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Abstract

The task of semi-supervised video object segmentation (VOS) has been greatly advanced and state-of-the-art performance has been
made by dense matching-based methods. The recent methods leverage space-time memory (STM) networks and learn to retrieve
relevant information from all available sources, where the past frames with object masks form an external memory and the current
frame as the query is segmented using the mask information in the memory. However, when forming the memory and performing
matching, these methods only exploit the appearance information while ignoring the motion information. In this paper, we advocate
the return of the motion information and propose a motion uncertainty-aware framework (MUNet) for semi-supervised VOS. First,
we propose an implicit method to learn the spatial correspondences between neighboring frames, building upon a correlation cost
volume. To handle the challenging cases of occlusion and textureless regions during constructing dense correspondences, we
incorporate the uncertainty in dense matching and achieve motion uncertainty-aware feature representation. Second, we introduce a
motion-aware spatial attention module to effectively fuse the motion feature with the semantic feature. Comprehensive experiments
on challenging benchmarks show that using a small amount of data and combining it with powerful motion information can bring
a significant performance boost. We achieve 76.5% J&F only using DAVIS17 for training, which significantly outperforms the
SOTA methods under the low-data protocol. The code will be released.
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1. Introduction

Video object segmentation (VOS) aims at segmenting the
foreground objects from a given video with motion, which is
a classic task in computer vision with many applications, in-
cluding surveillance, video compression, and motion under-
standing etc. In this paper, we focus on the most practical and
widely studied setting, i.e., semi-supervised VOS [1, 2, 3, 4, 5],
whereas the scope is to segment target objects over video se-
quences only given the initial mask of the first frame as prior
and visual guidance. This is a challenging problem because
the target objects can be confused with similar instances of
the same category, and their appearance might vary drastically
over time due to scale change, pose changes, fast motion, trun-
cation, blurry effects, occlusions etc. Essentially, these chal-
lenges could not be addressed with image appearance informa-
tion only.

Recently, various deep learning based VOS approaches have
been proposed [6, 7], which could be roughly categorized as
propagation-based methods [8, 9, 10] and feature matching
based methods [4, 11, 1, 12, 13]. The former generally formu-
late the task as object mask propagation, while the latter lever-
ages memory networks to retrieve relevant information. Nowa-
days, the feature matching-based methods such as Space-Time
Memory (STM) Networks [4, 1, 11, 14, 12, 13] have achieved
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state-of-the-art performance in VOS. The key to the success
lies in introducing the feature matching of historical frames us-
ing non-local operations with a well-designed feature-memory-
bank mechanism. They conduct matching using all previ-
ous frames with the corresponding object segmentation results
through feature similarity query, and infer the object mask of
the current frame. However, these methods heavily rely on the
matching of object appearance between frames, while motion
information, as the critical feature between video frames, tends
to be ignored. Prior to the success of these feature matching-
based methods, explicit motion modeling in the form of dense
optical flow have been exploited [15, 16, 8, 17, 18, 10, 19],
where the dense optical flow is pre-computed from optical flow
estimation networks [20, 21, 22, 23, 24, 25, 26]. However, the
explicit use of optical flow not only requires additional large
dataset (having a domain gap with VOS datasets) training for
an optical flow network but also cannot capture the critical chal-
lenges in VOS, i.e., occlusion, textureless regions, fast motion,
and blurry effects.

In this paper, we advocate that VOS should not only rely
on image appearance similarity matching but also emphasize
the essential motion information from the video, which exists
in any adjacent frames and will not disappear over time. We
propose a novel framework for semi-supervised VOS named
MUNet that embeds motion information into a single branch
pipeline without a pre-computed optical flow. Given a video
sequence, MUNet uses a dense matching based method with
a feature-memory-bank to store both appearance and motion
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Figure 1: Qualitative comparison with competing methods [1, 2, 3, 4] on three sequences of DAVIS17 validation set. Through the implicit modeling of objects
motion and uncertainty, we can obtain more accurate results, especially in multiple bodies movements (row#1,3) and thin lines (row#2). The inaccurate parts are
marked with a yellow dashed box.

features, as shown in Fig. 2. To avoid problems caused by ex-
plicitly using optical flow, we propose a lightweight Motion
Uncertainty-aware Layer (MU-Layer) to implicitly model
motion information from adjacent frames. Specifically, we use
a cost volume to model the displacement and motion uncer-
tainty as a motion feature to establish spatio-temporal relation-
ships, which is calculated from high-level semantic features of
adjacent frames. In addition, we design a Motion-aware Spa-
tial Attention Module (MSAM) to effectively fuse the appear-
ance feature and the motion uncertainty-aware feature, then we
use this module to guide the segmentation of video sequences.
Different from the two-stream methods that need pre-computed
optical flow as input, MUNet only requires the raw images and
does not need the supervision of optical flow, which greatly ex-
pands the practicability and scope of application. Meanwhile,
under the experimental protocol using a small amount of data,
the powerful motion information brings a significant perfor-
mance boost without complex tricks.

