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Abstract

Knowledge distillation, which involves extracting the
“dark knowledge” from a teacher network to guide the
learning of a student network, has emerged as an essen-
tial technique for model compression and transfer learn-
ing. Unlike previous works that focus on the accuracy
of student network, here we study a little-explored but
important question, i.e., knowledge distillation efficiency.
Our goal is to achieve a performance comparable to con-
ventional knowledge distillation with a lower computation
cost during training. We show that the UNcertainty-aware
mIXup (UNIX) can serve as a clean yet effective solu-
tion. The uncertainty sampling strategy is used to evalu-
ate the informativeness of each training sample. Adaptive
mixup is applied to uncertain samples to compact knowl-
edge. We further show that the redundancy of conven-
tional knowledge distillation lies in the excessive learning
of easy samples. By combining uncertainty and mixup,
our approach reduces the redundancy and makes better
use of each query to the teacher network. We validate
our approach on CIFAR100 and ImageNet. Notably, with
only 79% computation cost, we outperform conventional
knowledge distillation on CIFAR100 and achieve a com-
parable result on ImageNet. The code is available at:
https://github.com/xuguodong03/UNIXKD.

1. Introduction
“Young children show tremendous versatility in their

learning and plasticity ... more efficient, both in how they
learn and in how their brain is connected within itself.”

- The Gardener and The Carpenter

In pedagogy, learning efficiency is an important measure
to evaluate the learning speed of a learner. A good learner
not only learns well at the end but also learns fast in the pro-
cess. It is preferred if the learner can achieve a comparable
or better performance with less effort. Analogous to human
learning in real world, machine learning methods [3, 20]

Figure 1. CIFAR100 Top-1 accuracy of different distillation meth-
ods. All the methods use the same teacher and student architec-
tures. The computation cost of KD is set as the baseline (100%).
Hard label loss is excluded from learning objective. The cost in
backbone forward/backward pass is counted and the cost of com-
puting loss is neglected. Our method (UNIXKD) achieves compa-
rable or better performances with a significantly lower computa-
tion cost.

also pay attention to learning efficiency issue. The target is
to accelerate training from the algorithmic aspect.

Knowledge distillation (KD) [10], serving as a way of
model compression [4], has been actively studied to deploy
high-performance but cumbersome networks on edge de-
vices. In KD, one typically trains a smaller network (stu-
dent) under the guidance of a larger network (teacher). The
main goal in KD is to obtain a student network with higher
accuracy than that trained from scratch. Many studies pur-
sue this goal by transferring better knowledge, such as inter-
mediate features [8, 9, 24, 37, 39] and similarities between
samples [22, 32, 33, 35]. The student performance improves
rapidly as more powerful algorithms emerge.

Existing works pay relatively more attention to the accu-
racy dimension but explore little on the aspect of knowledge
distillation efficiency. The study of learning efficiency is not
only practically beneficial for edge computing and budget-
limited training, but also scientifically meaningful. For in-
stance, it reveals the redundancy of the original method
and sheds light on factors that influence the performance
the most. The study about learning efficiency in KD is
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scarce. In this work, we take the first step towards this little-
explored but important question.

The challenge in KD efficiency lies in two aspects, i.e.,
how to define efficiency quantitatively and how to improve
efficiency. Previous works in other deep learning topics
usually measure efficiency from time dimension, e.g., num-
ber of iterations or epochs. However, different distilla-
tion methods introduce different operations into the conven-
tional teacher-student framework, hindering a direct com-
parison on the cost of each iteration across the different
methods. Hence, we propose to define efficiency from
the standpoint of computation cost, i.e., the number of
forward/backward passes in teacher and student networks.
With this definition, different KD methods can be compared
directly. A more efficient method can achieve the same stu-
dent accuracy with less computation.

Based on this definition, we propose to improve effi-
ciency by combining two seemingly orthogonal directions,
i.e., select informative samples and compact knowledge.
The main idea is to measure the uncertainty of each sample
in the student forward pass and then compact the knowledge
via adaptive mixup according to their level of uncertainty.
Specifically, for the uncertain (informative) samples, a mild
mixup is applied. For the certain (less informative) samples,
a heavy mixup is applied. All the mixed images are passed
as queries to teacher. Teacher’s output logits are treated as
labels to supervise the learning of the student.

The importance of each training sample is not equal [13].
In the training stage, a student network has different mas-
teries of different samples. The repetition of mastered sam-
ples occupies computation but brings nothing new to the
network. We adopt uncertainty to estimate the mastery of
each sample. The occurrence frequency of samples with
high confidence is reduced, so that the network can focus on
those uncertain samples. Interestingly, estimating mastery
via uncertainty is closely related to active learning (AL). To
save annotation cost, AL selects only an informative subset
from the original dataset to query the oracle (expert anno-
tators). The KD framework is naturally similar to AL. The
teacher plays the role of oracle and is responsible for provid-
ing labels. A time-consuming teacher forward pass corre-
sponds to the label expensiveness in AL. Hence, we believe
that the classic sampling strategy in AL, i.e., uncertainty-
based sampling, is a viable strategy to decide the impor-
tance of each sample.

