevant visual regions and locating the
most relevant ones in a gradual way [11]. The above two
phenomenons motivate us to introduce the top-down guidance
and dynamic routing connection into the attention mechanism.
As shown in Figure 1 and bottom-left of Figure 2, the newly
proposed active attention is constructed by both the bottom-up
and the top-down connection pathways, and each pathway is
formed by the dynamic routing rather than the conventionally
used convolutional forward passing. Such an active attention
works as the transformer encoder in our framework to learn
the attribute-aligned visual features.

After obtaining the attribute-aligned visual features, we
calculate the correlation between the attribute-aligned visual
features and the corresponding attribute semantics, and gener-
ate the final class label predictions by multiplying the obtained
correlation vector to the class attribute vectors (see bottom-
right of Figure 2). When considering the attribute semantics
as keys, the attribute-aligned visual features as queries, and the
class attribute vectors as values, respectively, it is interesting to
see that such a process can also be interpreted as a transformer
decoding process that works in semantic space. As the input
visual features of the transformer decoder have already been
well aligned with the semantic space, the involved elements
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Fig. 1. Brief illustration of the propose active attention mechanism, which contains both the bottom-up dynamic routing process and the top-down dynamic

routing process.

are connected with the static routing rather than the dynamic
routing.

Based on the above-mentioned transformer encoder and
decoder, we build a novel transformer model, called hybrid
routing transformer (HRT). The overall learning model is
shown in Figure 2. HRT mainly has three-fold novel prop-
erties: 1) From the perspective of the attention mechanism,
it is not based on the commonly used passive self-attention.
Instead, HRT is designed with the active semantic-guided
attention. Particularly, the HRT encoder performs attention
in both bottom-up and top-down manners. 2) From the per-
spective of the inner connection, HRT is formed by both
the dynamic routing (in transformer encoder) and the static
routing (in transformer decoder), which build different types
of connection to the elements involved in the transformer. 3)
From the perspective of zero-shot learning, we reveal an under-
studied yet important issue, i.e., the active connection between
the visual feature and attribute vector, and build the first
transformer-based zero-shot image recognition framework.

II. RELATED WORK

Zero-Shot Learning. Zero-shot learning (ZSL) aims to
predict objects in unseen classes or both seen and unseen
classes [15], the former is called traditional ZSL while the
later is called generalized ZSL (GZSL). The core is to transfer
knowledge learned from seen classes to unseen classes. The
existing methods can be divided into three types: (1) Embed-
ding methods [16], [5], [17], [18], [19], [6], [7], [20], [21],
[22], [23], [24], which usually learn a compatibility function
between image and class embedding spaces for similarity mea-
surement. Specially, Akata et al. [25] propose a bilinear-style
hinge loss to learn the compatibility function. Based on [25],
Xian et al. [26] introduce non-linearity to ALE model. Follow-
ing the structured SVM formulation, Akata et al. [S] designs
a multiclass loss. Huynh et al. [27] leverage attribute semantic
vectors to learn the association between images and attributes.
(2) Generative methods [28], [29], [30], [31], [32], [33], [34],
which aim to generate synthetic samples of unseen classes
from semantic information and then set the ZSL problem
as a supervised classification problem. Common generative
methods use GAN [35], VAE [36] or flow-based generative
models [37]. Xian et al. [38] directly generate image features
conditioned on the class-level semantic descriptors. Felix et

al. [31] generate synthetic features by a multi-modal cycle-
consistent GAN. (3) Gating Methods [39], [40], which use a
gating based mechanism to separate the unseen samples from
the seen samples for GZSL. Ideally, if the gate mechanism of
binary classification is very effective, GZSL can be divided
into a traditional ZSL problem to classify unseen samples and
a supervised classification problem to classify seen samples.
According to the experimental settings, the existing methods
can be divided into two types: (1) Inductive ZSL, which only
uses seen sample with labels in the training phase to classify
unseen samples in the testing phase. (2) Transductive ZSL,
which uses both seen samples with labels and unseen samples
without labels in the training phase, which enables the model
to use unseen visual features in the training phase to alleviate
domain shift problem. Our experiments use the embedding
method under the inductive ZSL setting.