We conduct comprehensive experiments on DAVIS17 and
YouTube-VOS18. Experimental results show that our method
achieves state-of-the-art accuracy on the validation set of
DAVIS17 (J&F 76.5% ranks 1st under protocol(1), 81.1%
ranks 2nd under protocol(2), 78.1% ranks 1st under
protocol(3-1)), which exceeds all competing methods un-
der the same settings. We provide qualitative comparisons with
four SOTA methods [1, 2, 3, 4] in Fig. 1. MUNet can accu-
rately demarcate the boundaries of multiple objects and does
not overly cover or ignore small structures. As shown in Fig. 5,
the MU-Layer can implicitly learn a reasonable uncertainty
map and displacement vector, and effectively activate the area
of the moving object through the motion-aware spatial attention
module. Our main contributions are summarized as follows.

• To the best of our knowledge, we are the first to embed
motion information into an end-to-end VOS pipeline with
a single branch and without a precomputed optical flow.
• We introduce the MU-Layer and MSAM to learn the mo-

tion features with uncertainty, which provides critical in-
formation for VOS.

• Experimental evaluation on benchmark datasets with wide
protocols verifies the superiority of our proposed method,
where our method is competitive with the existing SOTA
methods, especially the best performance under low-data
protocols, i.e. (1), (3-1).

2. Related Work

In this section, we introduce previous works from two cate-
gories of VOS as feature matching based methods and motion
based methods.
Feature matching methods. STM[4] achieves great success,
which performs dense feature matching across the entire spatio-
temporal volume of the video through a dynamic memory bank,
i.e. saves the spatio-temporal information of previous frames.
To alleviate the problem of missing samples and out-of-memory
crashes when processing long videos, AFB-URR[1] introduces
the adaptive feature bank to organize the object features by
weighted averaging and discards obsolete features by least fre-
quently used index principle. STM-Cycle[11] incorporates cy-
cle consistency to mitigate the error propagation problem. [14]
proposes a global context module using attentions to reduce
temporal information and guide the segmentation. RANet[27]
is a hybrid strategy, integrating the insights of matching based
and propagation based methods to learn pixel-level similarity.
KMN[13] and GraphMem[12] focus more on memory bank op-
timization to achieve more accurate key-value matching, both
are accompanied by data augmentation, such as Hide-and-Seek
and Label Shuffling, and their performance will drop a lot if
the augmentation is removed. We agree that these schemes will
also give us an improvement, but this paper is dedicated to using
simple motions to emphasize the essentials. Besides, although
these methods have used temporal information to improve ac-
curacy, they ignore the most essential motion information.
Motion-based methods. Such methods can be roughly classi-
fied as mask propagation methods [8, 9, 10, 28] and two-stream
methods [15, 18, 17, 16] . The mask propagation methods start
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from an annotated frame and propagates masks through the en-
tire video sequence, and the propagation process is often guided
by optical flow. Two-stream architecture usually fuses feature
between appearance (RGB branch) and motion (optical flow
branch).

However, such methods highly dependent on high-quality
pre-inferenced optical flow [20, 21, 22, 23, 24, 26], and the per-
formance will be limited by the generalization ability of optical
flow network due to the fact that there is no ground truth of
optical flow in the common VOS task. RMNet [28] uses the
mask of the previous frame and pre-computed optical flow to
generate the attention mask for current frame, but different op-
tical flow networks [20, 26] are selected for different datasets.
It also shows that this kind of methods cannot escape the disad-
vantages of generalization. As for mask propagation methods,
they rely on temporal continuity from optical flow and spatio-
temporal context from the previous frames, this leads these
methods are difficult to deal with occlusions, rapid motion, and
complex deformation of objects, also meets performance drift
over time once the propagation becomes unreliable.

