
Evaluating participating methods in image analysis
challenges: lessons from MoNuSAC 2020

Adrien Foucart∗, Olivier Debeir, Christine Decaestecker

Laboratory of Image Synthesis and Analysis, Ecole polytechnique de Bruxelles
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Abstract

Biomedical image analysis competitions often rank the participants based on a

single metric that combines assessments of different aspects of the task at hand.

While this is useful for declaring a single winner for a competition, it makes it

difficult to assess the strengths and weaknesses of participating algorithms. By

involving multiple capabilities (detection, segmentation and classification) and

releasing the prediction masks provided by several teams, the MoNuSAC 2020

challenge provides an interesting opportunity to look at what information may

be lost by using entangled metrics. We analyse the challenge results based on

the “Panoptic Quality” (PQ) used by the organizers, as well as on disentangled

metrics that assess the detection, classification and segmentation abilities of the

algorithms separately. We show that the PQ hides interesting aspects of the

results, and that its sensitivity to small changes in the prediction masks makes

it hard to interpret these results and to draw useful insights from them. Our

results also demonstrate the necessity to have access, as much as possible, to

the raw predictions provided by the participating teams so that challenge results

can be more easily analysed and thus more useful to the research community.
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Performance metrics

1. Introduction

Medical imaging has become an increasingly important part of diagnosis and

clinical decision making. The workload of physicians involved in the analysis

of these images has increased accordingly. The need for accurate and reliable

algorithms capable of reducing that workload has led to the development of a5

large corpus of research in tasks such as detection, segmentation and classifi-

cation of objects of interest in biomedical images. The first ”grand challenge”

in biomedical imaging was organized at MICCAI 2007, comparing algorithms

for liver segmentation in CT scans [1]. It used a mix of volumetric overlap

and surface distance metrics combined into a single score to produce an overall10

ranking. Since then, many such challenges have been organized on a diverse set

of tasks, modalities and organs. Many of these challenges are referenced on the

https://grand-challenge.org/ website.

Following the development of imaging devices for whole histological slides,

digital pathology needs have motivated many challenges in recent years, starting15

in 2010 with the “Pattern Recognition in Histopathological Images” challenge

hosted at ICPR [2], which tested algorithms on lymphocytes segmentation and

centroblast detection, and reported several metrics for each task. These needs

include the detection and identification of specific cell types or structures in thin

sections of tissue samples (i.e. histological slides) and are important for various20

tasks in pathology, such as cancer diagnosis, prognosis and research. In digital

pathology challenges, participants are usually given images of stained histologi-

cal slides with annotations related to the task at hand to train their algorithms

(as illustrated in Figure 1). Typically these challenges rank the participating

teams on the basis of a single metric assessing the predictions made by their25

algorithm on an independent test set. This metric may combine evaluations

of different subtasks needed to achieve the challenge objective. While this ap-

proach is useful for declaring a single winner, it makes it difficult to assess the
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strengths and weaknesses of the participating algorithms.

Recently, the MoNuSAC2020 (Multi-organ Nuclei Segmentation and Clas-30

sification) challenge was held as a satellite event of the ISBI 2020 conference.

In this challenge, participants were provided with images of haematoxylin and

eosin (H&E) stained histological sections from four organs. These H&E images

were accompanied by annotations segmenting and identifying four cell types,

namely epithelial cells, lymphocytes, macrophages and neutrophils. Based on35

this data set, the participants were asked to develop algorithms to recognise

these cell types. These algorithms were then to be evaluated on a new set of

test images from other patients. As detailed below, the submitted results were

assessed using a single metric based on the Panoptic Quality (PQ) and ranked

accordingly. These results were published on the challenge website hosted at40

grand-challenges.org1, and in 2021 in the IEEE Transactions on Medical Imag-

ing [3]. The training and testing data were fully released to the public, including

all annotations. Code for reading the .xml annotations and for computing the

challenge metric was also released in a GitHub repository2. Remarkably, they

also released the test set predictions of the top five teams from the challenge45

leaderboard. This is a unique level of transparency for a digital pathology chal-

lenge.