After obtaining the uncertainty of each sample, we com-
pact knowledge through mixup [40] operation. Mixup was
originally proposed for data augmentation to improve gen-
eralization ability. It compacts the content in two images
into a single image via pixel-wise convex combination.
Though it can compact knowledge, a disadvantage brought
by mixup is that the objects in two images occlude each
other, making both of them hard to recognize. Hence, we

adopt adaptive mixup according to uncertainty. A mild
mixup is applied to uncertain images so that the important
information in them will not be hurt by the mixing image.

Contributions. We take the first step towards a little-
explored but important question, i.e., KD efficiency. We
quantitatively define the efficiency from the standpoint of
forward/backward computation cost, allowing a direct com-
parison across different KD methods. We propose a novel
framework called UNIXKD to improve KD efficiency and
conduct thorough experiments to validate the method. With
a significantly lower computation cost, we achieve a compa-
rable and even better performance, compared to the conven-
tional KD. We also conduct careful analyses to facilitate a
deeper understanding of KD. We show that the redundancy
of KD lies in excessive learning of easy categories, and our
methods can effectively reduce the redundancy.

2. Related Work

Knowledge Distillation. The goal of KD is to transfer the
knowledge from a large teacher network to a small student
network. Hinton et al. [10] propose to match the category
distributions of the teacher and student models via KL-
divergence. The relative probability assigned to incorrect
categories encodes semantic similarity between similar cat-
egories. This “dark knowledge” [10] is shown to benefit the
student’s learning. Subsequent studies continue to improve
the transfer of knowledge via different learning objectives.
Some works propose to mimic the intermediate feature [24]
or feature’s transformed variants [9, 12, 14, 36, 37, 39].
Other works [2, 19, 22, 32, 35] extend the notion of unary
matching to binary relation mimicking. Dabouei et al. [5]
study the effects of data augmentation on KD and demon-
strates that augmentated images can transfer extra knowl-
edge. All the aforementioned methods focus only on im-
proving the accuracy of student.

A recent work by Wang et al. [34] highlight the effi-
ciency issue. They also consider both active learning and
mixup to tackle the problem. However, our method differs
significantly in the following aspects. First, the meaning of
efficiency in our work is more holistic. Their goal is only to
reduce the query numbers of teacher model, but the student
cost is ignored. In fact, if there are 20k initial unlabeled im-
ages, their method would require 2 billion student forward
passes to select suitable images to query, which is not a neg-
ligible expense. In contrast, we consider all the computation
cost in the whole KD process. The synergy of mixup and ac-
tive learning in the two works are also different. They start
from a small number of unlabeled images and use mixup to
enlarge the dataset to avoid overfitting, while we use mixup
to compact multiple images into one. Finally, instead of
employing active learning to reduce the billion-level image
numbers into a tractable amount, we employ uncertainty to
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estimate the value of each original image for the subsequent
adaptive mixup.

Several other methods [15, 18, 21] study the data effi-
ciency problem in KD with the objective of obtaining high
student accuracy in a data-limited setting. These methods
typically involve synthesizing a vast number of images and
using them to perform conventional KD. In contrast, we fo-
cus on training efficiency by conducting a holistic analysis
on computation cost of student learning irrespective of the
amount of labeled data.
Active Learning. The idea behind active learning is that a
learning agent can achieve greater accuracy with few train-
ing labels if it is allowed to select data by itself. An ac-
tive agent poses queries in the form of unlabeled instances
to be labeled by an oracle (e.g., expert annotator). Ac-
tive learning methods work well in the setting where la-
bels are expensive. Since obtaining label in KD is also an
expensive process, we adopt the strategy in active learning
to help select informative samples. Common query strate-
gies include uncertainty sampling [17, 26, 29], query-by-
committee [28] and expectation-based methods [27, 25].
We adopt uncertainty-based methods as the sampling strat-
egy due to its low computation expense.

3. Methodology
The conventional knowledge distillation [10] minimizes

the distance between teacher and student softened logits
through KL-divergence. Subsequently, numerous methods
explore distilling various other kinds of knowledge, such as
feature map [24], attention map [39], pre-activation [9] and
batchnorm statistics [36]. All the distillation methods can
be written in a general format:

L = d(Tt(Gt), Ts(Gs)), (1)

where t and s denote the teacher and student, respectively,
G∗ denotes the feature of some network, T∗ denotes some
pre-defined transformation, d is a distance metric. It aims at
aligning the transformed teacher features Tt(Gt) and trans-
formed student features Ts(Gs) in the distance space d.