3. Motion Uncertainty-aware VOS

Given a video sequence with T frames, It ∈ RH×W×3, t ∈
[1,T ] is the t-th frame RGB image,Mt ∈ RH×W×1 is the ground
truth object segmentation mask and M̂t denotes the predicted
object mask. Semi-supervised VOS aims to predict the object
masks of all following video frames with the first RGB image
I1 and its object annotation mask M1 as prior, which can be
formulated as M̂t = Hθ([I1,M1...It−1, M̂t−1],It), where Hθ

is an object segmentation network with learnable weights θ.
[I1,M1...It−1, M̂t−1] denotes the historical frames before the
current frame t that can be used directly or implicitly to infer
the object mask.

3.1. Network Overview

Our MUNet is a pixel-level dense matching method. The net-
work architecture as illustrated in Fig. 2 consists of four seam-
less parts: 1) two encoders as feature extractors, 2) a Motion
Uncertainty-aware Layer (MU-Layer), 3) a Motion-aware Spa-
tial Attention Module (MSAM), and 4) a decoder with a feature
memory bank.

First, the reference image It−1 and mask Mt−1 are fed into
the reference encoder Enc-R, the query image It and adjacent
frame It−1 are respectively input to query encoder Enc-Q with
shared weights. Second, the semantic features F s

t−1,F
s

t from
Enc-Q are input to the MU-Layer to obtain the motion fea-
ture F m

t , more details are described in Sec. 3.2. Then, we use
MSAM to take advantage of the motion feature F m

t from adja-
cent frames to enhance the semantic feature embed by Enc-Q
in Sec. 3.3.

In [4, 11, 1], the semantic features output by Enc-R and Enc-
Q are directly used for key-value embedding, where the keys are
used for addressing and matching, while the values are used to
preserve feature information. This will cause the query process

to rely heavily on the similarity matching of appearance seman-
tic features, which may lead to appearance confusion and wrong
predictions caused by similar instances. Different from them,
for a query image, we use the motion enhanced feature from
MASM for key-value embedding, and obtain the key-value
pairs {kQ

t , v
Q
t } to match the most similar features in the memory

bank. The key-value pairs [{kR
1 , v

R
1 }, ..., {k

R
t−1, v

R
t−1}] of historical

images are stored in memory bank, updated dynamically over
time. Finally, the matching results from memory bank are fed
into decoder, and then output the segmentation mask of each
object. We use ResNet50[29] as the backbone of two encoders.
For the query encoder Enc-Q, we take the output feature map
of Layer-4 (res4) as a semantic feature F s

t ∈ R(H/16)×(W/16)×1024,
where H and W are the height and width of raw image shape
correspondingly. The reference encoder Enc-R is slightly dif-
ferent from the vanilla ResNet50, which takes the RGB image
(3-channel) and its segmentation label mask (1-channel) as in-
puts to extract object-level semantic feature.

3.2. Motion Uncertainty-aware Layer (MU-Layer)

Here we introduce MU-Layer, which establishes spatio-
temporal relationships based on the motion feature calculated
from high-level semantic features of adjacent frames. We con-
struct a cost volume to model pixel-wise feature similarity that
indicates the rough motion.
Cost Volume. For semantic features F s

t−1,F
s

t ∈ RH′×W′×D of
reference and query images from Enc-Q, where H′,W ′ indi-
cates H/16,W/16 of the input image shape, D is the feature
dimension. In order to achieve lightweight computing, we first
reduce the feature dimension to D/4 by 1×1 convolution. Then
we define the correlation as C ∈ RU×V×H′×W′ , which can be ef-
ficiently computed as cosine similarity between each pixel in
the H′ ×W ′ reference image with a set of candidate targets in a
U × V search window.

C(u, x) =
F s

t (x) • F s
t−1(x + u)∣∣∣∣∣∣F s

t (x)
∣∣∣∣∣∣ • ∣∣∣∣∣∣F s

t−1(x + u)
∣∣∣∣∣∣ , (1)

where x = (x, y) is the source pixel coordinate, u = (u, v) is the
pixel displacement in search window. We set window size as
25×25.
Displacement Calculation. In order to implicitly represent the
motion without optical flow ground truth as supervision, we dig
into the information represented by cost volume and calculate
the displacement with the highest matching cost. We use a soft-
argmin operator by û =