In this work, we use the opportunity offered by the available data from

the MoNuSAC2020 challenge to illustrate how the use of a single, aggregated

metric obscures important information that could be derived from the results if50

the different components of the metric were kept separate. We show that the

use of multiple metrics, specific to each of the tasks involved in the challenge,

allows us to better identify the strengths and weaknesses of each competing

algorithm. We also analyse the robustness of the metrics to small changes in

the annotations that would have no impact on the application of the results in55

clinical pathology. Supplementary material and supporting code are available

1https://monusac-2020.grand-challenge.org/Results/
2https://github.com/ruchikaverma-iitg/MoNuSAC
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at: https://github.com/adfoucart/disentangled-metrics-suppl.

This article is structured as follows. In section 2, we discuss some related

works on evaluation metrics. In section 3.1, we present the dataset and the

definition of the Panoptic Quality used in the MoNuSAC2020 challenge. In60

section 3.2, we describe the experiments performed for our analysis. In section

4, we report our results on the robustness of the PQ metric (4.1) and on the

effect of decomposing it into its base components, i.e. detection quality and

segmentation quality (4.2). We end by the results provided by fully separated

classification, detection and segmentation metrics (4.3). In section 5, we discuss65

our results and the limitations of the PQ metric (5.1), the insights we can

gather from disentangled metrics (5.2), and the limitations of our study (5.3).

A conclusion is provided in section 6.

2. Related works

Maier-Hein et al. completed a large survey and analysis of biomedical imag-70

ing challenges [4]. They demonstrate how small changes in challenge metrics,

ranking mechanism, aggregation method and expert selection for reference an-

notations can lead to large changes in the ranking of the algorithms. This study

led to the publication of guidelines for challenge organizers [5] to ensure better

interpretation and reproducibility of the results.75

Luque et al. [6] studied more specifically the impact of class imbalance on bi-

nary classification metrics. The study demonstrates how commonly used metrics

such as the F1-score, precision and Negative Predictive Value are highly biased

when used on imbalanced datasets. The least biased metrics are shown to be

the specificity and sensitivity. If a single metric is required, the geometric or80

arithmetic mean of these two values are also unbiased. The Matthews Correla-

tion Coefficient is also shown to be a good alternative, ahead of the Markedeness

metric and finally the Accuracy, even if this latter is balanced [7]. In contrast

to the binary case, it should be noted that very little data is available in the

literature on multi-class classification metrics [8], except perhaps on the defects85
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of Cohen’s Kappa [9].

Limitations of commonly used segmentation metrics are also explored by

Reinke et al. [10]. The study shows the main properties and biases of three of

the most common segmentation metrics: the Dice Similarity Coefficient (DSC),

Intersection over Union (IoU), and Hausdorff Distance (HD). The DSC is found90

to be unsuitable in many cases, as it is highly unstable for small objects, and does

not penalize under- and over-segmentation in the same way. The unbounded

nature of the HD, meanwhile, leads to very arbitrary decisions when deciding

for instance how to aggregate multiple cases when there are missing values, with

potential effects on ranking. Combining different metrics into a single ranking95

is also shown to be difficult, as many metrics are mathematically related, and

therefore the choice of which metrics are combined can reinforce biases.

Padilla et al. [11] compared the most commonly used detection metrics.

Their study lists 14 different metrics used in challenges, mostly based on pre-

cision and recall. The main differences come from how matching objects are100

defined (usually with a threshold on the IoU between the predicted bounding

box and the ground truth bounding box), and how the precision and recall are

combined into a single score.

A survey of digital pathology challenges in particular has been done in Hart-

man et al. [12]. The study notes the difficulty of finding good metrics for digital105

pathology challenges, as well as the difficulty of determining a ”ground truth”

in such images. This question of how the notion of “ground truth” can really be

applicable for computing metrics in digital pathology, where inter-expert dis-

agreement is generally high, has been discussed in our previous work [13] using

the annotations provided by the Gleason2019 challenge.110

These studies provide a theoretical background on the particular weaknesses

of some metrics, and demonstrate that these can affect the rankings of chal-

lenges, which are used to inform our understanding of which algorithms are

best for solving the underlying tasks. In this work, we will look more partic-

ularly at the problems that come from attempting to measure subtasks which115

are inherently independent with a single aggregating metric, and at the loss of
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useful information that this aggregation represents.

3. Materials and methods

3.1. Description of the dataset and evaluation metrics

A description of the challenge datasets, the organization of the competi-120

tion, and the evaluation metrics was provided ahead of the challenge in [14].