3.1. Computation Cost in KD

As shown in Fig. 2, the computation cost in KD arises
from three aspects, i.e., teacher forward pass, student for-
ward pass and student backward pass. Let Ft, Fs and Bs

denote the floating point operation numbers in these three
passes and N be the batch size. The common practice in
KD is that all the training samples would go through all the
three passes. So the total computation cost in each iteration
is:

Ekd = N · (Ft + Fs +Bs). (2)

A more fine-grained cost is:

Ekd = Nt · Ft +Ns1 · Fs +Ns2 ·Bs, (3)

Figure 2. The general framework of distillation. The computation
cost consists of three parts, i.e., teacher forward cost Ft, student
forward cost Fs and student backward cost Bs.

where Nt, Ns1 and Ns2 are the number of samples that go
through aforementioned three passes. However, not all sam-
ples need to go through all the three passes. An efficient KD
method can seek a trade-off between the three terms. No-
tice that Ft � Fs ≈ Bs. We can try to reduce the teacher
query numbers Nt at the expense of an increase in Ns1, but
the latter is only minor therefore resulting in a net reduc-
tion in the total computation cost. On the contrary, previous
work [34] reduces Nt into an acceptable range but puts no
attention to the hefty increase in Ns1, resulting in a net total
cost that is intractable.

3.2. Uncertainty-Aware Mixup

The computation of a teacher network is usually much
larger than that of the student for the same input image.
Hence, to save the total computation, we propose to reduce
the number of images fed to the teacher at the expense of a
slight computation increase at the student end. Specifically,
as shown in Fig. 3, we first feed all the images in a batch to
the student network and obtain their uncertainties. We then
sort images based on their uncertainty in a descending order
and select top k of them to apply adaptive mixup. Finally,
the mixed images are fed into two networks to perform the
KD process. Since our method only affects the way to feed
data and does not change the learning objective, it can be
combined with any distillation methods.

Uncertainty Estimation. The importance of each training
sample is not equal [13]. Considering the cost of querying
teacher, we propose to feed the most informative samples to
teacher network. We adopt the uncertainty to measure the
informativeness of each training sample. Intuitively, a sam-
ple that cannot be classified by the student confidently is a
hard sample and it can bring the model with more informa-
tion upon query. We use entropy to measure the uncertainty
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Figure 3. The framework of UNIX for knowledge distillation. Images in a batch are fed into student network and then are sorted in an
uncertainty descending order. Mixup is applied adaptively according to uncertainty. For the uncertain samples, a mild mixup is applied
and vice versa. Top k mixed images are selected to perform a conventional KD process. Compared to conventional KD, our method saves
much cost at the teacher end but increases little cost at the student end. The total cost is reduced due to the asymmetrical capacity between
teacher and student.

of classification result:

Ue(x) = −
∑C

i=1
pi(x) log pi(x), (4)

where pi(x) is the probability that sample x belongs to class
i, and C is the number of class. A large entropy indicates a
confused classification result. Teacher’s feedback of these
samples would benefit the student most. On the contrary,
samples that the student has mastered are less useful and
can be discarded.

Another two common uncertainty criteria are
confidence-based and margin-based measures:

Uc(x) = −max
i
pi(x), (5)

Um(x) = −(pi(x)− pj(x)), (6)

where i and j in Eq. (6) are the first and second most proba-
ble class labels, respectively, under the model. Confidence-
based criterion considers the largest probability. A large Uc

means the model does not assign a high probability to any
category, thus the sample is an uncertain sample. Margin-
based criterion corrects the shortcoming in confidence-
based one, by incorporating the posterior of the second most
likely label. Intuitively, instances with large margins are
easy, since the classifier has little doubt in differentiating
between the two most probable class labels. We will com-
pare the three uncertainty criteria in Sec. 4.2.

Uncertainty-Aware Mixup. Mixup is originally a multi-
sample augmentation strategy. It merges each image with
another image in a pixel-wise manner:

λ ∼ Beta(α, α), (7)

x = λxi + (1− λ)xj , (8)

where xi and xj are the i-th and j-th image, respectively,
and a merging coefficient λ is sampled from a Beta distri-
bution parameterized by α. In original Mixup [40], the x’s
label is a convexed combination of xi’s label and xj’s label.
However, in this work, we feed the mixed images to teacher
network and treat teacher’s logits as the groundtruth label.

The goal of mixup in our work is not to augment the orig-
inal data, but to compress the content in two images into
a single image. We hope that a mixed image can transfer
more knowledge than a normal image. However, compres-
sion usually brings information loss. A pixel-wise merging
leads to mutual aliasing between two images. The visual
pattern in each image is hurt by the mixing image, making
the synthesized image blurry and semantically meaningless.