∑
u∈U[u × σ(−C(u, x))] to solve these

problems. σ denotes the softmax function. We use 2D softmax
along the displacement hypothesis space of u to calculate the
matching probability. Therefore, û is a two-channel displace-
ment vector.
Uncertainty Estimation. The last two dimensions of the
cost volume represent the correspondence between F s

t (x) and
F s

t−1(x + u) in all spatial positions. Previously, we build pixel-
wise displacement between features of adjacent frames by soft-
argmin, but it may fail in low texture, large motion, and mo-
tion blur areas. To remedy this issue, we propose an uncer-
tainty branch to measure the matching confidence. We use
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Figure 2: MUNet architecture. First, we use Enc-Q and Enc-R to extract the semantic features F s
t ,F

s
t−1 of It ,It−1 from image appearance. Then, we use

MU-Layer to calculate the motion feature F m
t , and feed it into MSAM to guide and enhance the semantic feature F s

t . The matching results of Key-value Matcher
is fed into the Decoder to generate the object mask M̂t , and the memory feature-bank is updated dynamically over time.

the matching cost value of the correlation matrix in each spa-
tial position as a score to measure the matching uncertainty of
each pair of spatial correspondence. Specifically, we use max-
pooling to calculate the max value of coordinate (x, y) as match-
ing uncertainty, which means the highest response in each spa-
tial position of 4D cost volume. We define uncertainty map
Umap ∈ RH′×W′ as,

Umap(x, y) = max
{u,v}

C((u, v), (x, y)). (2)

As shown in Fig. 3, we randomly select a pixel (x, y) in
query image It, the red box is the corresponding search win-
dow in reference image It−1, and yellow line represents the
correspondence between two adjacent frames. Right subfigure
indicates the local matching cost of the search window, which
will be spliced into the total uncertainty map Ut

map of image It

as Eq. (2).

Figure 3: Uncertainty map calculation.

Motion Feature Representation. After getting motion infor-
mation from cost volume by soft-argmin and max-pooling, we
also need a high-level motion feature to achieve feature fusion
with high-level semantic feature on an equivalent level. Dif-
ferent from many two-stream based VOS methods[30, 31] that
directly use a deep encoder parallel with RGB encoder to en-
code motion feature, we design a lightweight CNN model to
project the original motion information (H′×W ′×3) into a high-
dimensional feature space (H′ ×W ′ × D). How to use the mo-
tion feature to enhance the semantic feature will be described

in Sec. 3.3. Table 1 shows the structure of our lightweight mo-
tion feature representation network in our proposed MU-Layer,
which maps the original motion information (H′ ×W ′ × 3) into
a high-dimensional feature space (H′ ×W ′ × D).

Layer Cin, Cout, kernel, stride

1 3, 3, 7, 1
2 3, 16, 1, 1
3 16, 16, 3, 1
4 16, 32, 1, 1
5 32, 32, 3, 1
6 32, 32, 1, 1
7 32, 64, 3, 1
8 64, 1024, 1, 1

Table 1: Structure of the motion feature representation network. We uses
2D convolution for lightweight computing, instead of using 3D convolution.

3.3. Motion-aware Spatial Attention Module (MSAM)
To enhance the semantic feature from Enc-Q by motion fea-

ture provided by the former MU-Layer, a direct and simple way
is fusing the motion feature with semantic feature by element-
wise add operation, as shown in the right of Fig. 2(a) and can
be formulated as F out = F s + F m, where F m,F s denotes the
motion and semantic feature respectively, F out is the fused fea-
ture, which is subsequently used to embed the key-value pair of
query image.

Considering that the motion information is different in
each spatial position, to use it more efficiently, we design a
lightweight attention module to fuse the motion feature and se-
mantic feature. In this way, the semantic feature from Enc-Q
can be enhanced by the motion feature in some important re-
gions of motion. Thus, we exploit motion feature as spatial
attention weights, as shown in Fig. 2(b), and this module can
be formulated as,

F out = F s ⊗ sigmoid(Conv1×1(F m)) + F s, (3)

where ⊗ indicates the broadcast multiply, the shape of F m is
H′ × W ′ × D and the output channel of Conv1×1 is 1. So after
Conv1×1 and sigmoid, we can get one-channel attention map
with shape H′ ×W ′ × 1.
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3.4. Loss function
Cross-Entropy (CE) is most widely used in segmentation

tasks. However, the CE loss calculates the error of each pixel
independently and treats all pixels equally, which ignores the
global structure of the image. Here we adopt the Bootstrap
Cross-Entropy loss (BsCE, Lbsce) [32] to force networks to fo-
cus on the hard and valuable pixels during training, and we se-
lect top 40% hardest pixels to carry out back propagation. Be-
sides, we use the mask-IoU loss (Lmiou) to optimize the global
structure instead of focusing on a single independent pixel,
which is not affected by the unbalanced distribution. Thus, we
use the combination of Lbsce and Lmiou as supervision, which is
formulated as,