Attention in ZSl The aim of the attention mechanisms
is to either highlight important local information or alleviate
the influence of irrelevant and noisy information [11]. Ji et
al. [11] weight different local features by a stacked attention
mechanism, with access to the costly part annotations during
training. Zhu et al. [9] weight different global features by
learning multiple channel-wise attentions. Xie et al. [10] lever-
age attentive region embedding to learn the bilinear mapping
to the semantic space. [27] is the closest competitor, which
uses the passive attention to build similarity between features
and class attribute vectors. However, these works either need
part annotations or use passive sematic-unguided attention
mechanism, thus enormous sematic gap still exists between
the two unrelated modalities of image and attribute. In order
to establish active correlation between image and attribute
to capture discriminative features, we apply the capsule to
transformer for ZSL, and build dynamic bottom-up and top-
down attention mechanism by initializing high-level capsules
with class-semantic vectors and performing low-level capsules
with patch features. Our method proved to be very effective
in subsequent experiments.

Capsule-Transformer. The transformer is proposed in [41]
with the attention-based encoder-decoder architecture. It is
successfully used in the natural language processing field [42]
firstly and then extended to computer vision tasks [43], [44].
Capsule network was first introduced by [45], aiming to
improve the ability of identifying spatial relationships and
rotation of the CNN structure. Capsule is a group of neurons.



Using the dynamic routing method between two capsule
layers, capsule network can match CNN in recognition results.
Although, there appears few works [46], [47] to improve
the transformer attention with capsule network for machine
translation. The proposed HRT method has distinct properties
with the existing models by using the active semantic-guided
attention in both the bottom-up and top-down manner. It is
also worth mention that this is the earliest work to establish
a capsule-transformer-like framework for solving the ZSL
problem.

IIT. HYBRID ROUTING TRANSFORMER

A. Problem Setting and Overall Framework

In zero-shot learning, we consider seen classes Cs and
unseen classes C,, where Cs N C, = @. Specifically, we
denote the training data as D* = {(x;,y:,2;)}, where x;
and y; denote the training image and the corresponding label,
and z; = [21, ..., 24] represents the associated class attribute
vectors. The target data contains images with both seen classes
and unseen classes as well as the semantic vectors for each
class.

In this work, given an input image, we first extract the
basic feature representation for each image patch by ResNet-
101. Then, we solve ZSL by a newly-designed transformer,
where the transformer encoder extracts attribute-aligned visual
features, while the transformer decoder projects the attribute-
aligned visual features into classification scores. In particular,
by designing bottom-up and top-down, dynamic and static
routing layers in the transformer architecture, we build hybrid
routing transformer to perform active interaction between
images and attributes.

B. HRT Encoder

Given the patch features {f"}£_; of each input image, we
equip HRT Encoder with attribute-guided dynamic routing
layers to obtain the attribute-aligned visual features. Fistly,
in order to obtain a compact description of each image patch,
we cluster every patch feature into one capsule of a smaller
dimension d = 16 by a bottom-up routing process, creating
new patch capsule g” € R'*9, In specific, given one patch
feature vector f” € R1*2948 we convert it to primary capsules,
each of which is represented by a 4 x 4 pose matrix, through
a 1 x 1 learnable convolution on f" and obtain 128 primary
capsules for each image region as illustrated in Figure 2. Then,
we use a bottom-up routing process to facilitate the routing
between the 128 primary (child) capsules and one parent
capsule. The bottom-up routing is implemented based on the
EM routing [48]. For child capsule i, firstly it is transformed
by T;; to cast a vote O;; = M;T;; for the parent capsule j.
Then the non-linear routing process is performed by the EM
algorithm, where the vectorized version of j*" pose matrix M;
is the expectation of j** Gaussian distribution. Denote Py ;
as the probability density of the vectorized vote O;; under

j" Gaussian model. P is h'" component of P;;, which
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Then we calculate the activation of the parent capsule j
based on the minimum description length principle :

o =logistic ()\ (5 - WZTW- - Zcost?)) ,
i h )
cos t;-‘ =— Z T35 1n PZ“j,

where 3 and +y are two learnable parameters, cos t;? indicates
the cost for activating the parent capsule j. >, r;; calculates
the amount of child capsules assigned to the parent capsule
j. A is a hyper-parameter. In EM routing, M-step and E-
step run iteratively. The M-step computes the outputs of pose
matrix and activation of the parent capsule j, and the E-step
exports the possibility of child capsules assigned to the parent
capsule j. We obtain the parent capsule g” as the compact
representation for each image patch by iteratively calculating
the pose matrix M between the child and parent capsules in
the EM routing process.