To make use of the compression effect while reducing
the destruction to informative samples, we apply mixup op-
eration in an adaptive manner. Specifically, we sort the sam-
ples in a batch in a descending order according to their un-
certainties (Fig. 3). We also shuffle the original batch to
prepare the mixing data. Before the mixup between sorted
version and shuffled version, we introduce a correction fac-
tor c to control the mixup level:

x = (1− c · λ)xsort + c · λ xshuffle, (9)

where xsort and xshuffle are both 4D tensors with the first
dimension equals to the batchsize, the correction factor c is
a real number that belongs to interval [0, 1]. The c’s value
is related to the uncertainty ranking of each sample. For an
uncertain sample, c is set to a small number and 1 − c · λ
is close to 1, so that mixup is mild and vice versa. In fact,
c can be any monotonic increasing function of uncertainty
ranking. In this work, we select the sigmoid function:

c = sigmoid(w · ranking − b

batchsize
), (10)
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Table 1. Results on cross-architecture pairs: CIFAR100 Top-1 accuracy and computation cost. Bold font denotes the result that outperforms
KD. Our method averagely surpasses KD by 1.07% with 79.44% computation cost. Average on 4 runs.

Teacher VGG13 ResNet50 ResNet50 resnet32×4 resnet32×4 WRN-40-2
Student MobileNetV2 MobileNetV2 VGG8 ShuffleV1 ShuffleV2 ShuffleV1

Ft/Fs 38.17 174.00 13.56 27.16 23.49 8.22

KD
Acc 68.26 68.26 73.46 74.45 75.16 75.78

Computation 100% 100% 100% 100% 100% 100%

Random+KD
k=48

Acc 66.99 65.72 73.32 73.69 74.68 75.70
Computation 75% 75% 75% 75% 75% 75%

UNIXKD
k=40

Acc 67.46 67.78 73.62 75.44 76.23 76.59
Computation 64.99% 63.07% 68.93% 65.93% 66.42% 72.29%

UNIXKD
k=48

Acc 68.47 69.06 74.24 76.41 76.65 76.92
Computation 77.49% 75.57% 81.43% 78.43% 78.92% 84.79%

where the b andw are parameters to control the position and
shape of sigmoid function. As w increases from small to
large, the sigmoid function changes from a linear function
to a step function. Finally, we select the top k images from
all the mixed images and feed them into the teacher and stu-
dent networks. The distillation loss in Eq. (1) is computed
on these mixed images.

Computation Cost Analysis. The computation in our
method comes from two parts, i.e., uncertainty estimation
and distillation of mixed images. The total computation cost
in each iteration is:

E = N · Fs + k · (Ft + Fs +Bs)

= k · Ft + (N + k) · Fs + k ·Bs

(11)

Compared to conventional KD in Eq. (2), our method in-
creases the number of student forward passes from N to
N + k and reduces the teacher forward passes from N to k.
Considering Ft is usually one order larger than Fs, the total
cost is reduced.

4. Experiments
The experiments section consists of three parts. In

Sec. 4.1, we apply UNIX in conventional KD and demon-
strate its ability to save computation. Ablation studies are
conducted in Sec. 4.2 to examine the effectiveness of each
designed component. In Sec. 4.3, we conduct thorough
analyses to understand how our method works.

Evaluations are conducted on CIFAR100 [16] and Im-
ageNet [6] datasets, both of which are widely used as the
benchmarks for KD. CIFAR100 consists of 60, 000 32× 32
colour images, including 50, 000 images for training and
10, 000 images for testing. There are 100 classes, each
contains 600 images. ImageNet is a large-scale classifica-
tion dataset, containing 1, 281, 167 images for training and
50, 000 images for testing.

Since there is no method designed for improving effi-

ciency in KD 1, we compare our method with two base-
lines, i.e., conventional KD and Random. Our goal is to
achieve a comparable performance with conventional KD
with a smaller computation cost. Hence, we regard KD as
the upper bound. To demonstrate the improvement brought
by our method, we select the Random, i.e., randomly select
k images from a batch to perform KD, as the lower bound.
We set batchsize as 64 and 256 in CIFAR100 and ImageNet
experiments, respectively. We select VGG [30], ResNet [7],
WRN [38], ShuffleNet [31, 41] and MobileNetV2 [11] as
teacher and student networks.

4.1. Comparative Results

CIFAR100. We compare performances on 11 teacher-
student pairs to eliminate architecture influence. We split
them into two groups according to whether teacher and stu-
dent have similar architecture styles. The results are shown
in Table 1 and Table 2. In each table, we list Ft/Fs, the
computation cost ratio, to facilitate understanding about the
capacity gap between teacher and student. For all the meth-
ods, we list their accuracy and computation. We regard
KD’s computation as the baseline (100%). To study the effi-
ciency in the transferring process, we exclude the hard label
loss in conventional KD for all the methods. Our method is
still advantageous after adding the hard label loss. The re-
sults are provided in the Sec. B.

For teacher-student pairs with different architectures (Ta-
ble 1), our method (k = 40, the number of top images from
all the mixed images, see Eq. (11)) outperforms KD on four
out of six pairs. On average, it surpasses KD by 0.29%
with 66.94% computation cost. When we increase k from
40 to 48, our method outperforms KD on all the pairs. On
average, it surpasses KD by 1.07% with 79.44% computa-
tion cost. With a similar architecture setting (Table 2), our
method (k = 36) slightly fall behind KD by 0.11% accuracy

1Although Wang et al. [34] involve efficiency, they require the dataset
to be a small image pool instead of the whole dataset in conventional KD,
making the comparison with our method not suitable.