L(M̂t,Mt) = Lbsce+λLmiou

=
1

φ(Ω)

∑
p∈φ(Ω)

((1−Mp
t ) log(1−M̂p

t )+Mp
t log(M̂p

t ))

+ λ

1 −
∑

p∈Ω min(Mp
t , M̂

p
t )∑

p∈Ω max(Mp
t , M̂

p
t )

 , (4)

where λ is a trade-off parameter and we set λ = 1 in all exper-
iments. Ω is the set of all pixel in the mask, and φ(Ω) is the
hardest region used for bootstrap CE loss. M̂t denotes the pre-
dicted object mask andMt is the ground truth. We demonstrate
the advantages of this combination of loss function in Table 4.

3.5. Implementation Details
We implement our model by PyTorch [33] with a single

NVIDIA RTX 2080Ti GPU. We use ResNet50 [29] as the fea-
ture extractor (Enc-Q, Enc-R), pretrained on ImageNet. Dur-
ing training, we select 6 continuous frames per sequence as
a batch (one as reference frame and the other five as query
frames). During inference, we feed the video sequence frame
by frame and do not use online fine-tuning. We simply ap-
ply common data augmentation on current frames including
flip, color jitter and affine transformation. The input frames
are randomly resized and cropped into 400 × 400, and we use
the raw image size during inference. We minimize Lbsce and
Lmiou by the AdamW [34] optimizer with default parameters
β1 = 0.9, β2 = 0.999. The initial learning rate is 2 × 10−5 and
the weight decay is 0.5.

4. Experiments

4.1. Datasets, Evaluation metrics, and Protocols
We train and evaluate our method on DAVIS 2017 [35]

and YouTube-VOS 2018 [36] datasets. Considering that many
methods use extra static image datasets for pre-training [37, 38,
39, 40, 41] or conduct fine-tuning, for a fair comparison, we
categorize and compare solutions based on whether they use
extra static datasets and online fine-tuning.
DAVIS 2017. The DAVIS17 dataset contains 120 video se-
quences in total, where 60 sequences are split for training, 30
for validation, and 30 for testing. Each video contains one or

several annotated objects to track. Each video sequence has 25
to 104 annotated continuous frames.
Youtube-VOS 2018. The Youtube-VOS18 dataset contains
4453 videos with one or more target objects, including 3471
videos for training (65 categories), 474 sequences for validation
(additional 26 unseen categories). Each video sequence has 20
to 180 discontinuous frames, where every 5 interval frames are
provided and annotated.
Evaluation metrics. Following the standard DAVIS proto-
col, we measure region accuracy J by calculating average
intersection-over-union (IoU), and boundary accuracy F via
bipartite matching between boundary pixels. In addition, we
compare inference speed by frames per second (FPS) accord-
ing to averaging FPS of each sequence on the validation set.

DAVIS-17
YouTube-
VOS-18DAVIS-17

Extra Static
Images

DAVIS-17 DAVIS-17

YouTube-
VOS-18

Train Train

5:1 to mix-up

Pre-Train

Fine-tune

(1) (2)

(3)

(3-2)
(3-1)

Figure 4: Dataset usage protocols.

Evaluation protocols. There are various training protocols for
the existing VOS methods. For a fair comparison with more
methods, we train our model and report the results under dif-
ferent data use protocols, including (1) only using DAVIS17
for training, (2) jointly training on DAVIS17 and YouTube-
VOS18, (3) using static images [37, 38, 39, 40, 41] to pre-
train and then fine-tuning on DAVIS17 (3-1) or both jointly
(3-2), more intuitively in Fig. 4. The different training settings
may cause unfair comparisons, such as using different back-
bones (e.g. RestNet50, ResNet101), using well-designed data
augmentation methods (e.g. Hide-and-Seek, Label Shuffling,
Balanced Random-Crop), using different weight initialization
(e.g. Mask-RCNN, DeepLab) and whether performing online
fine-tune on the test video or not, etc. Here, we will report the
detailed comparisons as fair as possible.