In order to attain active guidance of attribute semantics,
we then use a top-down routing process to establish con-
nections between the obtained image patch capsules and
the global attribute semantic capsules transformed from the
original attribute semantic vectors. Similar to [27], we apply
GloVe [49] to extract the 7-dimensional attribute semantic
vectors {v,}2_;, which is followed by a demission reduc-
tion process based on the Factor Analysis [50]. Finally, we
obtain the d-dimensional compact attribute semantic vectors
{Vo}A |, where a € [1,2,---, A] is the attribute index. To
build the top-down routing connection, we adopt the Inverted
Dot-Product Attention routing process [51]. Such routing
process first calculates the vote v;; = ij - p; for the child
capsule p;. Then it computes the agreement as 0;; = pjT Vi
by the dot-product similarity between parent capsule p; and
the vote. Then we update the parent capsules p; by:

i = LayerNorm riiVii | ,7i = M.
Pj Y (Z: 17 1]); i Zj/ exp (Oij’) (3)
The above routing process will be performed several times to
strength the agreement between the child and parent capsules.
It worth mentioning that, the parent capsules p; in our
framework are initialized with {¥,}%_,, while other capsule
networks perform zero or random initialization on them.
The advantage of our approach is that it can realize an
attribute-guided and active attention mechanism between the
two-modality information. In fact, such a routing process
simultaneously facilitates the semantic feature embedding and
the semantic coherence computing. Under this circumstance,
we treat the attribute semantic vector as attribute query Q,
the patch capsule as visual key K. Then, the agreement
between the child and parent capsules can properly reflect the
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Fig. 2. Our Hybrid routing transformer consists of an Semantic-guided dynamic transformer routing Part as the encoder constructing the crucial semantic-
aligned visual features of an image and an Semantic-guided static transformer routing Part as the decoder transferring the attribute-aligned features into
classification scores under the guidance of class attribute vectors. Both of the two parts are trained jointly to establish the necessary top-down guidance and

semantic alignment.

similarity or the relationship between Q and K. Since the
agreement is implicitly parameterized by W¢, we denote it
as ®(Q,K;W¢) € RF*4, Then, the final attribute-aligned
visual features H = [hy, hy,---  hy] € R2048x4 can be
obtained by:

H = HRT?(Q,K,V) = softmax(®(Q,K; W)V, (4)

where V€ R2048XE jpdjcates the value matrix, which is
formed by the original R patch features {f"}.

C. HRT Decoder

Given the attribute-aligned visual features H, we equip HRT
Decoder with semantic-guided static routing layers to obtain
the final class probability.

In the fine-grained recognition, there are so many attribute
scores for classes while only a small portion of the attributes
are crucial to distinguish different classes. In order to focus
on the important attributes, we adjust the c-th class attribute
vectors belonging by z¢ = sigmoid(ATWzH ® L)z¢, where
A = [vi,ve, -+ ,va] € R4 L is the unitary matrix,
® indicates the element-wise production. As the decoding
process works in semantic space, we regard the attribute-
aligned visual features in H as the queries Q € R?%48%4  the
attribute semantic vectors {v,}2_; as the keys K € R™*4,
while the adjusted class attribute vectors {z°}$ ; as the
values V. € R4*C. Considering that the attribute-aligned
visual features and the attribute semantic vectors have a

clear correspondence relationship, we define ¥(Q, K; W?) =
I, 4 diag(QTWYK) to represent the content-aware attribute
vectors, where W< ¢ R2048x7 g ap embedding matrix
between QQ and K. Then, the final class scores of the input
image can be obtained by measuring the coherence between
the content-aware attribute vectors and the adjusted class
attribute vectors:

s=HRT"(Q.K,V) =¥(QK;W')V. )

D. Training and Testing

For training the proposed deep model, we leverage three-
fold loss function:

EHRT = Ece + Alﬁcal + )\2£rega (6)

where A\; and Ay are hyper-parameters. The first loss L.,
is the cross-entropy loss, which measures the consistency
between the classification prediction and the ground-truth
label. The second one is the calibration loss [27] Leq =
—> .y logp(s® + ), where p(s¢) = %};(g,) s¢ is
the prediction of the c-th class and y¢ is its corresponding
label, . is the hyper-parameter to balance the prediction score
between the seen and unseen classes, which is different for
seen and unseen classes. This loss aims to alleviate the biased
prediction towards the seen categories [27]. The third one is
the attribute regression loss L,c, = [l¢(Q, K; W?) — z*||3,
where cx indicates the ground-truth class index. This loss



constraints the predict attribute score vector to agree with the
class attribute vector that is obtained by human statistic, which
can help to improve the generalization capacity to the unseen
classis.