5



Table 2. Results on similar-architecture pairs: CIFAR100 Top-1 accuracy and computation cost. Bold font denotes the result that outper-
forms KD. Our method averagely surpasses KD by 0.49% with 92.40% computation cost. The marginal superiority is due to the small gap
between teacher and student computation cost. Average on 4 runs.

Teacher WRN-40-2 WRN-40-2 resnet56 resnet32×4 VGG13 VGG16
Student WRN-16-2 WRN-40-1 resnet20 resnet8×4 VGG8 VGG8

Ft/Fs 3.25 3.93 3.06 6.12 2.97 4.14

KD
Acc 75.06 73.95 70.94 73.54 73.50 72.34

Computation 100% 100% 100% 100% 100% 100%

Random+KD
k=48

Acc 74.73 73.55 70.09 72.87 72.62 71.68
Computation 75% 75% 75% 75% 75% 75%

UNIXKD
k=36

Acc 75.19 73.51 70.06 74.26 73.18 72.38
Computation 75.31% 73.13% 76.01% 68.57% 76.35% 72.53%

UNIXKD
k=48

Acc 75.69 74.72 70.77 74.67 73.56 72.77
Computation 94.06% 91.88% 94.76% 87.32% 95.10% 91.29%

Table 3. CIFAR100 Top-1 accuracy and computation cost when applying UNIX to AT [39] and SP [33]. Bold font denotes the result that
outperforms original distillation method. On both similar and different architecture settings, UNIX improves the efficiency of AT and SP.

Teacher Student Ft/Fs KD+AT Random
+KD+AT UNIXKD+AT KD+SP Random

+KD+SP UNIXKD+SP

WRN-40-2 WRN-16-2 3.25
75.16 74.85 75.29 74.64 73.67 74.66
100% 75% 75.31% 100% 75% 75.31%

resnet32×4 ShuffleV2 23.49
75.70 74.73 76.50 75.74 75.05 77.12
100% 78.13% 78.92% 100% 78.13% 78.92%

Table 4. ImageNet Top-k accuracy and computation cost.
UNIXKD outperforms KD in label-based setting and achieves
comparable results in label-free setting. We use a batchsize of
256. We set k=200 for Random and k=192 for UNIXKD.

KD Random
+KD UNIXKD KD

+label
UNIXKD

+label

Top-1 45.16 44.28 45.11 53.53 53.64
Top-5 72.57 71.79 72.73 77.75 78.39

Comp. 100% 78.13% 77.23% 100% 77.23%

with 73.65% computation. By increasing k to 48, it outper-
forms KD by 0.49% with 92.40% computation. . The dif-
ference in the degree of improvement in the two settings lies
in the difference in Ft/Fs. In Table 1, the student networks
are mostly lightweight models. The computation is domi-
nated by the number of teacher forward passes. However, in
Table 2, the computation of teacher and student is roughly
of the same magnitude. Therefore, the decrease of teacher
forward pass is compensated by the increase at the student
end, causing a marginal difference in the total computation.
Hence, our method is more applicable in the setting where
the computation gap between teacher and student is large.

Combine with Other KD Methods. Besides conventional
KD [10], we also combine UNIX with other distillation
methods. Specifically, we select AT [39] and SP [33], for

they represent two mainstream methods in distillation, i.e.,
mimicking intermediate features and mimicking relations
between samples, respectively. Since the learning objective
in the two methods cannot update the classifier layer, we
combine them with conventional KD, namely the final loss
is the combination of KL divergence and respective mim-
icking loss. We also select two teacher-student pairs to ex-
amine our approach under similar and different architecture
settings. As shown in Table 3, UNIXKD outperforms AT
and SP on both similar-architecture and cross-architecture
settings, demonstrating the applicability of UNIX to vari-
ous distillation methods.

ImageNet. Limited by computation resource, we only con-
duct one teacher-student pair on ImageNet, i.e., ResNet18
as teacher and ShuffleV2×0.5 as student. As shown in Ta-
ble 4, with just 77.23% computation cost, UNIXKD out-
performs KD on both Top-1 and Top-5 accuracies in label-
based setting. It also achieves comparable results in label-
free setting. The results on ImageNet demonstrate the scal-
ability of UNIXKD to large-scale dataset.

4.2. Ablation Study

We selectively disable certain parts of the whole frame-
work to examine their effects. The experiments are con-
ducted on CIFAR100. Specifically, there are four vari-
ants: 1) Uncertainty without Mixup, namely select the top-
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Table 5. Ablation study on CIFAR100 dataset. We compare four variants of UNIXKD with KD and Random. We list their mean accuracies
on six teacher-student pairs. Bold font denotes result that outperforms KD. The two main components in our methods, i.e., uncertainty and
mixup, can both achieve comparable performances with KD. The combination leads to further improvements. Average on 4 runs.