A post-challenge report containing information on the competing algorithms

and a discussion of the methods used and of the challenge results was pub-

lished in [3]. The challenge dataset was composed of H&E-stained tissue images

acquired from several patients at multiple hospitals, and from four different or-125

gans, at 40x magnification. The whole slide images (WSI) were selected from the

TCGA database, then cropped and manually annotated by “engineering grad-

uate students” with quality control performed by “an expert pathologist with

several years of experience”, with a process of iterative revisions until “less than

1% nuclei of any type had any [missed nuclei, false nuclei, mislabelled nuclei,130

and nuclei with wrong boundaries].” The four classes of nuclei considered are

“epithelial”, “lymphocytes”, “macrophages” and “neutrophils”. The training

dataset contained cropped WSI regions (i.e. sub-images) from 46 patients, and

the test data sub-images from 25 other patients. More than 30,000 nuclei were

annotated in the training set, and more than 15,000 in the test set, with a large135

imbalance between the classes (around 30x as many epithelial/lymphocytes as

macrophages/neutrophils). Some image aeras in the test set were also marked

as “ambiguous”, with either “very faint nuclei with unclear boundaries” or “un-

certainties about the class”, and excluded from the evaluation metrics.

The evaluation criterion differs slightly between the pre-challenge [14] and140

post-challenge [3] publications. In both cases, the “panoptic quality” (PQ) is

used [15]. The PQ is determined per image and per class (c), as:

PQc =

∑
(pc,gc)∈TPc

IoU(pc,gc)

|TPc|+ 1
2 |FPc|+ 1

2 |FNc|
(1)
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A true positive (TP) is found when a predicted object (p) and a ground truth

object (g) of the same class (c) have an intersection over union (IoU) strictly

greater than 0.5. The PQ of a class for an image is therefore the average IoU of145

these true positives (in other words: the segmentation quality of the matched

objects), multiplied by the detection F1-score for that class (FP = false positive,

FN = false negative and |.| means “number of”).

In the present study, we use the overall metric described in the post-challenge

publication [3], with 1 computed per patient and per class. For that purpose, the150

TPc (matching pairs), FPc (unmatched predictions), FNc (unmatched ground

truth) and IoU values for matching pairs are first aggregated for all sub-images

of the same patient (corresponding to regions extracted from the same histo-

logical slide). The PQc are then averaged per patient over all classes (without

class weighting), and finally averaged over the patients in the test set to obtain155

the final metric.

The ground truth annotations are provided as .xml files with each annotation

encoded as a polygon with the position of the vertices. For each sub-image,

participants were asked to provide their predictions as “n-ary masks”, with a

separate file per class such that “all pixels that belong to a segmented instance160

should be assigned the same unique positive integer (> 0)” [14]. The “n-ary

masks” were not directly released by the challenge organizers. Instead, color-

coded prediction maps were released for the “top 5 teams” of the challenge. A

wide border was added to all objects in these maps so that we can better see

if the algorithm managed to separate close or partially overlapping objects (see165

Figure 1). The available data is therefore not identical to what was used to

evaluate the challenge, as the borders introduce an uncertainty on the exact

shape and boundaries of the predicted objects.

Other technical issues further complicate the reproduction of the challenge

results. Only four of the top-five teams’ predictions can be retrieved because two170

of the provided links point to the same files and thus miss the challenge winner.

The ground truth annotations sometimes contain overlapping boundaries. The

PQ metric, according to the code provided by the challenge organizers, is how-
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Figure 1: Uncertainty about the handling of overlapping annotations. From left to right:

RGB image of a region of a whole-slide image; visualisation of overlapping objects (yellow

pixels are regions where two different objects overlap); n-ary mask of the macrophage class

generated from the .xml annotations using the code provided by the challenge organizers (all

overlapping pixels have been assigned to the latest encountered object in the annotation file);

color-coded ground truth image (lymphocytes in yellow, neutrophils in blue, macrophages in

green) with added borders provided for visualisation by the challenge organisers, making the

overlap visible.

ever computed on the “n-ary masks”, which cannot possibly encode overlaps.