In testing, we use ¢* = argmax,cc(s® + 7.) to obtain the
predicted class belonging to either the seen classes or unseen
ones.

IV. EXPERIMENTS
A. Setting

Datasets. We evaluate the performance of our model on
three widely used ZSL benchmark datasets: Caltech-UCSD
Birds-200-2011 (CUB) [8], SUN attributes (SUN) [52] and
Animals with Attributes 2 (AWA2) [4]. The CUB [8] is a
fine-grained dataset containing 11788 bird images from 150
seen classes and 50 unseen classes with 312 expert-annotated
attributes. Although it contains discriminative attribute loca-
tion annotation to distinguish fine-grained classes, our model
works under the weakly supervised setting without the part
annotations unlike [11]. SUN [52] is another fine-grained
dataset containing 14204 scene images, from 645 seen classes
and 72 unseen classes with 102 annotated attributes. Different
from the above two datasets, AWA2 [4] dataset is in the
coarse-grained level consisting of 37322 animal images, from
40 seen classes and 10 unseen classes with 85 attributes.

Evaluation Metrics. In this work, we measure the average
per-class top-1 accuracy of our method on both traditional ZSL
and GZSL setting. For traditional ZSL task, we evaluate test
images only from unseen classes with T1 (top-1 accuracy). For
GZSL task, we evaluate test images from both seen classes
and unseen classes. Following the protocol proposed in [4],
we report tr and ts as the average per-class top-1 accuracy of
test images from seen classes and unseen classes, respectively.
H is computed as the hamonic mean of tr and ts to measure
the comprehensive performance, which can be calculated by
H L 2 % trxts

tr+ts*

Visual features. We obtain the patch features at the last
convolution layer of ResNet-101 [53] model pre-trained on the
ImageNet-1K [54] dataset. For CUB, it contains so many sim-
ilar sub-categories under a big category of birds which needs
much abundant visual information to classify them. Therefore,
in order to obtain richer visual features, we modify the stride
of conv 5_x layer in ResNet-101 from 2 to 1, and get the patch
features of size 14 x 14 x 2048. The differences among the
categories in SUN and AWA? are relatively large, finer features
may confuse the correspondence between visual features and
attributes, and eventually deteriorate classification accuracy.
Thus, we only adjusted the stride of feature extraction process
for CUB dataset.

Implementation Details. Following [4], we adopt ResNet-
101 [53] pre-trained on ImageNet-1K [54] as the backbone for
feature extraction without fine-tuning. Given the input image
of size 224 x 224, we will obtain patch features of size 7 x
7 x 2048 or 14 x 14 x 2048 for different datasets. We use
RMSprop [55] optimization method by setting momentum as
0.9, weight decay of 10~* and the initial learning rate of 10~3.
The coefficients Ay and Ay in Eq.(6) are set as 0.1 and 0.033,

respectively. The factor . in calibration loss for seen classes
is different, which is -0.5 for CUB and SUN dataset, -0.8 for
AWA?2 dataset, while 7. = 1 for unseen classes on all the
three datasets. The model is implemented based on PyTorch
platform [56], training on a single 2080 Ti GPU card.

B. Comparison with the state-of-the-art

In the experiment, we compare our proposed HRT method
with several state-of-the-art embedding methods on both ZSL
and GZSL settings. We report the top-1 accuracy and harmonic
mean of each method in Table I, where “-” indicates that
the results are not reported. These methods, CONSE [57],
DEVISE [58], ALE [25], SJE [5], ESZSL [59], SSE [24],
SYNC [60], LATEM [26], SAE [61], learn a compatibility
function between visual image and attributes for similarity
measurement. Meanwhile, these methods, SGMA [9], LF-
GAA [62], AREN [10] and DAZLE [27], introduce the
attention mechanism to embedding methods. D-VAE [63] and
GCM-CF [64] are generative models. Extensive experiments
demonstrate the effectiveness of our proposed method, and
the experiment results on all the three datasets show that
our proposed method, achieve superior performances to the
existing state-of-the-art methods in most cases.