Teacher WRN40-2 resnet32×4 ResNet50 resnet32×4 resnet32×4 WRN40-2
Mean

Student WRN16-2 resnet8×4 VGG8 ShuffleV1 ShuffleV2 ShuffleV1

KD 75.06 73.54 73.46 74.45 75.16 75.78 74.58

Random k=48 74.73 72.87 73.32 73.69 74.68 75.70 74.17

Uncertainty
(w/o Mixup)

Confidence 75.34 73.79 73.30 73.88 74.93 75.39 74.44
Margin 75.50 74.09 73.16 73.97 75.20 75.43 74.56
Entropy 75.24 74.17 73.27 74.27 75.01 75.86 74.64

Mixup w/o Uncertainty 73.59 72.69 73.11 75.93 75.72 76.36 74.57

Non-adaptive Mixup 74.29 73.34 73.63 76.03 76.03 76.12 74.91

UNIXKD
w = 1 75.69 74.46 73.97 75.80 76.23 77.09 75.54
w = 10 75.59 74.67 74.24 76.41 76.65 76.92 75.75

w = 1000 74.93 73.96 73.86 76.32 76.47 76.16 75.28

k uncertain samples and feed them to networks directly, 2)
Mixup without Uncertainty, i.e., randomly select k images
and apply conventional mixup, 3) Non-adaptive Mixup,
namely select top-k uncertain samples and apply conven-
tional mixup, 4) UNIXKD, i.e., the full version of our
method. For all the variants, we take k=48. We list the mean
accuracy averaged on six teacher-student pairs to show an
overall performance. The results are shown in Table 5.

Effect of Uncertainty Strategy. We eliminate the influ-
ence of mixup and examine the improvement brought by
uncertainty sampling. As discussed in Sec. 3.2, we compare
three sampling strategies, i.e., Confidence, Margin and En-
tropy. As shown in Table 5, all three uncertainty strategies
outperform Random and achieve comparable results with
KD. Notably, without the help of mixup, entropy alone can
surpass KD. Among these strategies, confidence behaves
worse than the other two methods, because it only takes the
maximum probability into account and ignores the full dis-
tribution in logits.

(a) Distance to category center (b) Teacher entropy

Figure 4. The property of selected samples. Uncertainty strategy
prefers to select samples near the decision boundary. These sam-
ples are regarded as hard by both teacher and student.

Effect of Mixup. We investigate Mixup’s effect by remov-

ing the uncertainty estimation. As shown in Table 5, it
achieves a similar mean accuracy compared to KD. How-
ever, its variance among different pairs is large. It outper-
forms KD by a large margin on the last three pairs while
it falls behind KD on the first three pairs. We conjecture
that mixup’s occasional accuracy degradation is a result of
the aliasing effect on informative samples. To examine it,
we use Uncertainty and Mixup simultaneously while com-
bining them in a non-adaptive manner. The accuracy gap
between this variant and the full version shows that adap-
tive mixup is necessary for mitigating the aliasing effect.
Effect of Correction Factor. As discussed in Sec. 3.2, the
degree of adaptive mixup is controlled by the correction
factor c, which is the function of uncertainty ranking, and
its shape is controlled by the parameter w. We study three
cases: 1) w=1, c is a linear function of uncertainty ranking,
2) w=10, c has a typical sigmoid shape, 3) w=1000, c be-
comes a step function; it is equivalent to applying no mixup
to uncertainty samples and applying conventional mixup to
certain samples. As shown in Table 5 (bottom), the mean
accuracy shows a rise-and-fall trend as w increases from 1
to 1000. And w=10 achieves the best results.

4.3. Further Analysis

We further analyze the uncertainty criterion to help un-
derstand how it improves accuracy and efficiency. All the
experiments are conducted on CIFAR100.

The Property of Selected Samples. We study the sample
distribution in feature space by computing the distance be-
tween each selected sample and its corresponding category
center. We use resnet32×4 and ShuffleV2 as teacher and
student networks, respectively. As shown in Fig. 4(a), un-
certainty strategy prefers to select samples far away from
the category center, i.e., samples near the decision bound-
ary. These samples are more informative than centered sam-
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(a) Effect of number of sampling (b) Category accuracy

Figure 5. Uncertainty strategy selects more samples on hard
classes and less samples on easy classes. It greatly improves the
performances on hard classes while maintaining comparable per-
formances on easy classes, making the total performance increase.

ples for the student to distinguish different categories. We
also compute teacher’s entropy of selected samples as illus-
trated in Fig. 4(b). For the hard samples selected by student,
teacher also regards them as hard, demonstrating that the
sample difficulty is an inherent property of data, and an un-
certainty strategy can discover informative samples from a
nondistinctive dataset. Besides, teacher’s entropy increases
as number of iteration increases, showing that Uncertainty’s
selection ability evolves as training proceeds.