It is worth mentioning that, this low-data experimental setup
greatly reduces the training time and no longer requires a large
amount of data to pretrain. Although this is a smart way
to initialize the network and improve the J&F metric under
protocol(3), researchers gradually realize the shortcomings
of this way, such as long training time. In our setting, one epoch
of pretraining under protocol(3) needs about 17 hours, and
the whole pretraining process may take 6∼7 days in a single
2080Ti GPU. The time of one epoch under protocol(2) is
about 25 minutes and protocol(1) is about 12 minutes. The
training protocol(1) and (2) are lighter, i.e. less time. We
believe abandoning the pretraining phase by emphasizing own
data motion information is an improvement in the VOS field.

4.2. Quantitative Comparison

DAVIS17. Results on the DAVIS17 validation set are re-
ported in Table 2. Our method achieves 1st under train-
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ing protocol(1) and protocol(3-1), and ranks 2nd under
protocol(2). Under protocol(1), only using the DAVIS17
dataset for training, our vanilla version achieves 75.0% on
J&F , which outperforms all other methods. And a better
initialization by Mask-RCNN ResNet50 can boost the perfor-
mance of our method to 76.5% on J&F , which significantly
outperforms STM(43.0%) by 36.5% and CFBI(74.9%) by 1.4%.
In addition, when jointly training under protocol(2), ours
achieves 81.1% J&F , and the performance can increase to
81.9% if using static images to pretrain. Ours surpasses most
competitors in Table 2, it is competitive and able to prove our
superiority.

Methods S Y J F J&F FPS

Protocol(1)

STM1 [4] - - 43.0 6.25
OSMN [42] 52.5 57.1 54.8 -
OnAVOS [43] 64.5 71.2 67.9 0.08
FRTM[3] - - 68.8 21.9
FEELVOS[44] 65.9 72.3 69.1 2.22
LWLVOS‡[45] 72.2 76.3 74.3 -
CFBI† [2] 72.1 77.7 74.9 5.55
Ours 72.4 77.8 75.0 6.42
Ours-v2‡ 74.5 78.5 76.5 6.42

Protocol(2)

A-GAME[46] X 67.2 72.7 70.0 14.3
FEELVOS[44] X 69.1 74.0 71.5 2.22
STM-cycle[11] X 69.3 75.3 72.3 9.3
AFB-URR∗[1] X 72.0 75.7 73.9 -
PMVOS[47] X 71.2 76.7 74.0 -
FRTM[3] X - - 76.7 21.9
CFBI† [2] X 79.1 84.6 81.9 5.55
Ours X 78.3 83.9 81.1 6.42

Protocol(3-1)

RANet[27] X 63.2 68.2 65.7 30.3
RGMP[9] X 64.8 68.6 66.7 7.70
OSVOSS [48] X 64.7 71.3 68.0 0.22
CINM[49] X 67.2 74.2 70.7 -
GC[50] X 69.3 73.5 71.4 -
STM[4] X 69.2 74.0 71.6 6.25
AFB-URR[1] X 73.0 76.1 74.6 6.18
RMNet[28] X 72.8 77.2 75.0 -
LCM[51] X 73.1 77.2 75.2 -
PReMVOS[52] X 73.9 81.7 77.8 0.03
KMN[13] X 74.2 77.8 76.0 8.33
Ours X 74.7 81.4 78.1 6.42

(3-2)

STM[4] X X 79.2 84.3 81.8 6.25
GMVOS[12] X X 80.2 85.2 82.8 5.00
KMN[13] X X 80.0 85.6 82.8 8.33
RMNet[28] X X 81.0 86.0 83.5 -
LCM[51] X X 80.5 86.5 83.5 -
Ours X X 79.2 84.6 81.9 6.42

Table 2: Comparison on the DAVIS17 validation set.1

YouTube-VOS18. We report the results on the YouTube-
VOS18 validation set in Table 3. The subscript U and S de-
note the unseen and seen categories, G is the average of all
four measures. Our method with different training settings
can achieve competitive results. Compared with the baseline
STM[4], the motion information brings 0.9% (79.4%→80.3%)
performance gain. Especially without pretraining on static im-

1In Table 2,3, “S”: static images for training, “Y”: Youtube-VOS18, and
“O”: fine-tune on test strategy. † indicates using DeepLabv3-ResNet101 to
initialize the backbone network, and ‡ means using Mask-RCNN-ResNet50.
The best result is bold-faced, and the suboptimal result is underlined.

ages, our mehtod brings 9.2% (68.2%→77.4%) gain. In addi-
tion, we found the improvement on YouTube is not as signif-
icant as DAVIS. The reason is that DAVIS consists of contin-
uous frames, while every 5 interval frames (discontinuous) are
used in YouTube. MULayer cannot effectively capture the long
range motion information without the optical flow ground truth
supervision.