Generalized Zero-shot Learning Results. As shown in
Table I, the proposed HRT method acheives superior results
on AWA2, CUB and SUN datasets for generalized ZSL task
in most cases. We gain impressive results for the harmonic
mean (H), where 62.8% on CUB, and 67.4% on AWA2.
On SUN dataset, we obtains 53.2% for top-1 accuracy on
unseen classes, which is also much better than other meth-
ods. In particular, our method significantly outperforms other
algorithms on unseen accuracy, surpassing the state-of-the-
art model on unseen accuracy by 4.4% on CUB dataset.
However, since our capsule attention model is a kind of the
dense attention model, lacking the training samples makes
the proposed method cannot achieve the best harmonic mean
on SUN dataset, where this dataset contains only 16 training
samples for each seen classes. Furthermore, DAZLE [27] is
the closest competitor, which uses the passive attention to
build similarity. It causes confused relationship and cannot
bridge the semantic gap between the visual image and the
attribute descriptions. Different from it, we construct an active
semantic-guided attention mechanism which helps high-level
semantic actively focus on relevant visual features. As a result,
we achieve superior results, improving harmonic mean (H) of
4.7% on CUB and 2.5% on SUN dataset absolutely, compared
to DAZLE [27]. Notice that LFGAA* [62] achieves the best
seen accuracy, while our HRT model obtains the best unseen
accuracy with relatively high seen accuracy. Moreover, the
experiment results in Table I show that our proposed HRT
model can balance the performance of both seen and unseen
classes greatly, compared with these methods, AREN* [10],
LFGAA* [62], SGMA* [9], LATEM [26]. This maybe due to
that our proposed HRT method constructs an active attention

'SEM of HRT means the Standard Error of mean accuracy of our model
under 5 random seed experiments.



TABLE I
COMPARISON OF OUR METHOD WITH THE STATE-OF-THE-ART EMBEDDING METHODS ON CUB, SUN AND AWA2. THE METHODS WITH * DENOTE
FINE-TUNING THE BACKBONE WEIGHTS, OTHERWISE FIXING THEM. WE MEASURE TOP-1 ACCURACY(T1) IN ZSL SETTING, AND TOP-1 ACCURACY ON
SEEN/UNSEEN (TR/TS) CLASSES AND THEIR HARMONIC MEAN (H) IN GZSL SETTING. BOLD FONT DENOTE THE BEST RESULTS.

Zero-shot Learning Generalized Zero-shot Learning
Method AWA2  CUB SUN AWA2 CUB SUN

T1 T1 T1 tr ts H tr ts H tr ts H

CONSE [57] 44.5 343 38.8 90.6 0.5 1.0 72.2 1.6 3.1 39.9 6.8 11.6
DEVISE [58] 59.7 52 56.5 74.7 17.1 27.8 53.0 23.8 32.8 274 16.9 20.9
ALE [25] 62.5 54.9 58.1 81.8 14 239 62.8 23.7 344 33.1 21.8 26.3
SJE [5] 61.9 53.9 53.7 73.9 8.0 144 59.2 235 33.6 30.5 14.7 19.8
ESZSL [59] 58.6 53.9 54.5 77.8 59 11.0 63.8 12.6 21 279 11.0 15.8
SSE [24] 61.0 43.9 51.5 82.5 8.1 14.8 46.9 8.5 144 36.4 2.1 4.0
SYNC [60] 46.6 55.6 56.3 90.5 10.0 18.0 70.9 11.5 19.8 43.3 7.9 134
LATEM [26] 55.8 49.3 553 77.3 11.5 20.0 57.3 15.2 24 28.8 14.7 19.5
SAE [61] 54.1 333 40.3 82.2 1.1 22 54.0 7.8 13.6 18.0 8.8 11.8
D-VAE [63] - - - 80.2 56.9 66.6 58.2 51.1 54.4 47.6 36.6 414
GCM-CF [64] - - - 75.1 60.4 67.0 59.7 61.0 60.3 37.8 47.9 42.2

SGMA* [9] 68.8 71.0 - 87.1 37.6 52.5 71.3 36.7 48.5 - - -

LFGAA* [62] 68.1 67.6 61.5 934 27.0 41.9 80.9 36.2 50.0 40.4 18.5 253
AREN* [10] 67.9 71.8 60.6 92.9 15.6 26.7 78.7 38.9 52.1 38.8 19.0 255
DAZLE [27] 67.9 65.9 59.3 75.7 60.3 67.1 59.6 56.7 58.1 24.3 523 332
HRT(ours) 67.3 1.7 63.9 78.7 58.9 67.4 63.5 62.1 62.8 26.9 53.2 357
SEM of HRT ! +0 +0.01 +0.04 | £0.01 +0.02 +£0.02 | £0.01 +0.08 +£0.03 | £0.05 +£0.01 £0.04

mechanism and facilitates a more effective knowledge transfer
from seen classes to unseen classes.