How Uncertainty Sampling Improves Accuracy? Con-
sidering UNIX changes the occurrence frequency of each
sample in the whole training stage, we study the relation be-
tween the sampling numbers of each category and the cor-
responding category accuracy.

We use resnet32×4 and resnet8×4 as teacher and stu-
dent, respectively. The result is shown in Fig. 5(a). Each
node in the figure represents a single category. The x-axis
denotes the total times that each category has been sampled
in the training process. The y-axis denotes the accuracy of
each category. For Random baseline, the sampling times of
different categories are roughly the same. However, for un-
certainty strategy, there is an obvious negative correlation.
Uncertainty tends to select more samples on hard categories
and fewer samples on easy categories. To have a better view
of two methods’ different behaviors on different categories,
we arrange the category index in the descending order of
accuracy yielded by Random. As shown in Fig. 5(b), Un-
certainty achieves higher accuracy on hard categories, ben-
efited from their large sampling numbers. Though uncer-
tainty strategy samples less on easy categories, its accuracy
on easy categories remains comparable to that of Random.
Hence, the overall accuracy of uncertainty is better than
Random. The result suggests that the excessive learning
of easy categories causes redundancy in conventional KD.
Our method reduces this redundancy by reasonably adjust-
ing the occurrence frequencies of different categories, thus
achieving a comparable result with lower computation.

(a) Random sampling pattern (b) Uncertainty sampling pattern

Figure 6. Random sampling pattern varies little as training pro-
ceeds. Uncertainty learns hard category sampling pattern rapidly
in the first several epochs, and keeps stable in following epochs.

How Sampling Changes with Epoches? To understand
student’s learning behavior along the time dimension, we
study how quick the uncertainty criterion is in picking the
hard sampling strategy. Specifically, we count the sample
numbers of different categories in each epoch and illustrate
them through heatmaps in Fig. 6. The category index along
x-axis is arranged in a descending order according to the
category accuracy of final epoch. Uncertainty’s trend along
the category dimension corresponds to hard category sam-
pling. From the time dimension, most of the changes hap-
pen at the first several epochs. It indicates that our method
learns hard category sampling strategy in a fast speed and
then maintains a stable sampling pattern until the end of the
training. As a comparison, Random strategy’s pattern varies
little along both the time and category dimensions.

5. Conclusion
In this work, we pay attention to a little-explored but

important question in knowledge distillation, i.e., KD ef-
ficiency. The objective is to reduce the computation cost in
KD without compromising its performance. We proposed
a novel framework called UNIX to tackle this question. It
evaluates the informativeness of each training sample via
uncertainty estimation and then applies an adaptive mixup
to compact more knowledge into a single sample. We val-
idate our method by conducting thorough experiments on
CIFAR100 and ImageNet. Our method achieves better re-
sult than conventional KD with less computation, demon-
strating the effectiveness of our approach. Further analyses
show that our method can effectively reduce the redundancy
in knowledge distillation.
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In appendix, we demonstrate the label-free results (train-
ing without hard label loss) on TinyImageNet [1] in Sec. A
and the label-based (training with hard label loss) results on
CIFAR100 [16] in Sec. B. In Sec. C, we provide implemen-
tation details of UNIXKD, including network architectures,
data augmentation and training hyperparameters.

A. Results on TinyImageNet

We select two teacher-student pairs in TinyImageNet ex-
periments. For all the comparing methods, we exclude the
hard label loss in learning objective. As shown in Table 6,
UNIXKD outperforms KD by using fewer than 79% of the
orginal computation cost.

B. Label-Based Results on CIFAR100

To study the efficiency in transferring process, we ex-
clude the hard label loss in for the experiments in main
paper. We also conduct experiments where hard label loss
is incorporated into the learning objective. The results are
shown in Table 7 and Table 8. On cross-architecture pairs,
our method averagely outperforms KD+label by 1.10%
with 79.44% computation cost. On similar-achitecture
pairs, our methods averagely outperforms KD+label by
0.53% with 92.40% computation cost. The result shows
UNIXKD’s adaptation ability in various settings.

C. Implementation Details

C.1. Network Architectures

On CIFAR100, we adopt resnet [7], ResNet [7],
WideResNet [38], MobileNet [11], VGG [30] and Shuf-
fleNet [31, 41] as the network backbones. For resnet, we use
resnet-d to represent CIFAR-style resnet with three groups
of basic blocks, each with 16, 32 and 64 channels, respec-
tively. resnet8×4 and resnet32×4 indicate a 4× wider net-
work. For ResNet, ResNet-d represents ImageNet-style
ResNet with Bottleneck blocks and more channels. For
WideResNet (WRN), WRN-d-w represents wide ResNet
with depth d and width factor w. For MobileNet, fol-
lowing [32], we use a width multiplier of 0.5. For vgg,
ShuffleNetV1 and ShuffleNetV2, we adapt their architec-
tures to CIFAR100 [16] dataset from their original Ima-
geNet [6] counterparts. On ImageNet, we use the Py-
Torch [23] official implementation of ResNet18 [7] and
ShuffleV2×0.5 [31].