Methods S O JU FU JS FS G

S2S[36] X 55.5 61.2 71.0 70.0 64.4
PReMVOS[52] X 56.6 63.7 71.4 75.9 66.9
STM-cycle[11] X 62.8 71.9 72.2 76.3 70.8
MSK[8] X X 45.0 47.9 59.9 59.5 53.1
OnAVOS [43] X X 46.6 51.4 60.1 62.7 55.2
DMM-Net[53] X X 50.6 57.4 60.3 50.6 58.0

RGMP[9] X - - 59.5 45.2 53.8
OSVOS [54] X 54.2 60.7 59.8 60.5 58.8
GC[50] X 68.9 75.7 72.6 75.6 73.2
AFB-URR[1] X 74.1 82.6 78.8 83.1 79.6
GMVOS[12] X 74.0 80.9 80.7 85.1 80.2
LWLVOS‡[45] X 76.4 84.4 80.4 84.9 81.5
KMN[13] X 75.3 83.3 81.4 85.6 81.4
LCM[51] X 75.7 83.4 82.2 86.7 82.0
STM[4] X 72.8 80.9 79.7 84.2 79.4
Ours X 75.1 83.4 79.0 83.5 80.3

A-GAME[46] 60.8 66.2 67.8 69.5 66.1
FRTM[3] 76.2 74.1 72.3 76.2 72.1
LWLVOS‡[45] 75.6 84.4 78.3 82.3 80.2
CFBI† [2] 75.3 83.4 81.1 85.8 81.4
RMNet[28] 75.7 82.4 82.1 85.7 81.5
STM[4] - - - - 68.2
Ours 70.6 77.9 78.5 82.7 77.4

Table 3: Comparison on the YouTube-VOS18 validation set.1

4.3. Ablation Study

In this section, we conduct several ablation experiments on
the DAVIS17 validation set via training protocol(2) in Fig. 4
to discuss the effectiveness of our proposed modules. The base-
line version of these experiments uses ResNet50, without any
proposed modules.
MU-Layer. We train a network without our MU-layer to study
how it influences the matching based methods. As shown in
Table 4 (a) and (c), our proposed MU-Layer can achieve 1.5%
(76.5% → 78.0%) performance gain. We also visualize the dis-
placement and uncertainty map in Fig. 5 and Fig. 6, which
shows that our MU-Layer extracts reliable motion information.

1

RGB Image

Displacement

Uncertainty

Figure 5: Visualization of the displacement and uncertainty map. We
project the uncertainty map into a heat map and add it to the original image
for better visualization.

MASM. To evaluate the effectiveness of our fusion module,
we report the result of addition (f ) and MASM (g) in Table 4,
based on the complete structure (e). The comparison shows

6



from top-to-buttom: image, flow, d-conf, r-conf;

1

bike-packing

breakdance

dogs-jump

judo

drift-chicane 25% 75%50% 100%frame-2

Figure 6: Visualization of the uncertainty map of ours on the DAVIS17 validation set. We project the uncertainty map into a heat map and add it to the original
image for better visualization. We select one frame after every 1/4 sequence length for visualization (frame-2 replace 0%). It can be verified that the moving regions
in the adjacent images are activated with high uncertainty.

that MASM improves the vanilla adding based fusion method
by 1.0% (80.1% → 81.1%) in J&F . We visualize the spatial at-
tention map of shape H′×W ′×1 before broadcast multiply and
show it in Fig. 7. We can observe that the attention map focuses
on the salient area of the moving objects, which demonstrates
that MASM helps strengthen the object information.

Figure 7: Visualization of the attention map. We directly use the grayscale
image to display the one-channel attention map.

Segmentation Loss. We study how well-designed segmenta-
tion loss affects the performance. The results of (a) and (b)
are listed in Table 4, and the performance drops with or with-
out such loss. This provides us a strong baseline and achieves
better performance.