Zero-shot Learning Results. In ZSL, training classes are
disjoint with testing classes. As shown in Table I, our proposed
method presents a significant improvement compared with the
state-of-the-art methods in most cases, i.e., 2.4% on SUN.
The SUN dataset is a scene dataset, our method is able to
understand the abstract content of scenes more deeply, through
constructing the hybrid dynamic top-down and bottom-up
attention pathways between visual image and the attribute. On
CUB and AWA2 datasets, we gain comparable performance
with the best method AREN* [10] and SGMA* [9].

C. Ablations

To illustrate the effectiveness of the proposed capsule net-
work based HRT encoder framework, we make detailed per-
formance comparison between the traditional CNN based HRT
encoder and the capsule network based encoder framework on
CUB, SUN and AWA?2 datasets as shown in Table II. We de-
note them as HRT-CNNNet and HRT-CapsuleNet, respectively.
The methods HRT-CNNNet and HRT-CapsuleNet are trained
only with cross-entropy and calibration loss, while HRT-Ours
is trained by the whole loss in Eq 6. We can clearly see that
the capsule network based encoder framework is better than
that of the traditional CNN based HRT encoder framework,
HRT-CapsuleNet outperforms the baseline HRT-CNNNet by
2.1% under the H(harmonic mean) measurement in the GZSL
setting, while 2.4% under the T1 measurement in the ZSL
setting.

To further measure the influences of different components
in HRT, we perform ablation study on CUB dataset under
both ZSL and GZSL settings. As shown in Table III, the first
line means that we train HRT only with cross-entropy loss
and the patch features in hybrid routing transformer encoder

and decoder are performed without any attention mechanism.
By adding hybrid routing transformer encoder, hybrid routing
transformer decoder, L.q loss and L., loss gradually, the
GZSL results demonstrate that these four components improve
accuracy by a huge margin over baseline, i.e., 3.8% (tr), 60.2%
(ts), 59.1% (H) and 20.3% (T1), absolutely. The second line
means that we perform the semantic-guided hybrid routing
transformer in encoder, and the harmonic mean is significantly
improved by 13.1%, which is achieved by constructing both
the bottom-up and the top-down dynamic routing pathways
to generate the aligned features. The third line represents that
by adding the semantic-guided static transformer routing in
decoder, and the model further improves the performances.
In addition, the calibration loss is an essential part to boost
accuracy under GZSL setting. Finally, through attribute re-
gression loss, we further strengthen supervision and correct
the classification results, boosting the harmonic mean by 3.4%.
The above four components constitute the model together, im-
proving the performance under both ZSL and GZSL settings.

D. Hyper-Parameter Selection

For the purpose of establishing the necessary top-down
guidance and semantic alignment for attending to the real
attribute-correlation regions, we build the HRT model via
bottom-up and top-down routings. To observe the influence
of the iteration times of these two routings, we conduct
experiments with various iteration values, i.e.{1,2,3,4,5}.
General ZSL results on CUB dataset are illustrated in Figure 3.
In Figure 3 (a), we set the EM routing iteration time to 1,
and the top-down dynamic attention routing iteration time
changes from 1 to 5. We get the best results with the top-
down dynamic attention routing iteration of 2. In Figure 3 (b),
we fix the top-down dynamic attention routing iteration time
to 2 and study the performances under different EM routing



TABLE II
PERFORMANCE ANALYSIS OF OUR HRT FRAMEWORK WITH CNN AND THE CAPSULE NETWORK IN THE TRANSFORMER ENCODER ON CUB, SUN AND
AWA?2, WE DENOTE THEM AS HRT-CNNNET AND HRT-CAPSULENET RESPECTIVELY. THE METHODS HRT-CNNNET AND HRT-CAPSULENET ARE
TRAINED ONLY WITH CROSS-ENTROPY AND CALIBRATION LOSS, WHILE HRT-OURS IS TRAINED BY THE WHOLE LOSS IN EQ 6. WE MEASURE TOP-1
ACCURACY(T1) IN ZSL SETTING, AND TOP-1 ACCURACY ON SEEN/UNSEEN (TR/TS) CLASSES AND THEIR HARMONIC MEAN (H) IN GZSL SETTING.