C.2. Data Augmentation.

For CIFAR100, we sequentially apply random crop, ran-
dom horizontal flip and normalization. The crop size is
32×32. For TinyImageNet, we adopt the same operations
as CIFAR100, except that the crop size is 64×64. For

Table 6. TinyImageNet Top-1 accuracy and computation cost of
different methods. Bold font denotes the result that outperforms
KD. We use a batchsize of 256 for all the methods.

Teacher resnet32×4 resnet32×4
Student ShuffleV1 ShuffleV2

Ft/Fs 27.16 23.49

KD
Acc 62.16 62.83

Computation 100% 100%

Random+KD
k=196

Acc 62.03 62.07
Computation 75% 75%

UNIXKD
k=196

Acc 62.92 63.64
Computation 78.43% 78.92%

ImageNet, we follow the official implementation of Py-
Torch [23].

C.3. Training Hyperparameters

CIFAR100. The temperature of KD is set as 4 (same for
TinyImageNet and ImageNet). We train all the student
models for 240 epochs. The initial learning rate of Shuf-
fleV1, ShuffleV2 and MobileNetV2 is 0.01. For other ar-
chitectures, the initial learning rate is 0.05. The learning
rate is decayed by a factor of 10, respectively, at 150, 180
and 210 epochs. The α of beta distribution is 1.0. We run
each experiment on a TITAN-X-Pascal GPU with a batch
size of 64. An SGD optimizer with a 5×10−4weight decay
and 0.9 momentum is adopted.

When we include hard label loss into the learning objec-
tive, we use the common combination coefficient in KD:

L = 0.1 · Lce + 0.9 · Lkd, (12)

where Lce is the cross entropy loss with hard label.
When we combine KD with AT [39] and SP [33], we

keep the loss weight of Lkd=1 and set loss weights of AT
and SP to be 1, 000 and 3, 000, respectively.
TinyImageNet. We train all the student models for 100
epochs. The initial learning rate is 0.1 for all the architec-
tures. It is decayed by a factor of 10, respectively, at 40,
70 and 90 epochs. The α of beta distribution is 0.2. We
run each experiment on four parallel TITAN-X-Pascal GPU
with a total batch size of 256. An SGD optimizer with a
5× 10−4weight decay and 0.9 momentum is adopted.
ImageNet. We train all the student models for 90 epochs.
The initial learning rate is 0.1 and is decayed by a factor of
10, respectively, at 30 and 60 epochs. The α of beta dis-
tribution is 0.2. We run each experiment on eight parallel
TITAN-X-Pascal GPU with a total batch size of 256. An
SGD optimizer with a 1 × 10−4weight decay and 0.9 mo-
mentum is adopted. When we combine KD with hard label
loss, the learning objective is:

L = Lce + 0.9 · Lkd, (13)
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Table 7. Results on cross-architecture pairs: CIFAR100 Top-1 accuracy and computation cost. Bold font denotes the result that outperforms
KD+label. Our method averagely surpasses KD+label by 1.10% with 79.44% computation cost. Average on 4 runs.

Teacher VGG13 ResNet50 ResNet50 resnet32×4 resnet32×4 WRN-40-2
Student MobileNetV2 MobileNetV2 VGG8 ShuffleV1 ShuffleV2 ShuffleV1

Teacher Acc 75.38 78.86 78.86 79.58 79.58 76.46
Student Acc 65.67 65.67 70.68 71.46 72.64 71.46

Ft/Fs 38.17 174.00 13.56 27.16 23.49 8.22

KD+label
Acc 68.32 68.24 73.50 74.07 74.93 76.00

Computation 100% 100% 100% 100% 100% 100%

UNIXKD+label
k=48

Acc 68.78 68.96 73.88 76.28 76.69 77.04
Computation 77.49% 75.57% 81.43% 78.43% 78.92% 84.79%

Table 8. Results on similar-architecture pairs: CIFAR100 Top-1 accuracy and computation cost. Bold font denotes the result that outper-
forms KD+label. Our method averagely surpasses KD+label by 0.53% with 92.40% computation cost. Average on 4 runs.

Teacher WRN-40-2 WRN-40-2 resnet56 resnet32×4 VGG13 VGG16
Student WRN-16-2 WRN-40-1 resnet20 resnet8×4 VGG8 VGG8

Teacher Acc 76.20 76.20 73.10 79.58 74.73 74.76
Student Acc 73.45 72.02 69.38 73.22 70.98 70.98

Ft/Fs 3.25 3.93 3.06 6.12 2.97 4.14

KD+label
Acc 75.18 74.10 71.06 73.21 73.32 72.22

Computation 100% 100% 100% 100% 100% 100%

UNIXKD+label
k=48

Acc 75.48 74.53 70.72 74.78 73.72 73.04
Computation 94.06% 91.88% 94.76% 87.32% 95.10% 91.29%

where Lce is the cross entropy loss with hard label.
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