Baseline and components J F J&F ∆

(a) w/o disp. (baseline) 74.5 78.4 76.5 -
(b) + BsCE&IoU loss 76.2 80.9 78.6 +2.1
(c) + disp. + uncertainty map 75.9 80.1 78.0 +1.5
(d) + disp. + BsCE&IoU 76.9 82.5 79.7 +3.2
(e) + disp. + BsCE&IoU + uncertainty 78.3 83.9 81.1 +4.6

(f ) All three cmpt. w [addition] 77.9 82.3 80.1 +3.6
(g) All three cmpt. w [motion attention] 78.3 83.9 81.1 +4.6

Table 4: Ablation study of components. “disp”: displacement, “BsCE&IoU”:
using Lbsce&Lmiou to supervise, “[addition]” and “[motion attention]” is the
fusion method.

4.4. Some Failure Cases

Here we provide some failure cases of our scheme in Fig. 8.
After the previous quantitative and qualitative comparisons, our
solution has achieved great success by exploiting the effective
motion information. As common optical flow networks cannot
handle extremely complex/fast motions and large-scale occlu-
sion well, and there is no ground truth for supervision in our
implicit modeling method, we also have flaws in some extreme
examples. However, our method still outperforms other com-
peting methods under these challenging scenarios.

from top-to-buttom: AFB-URR, STM, Ours, gt;

1

shooting#11 shooting#12 shooting#13

india#35 india#36 india#37

Figure 8: Some failure cases of ours. The left is the IoU per-frame over time.
From top to bottom on the right are the uncertainty map, the predicted masks,
and the ground truth.
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Figure 9: IoU per-frame over time of Ours, STM and AFB-URR on five video sequences from DAVIS17 validation set. The last three columns have multiple
objects, while the first two columns have only a single object. Since we effectively use the motion information between adjacent frames, the IoU can remain high
even in the latter part of the video sequences.

from top-to-buttom: AFB-URR, CFBI, FRTM-VOS, STM, Ours;
from left-to-right: 0%[frame-2], 25%, 50%, 75% 100%
soapbox: frame 1, 24, 49, 74, 98
scooter-black: frame 1, 10, 21, 32, 42
kite-surf: frame 1, 12, 25, 37, 49
horsejump-high: frame 1, 12, 25, 37, 49
parkour: frame 1, 25, 50, 75, 99

1

soapbox

scooter-black

kite-surf

horsejump-high frame-2 25% 50% 75% 100%

Figure 10: Visualization of the quantitative results of ours on DAVIS17 validation set. We select one frame every 1/4 sequence length for visualization (frame-2
replace 0%).

4.5. Qualitative Comparison
We give a qualitative comparison with some SOTA methods

[1, 2, 3, 4] in Fig. 1. In soapbox#74 and scooter-black#42,
our method can handle the boundaries between objects well.
In paragliding-launch#20, our method deals with moving thin
lines better. However, FRTM[3] lose parts of objects or over-
cover the thin object. AFB-URR[1] struggles with discrimina-
tion between different objects and almost fails to detect small
and thin objects.

In Fig. 9, we show how IoU changes over time by per-frame
evaluation. Because the motion information we used exists be-
tween any adjacent frames and will not disappear over time,
our methods can still maintain high IoU in the last 50% frames.
Compared with STM and AFB-URR, we have achieved more
robust segmentation. More qualitative results of ours are shown
in Fig. 10. Thanks to the accurate modeling of motion infor-
mation, our method is robust to occlusion, complex/large mo-
tion of row#1,2,4 and can distinguish the small/thin objects
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Figure 11: Visualization of the quantitative results of ours and AFB-URR on the YouTube-VOS18 validation set.

in row#3. And in Fig. 11, we select 3 video sequences of
YouTube-VOS18 for visual comparison with AFB-URR[1].

5. Conclusion

In this work, we advocated the return of motion information
in the state-of-the-art dense-matching based semi-supervised
VOS approaches. We proposed a novel motion uncertainty-
aware pipeline for semi-supervised VOS, where the motion
information is implicitly modeled. We implicitly built corre-
lation volume by matching pixel-pairs between the reference
frame and the query frame, enabling the learning of motion
features. To address the challenging cases of occlusion and tex-
tureless regions, we incorporated the motion uncertainty into
building dense correspondences. Furthermore, we proposed a
motion-enhanced module to effectively fuse the motion feature
and the semantic feature. Extensive experiments on benchmark
datasets proved the superiority of our proposed framework.
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