Zero-shot Learning Generalized Zero-shot Learning
Method AWA?2 CUB SUN AWA?2 CUB SUN
T1 T1 T1 tr ts H tr ts H tr ts H
HRT-CNNNet 66.9 64.3 59.0 75.9 59.3 66.6 59.4 54.8 57.0 23.6 51.8 32.4
HRT-CapsuleNet 67.7 69.3 60.4 75.3 60.2 66.9 62.4 60.0 61.2 25.8 50.8 34.2
HRT-Ours 67.7 71.7 63.9 78.7 58.9 67.4 63.5 62.1 62.8 26.9 53.2 35.7
TABLE III
ABLATION RESULTS FOR (GENERALIZED) ZERO-SHOT LEARNING ON CUB DATASET UNDER THE SAME BASELINES.
Hybrid Routing Hybrid Routing
Transformer Encoder  Transformer Decoder Lear Lreg tr ts H T1
X X X X 597 19 3.7 514
v X X X 66.4 9.6 16.8 63.1
v v X X 69.6 10.0 17.5 67.7
v v v X 624 60.0 612 69.8
v v v v 63.5 62.1 628 71.7
64.0 64.0
8331 63.5
63.0 .
63.0
;\g 62.5 1 ;;
620 A I Se25f R tr
§ ts § ts
3% e~ H 36201 —@— H
fe6101 @ g
61.5
60.5
60.0 61.0
5051 - ' ; - ' 60.51 : : : :
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Inverted Dot-Product Attention Routing Iteration Times

EM Routing Iteration Times

Fig. 3. (a) shows the changes of tr, ts and H with different Inverted Dot-Product Attention routing iteration times under CUB dataset while EM routing
iteration time is equal to 1. (b) displays the result with variational EM routing iteration times while Inverted Dot-Product Attention routing iteration time is

set to 2.

iteration times. We obtain the best results with EM routing
iteration of 5. The above experiment results demonstrate the
superiority of the proposed dynamic bottom-up and top-down
routing mechanism, which helps HRT model establish an
active connection between the visual feature and attribute
vector rather than a simple passive mapping.

E. Qualitative results

We compared the feature visualization results of the pro-
posed HRT model with the baseline passive attention model
DAZLE[27], by contacting image feature and attribute on
the CUB dataset. Figure 4 visualizes the agreement maps
for examples from unseen and seen classes. On the whole,
the attention maps generated by the HRT method are more
concentrated and contacting image feature and attribute more
accurately. For the bird “Evening Grosbeak” of unseen classes,

DAZLE tends to generate inaccurate or deflected attention
maps covering the whole bird. For example, with the DAZLE
model, the attributes “Bill Color Yellow”, “Throat Color
Yellow”, “Belly Color Buff” and “Leg Color Pink” concentrate
on the false visual information, and the attribute “Wing Pattern
Striped” dosen’t capture relevant visual information. For the
bird “Black Throated Blue Warbler” of the seen classes,
though DAZLE can generate attention maps utilizing the
learned knowledge, it can’t capture the true attribute-aligned
features and its attention maps are more dispersive. On the
other hand, the attention maps of our HRT model focuses on
the attribute-aligned visual features more accurately. These
examples demonstrate that our hybrid routing transformer
model constructs an active and effective connection between
image feature and attribute, and thus alleviate the semantic
gap effectively between two different modality information for
zero-shot learning.
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Fig. 4. Visualization of attribute-aligned feature locating for examples from unseen and seen classes on CUB dataset.

V. CONCLUSIONS

In this work, we propose a hybrid routing transformer
(HRT) framework for ZSL and GZSL tasks. We are the
first to apply the routing-based transformer for ZSL, by
constructing semantic-guided active mechanism to alleviates
the semantic gap between the visual modality and attribute
modality effectively, and facilitate knowledge transfer. The
proposed HRT model is a novel encoder-decoder framework.
In the HRT encoder part, we utilize both the bottom-up and
top-down dynamic routing pathways to generate attribute-
aligned visual features. While in the HRT decoder part, we
take the semantic-guided static routing to transfer attribute-
aligned features into classification scores under the guidance
of class attribute vectors. Extensive experiments suggests that
the proposed active bottom-up and top-down dynamic routing
pathway can help improve the transformer, thus we can extend
our method to other research field in the future.
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