The code provided to read the .xml annotations and produce the “n-ary masks”175

appears to simply assign the overlapping pixel to the last encountered object

that covers it3. This overlap problem is illustrated in Figure 1. Finally, some

contours encoded in the xml annotations have no inner pixels and completely

disappear from the rasterization using the provided code, which relies on the

draw module from the scikit-image library. This only happens to a handful of180

objects in the test set (4/7213 epithelial cells, 3/7806 lymphocytes, and none

of the neutrophils and macrophages), so the impact is very limited and can be

considered negligible.

Of a much more problematic nature are several errors in the implementation

of the evaluation, which we detail in a comment article to the challenge’s publi-185

cation [16] (which did not address the limitations of the metric itself). Because

of these errors, we will use our re-implementation of the evaluation4 as a base-

line for the interpretation of the results, rather than the challenge’s published

3n-ary mask generation on GitHub, last accessed 2021-09-28.
4Available on GitHub: https://github.com/adfoucart/disentangled-metrics-suppl
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leaderboard.

3.2. Description of the experiments190

Using the color-coded predictions of the four available teams, and the n-

ary masks generated from the .xml ground truth annotations, we performed

several experiments to examine the robustness of the PQ metric and what kind

of information may be hidden in the aggregation of the PQ metric.

3.2.1. Robustness of the PQ metric195

We need to regenerate the n-ary masks from the provided colour-coded pre-

dictions in order to calculate PQ. This gives us the opportunity to test the

robustness of the metric to small changes in the annotations, without impact

on clinical application of the results (see Figure 2). These changes are induced

by two slightly different mask generation methods:200

• A “border-removed” version, where all the pixels color-coded as borders

are simply removed from the masks, resulting in non-contact masks sepa-

rating objects, which are labelled according to their class using a simple

connected component rule.

• A “border-dilated” version, where the masks obtained in the first version205

are dilated by one pixel, in order to recover some of the pixels lost when

removing the borders and to propose masks that should be closer to the

actual prediction masks sent by the teams.

These “restored” masks are computed for the four available teams’ predic-

tions, and also on the color-coded version of the ground truth. PQs are then210

computed between the two versions of the restored masks and the n-ary masks

generated directly from the .xml annotations.

The rule proposed by the challenge to indicate a “match” is to look for

pairs of segmented and ground truth objects with IoUs strictly above 0.5. This,

however, may cause some problems, particularly in cases of over-segmentation,215

as shown in Figure 3, where a one-pixel change in the border of the objects
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Figure 2: Reconstruction of the n-ary masks from the provided color-coded ground truth using

the “border-removed” and “border-dilated” methods.

leads to one true positive and one false positive turning into one false negative

and two false positives because for one of the over-segmented objects the IoU

decreases below the 0.5 threshold. That is why we include another matching

rule in our experiments. This rule looks for the matching pair with the highest220

IoU among all possible pairs, and considers a true positive if the centroid of the

predicted object is inside of the ground truth object. This rule does not reject

pairs based on a bad segmentation when a match exists in the “detection” sense.

3.2.2. Decomposition of the PQ

The PQ, as we mentioned above, is a composition of the “Segmentation225

Quality” (SQ) and “Detection Quality” (DQ), such that, for each class (c) in

each image:

SQc =

∑
(pc,gc)∈TPc

IoU(pc, gc)

|TPc|
(2)

DQc =
|TPc|

|TPc|+ 1
2 |FPc|+ 1

2 |FNc|
(3)

PQc = DQc × SQc (4)

With the SQ corresponding to the average IoU of the matching pairs of230

objects, and the DQ to the detection F1-score. To gain better insights on

the results given by the overall PQ, we decomposed it into its two separate
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Figure 3: Edge cases for the challenge’s matching rule. (a) Nuclei image (b) Ground truth

mask. (c) Border-removed version of a prediction mask showing over-segmentation in the

middle of the frame. Both objects have an IoU lower than 0.5 with the correct object mask,

leading to two false positives and one false negatives being recorded. (d) Border-dilated version

of the same mask. One object now has an IoU larger that 0.5, leading to the recording of one

false positive and one false negative, despite the very similar segmentations.

components. Instead of averaging over the 25 patients of the test set, we look

at the distribution of the 25 patient scores to compare the teams’ results more

objectively.235

3.2.3. Fully separated metrics

Based on the challenge’s description and evaluation, we can identify three

separate tasks that must be performed by the competing algorithms: nuclei de-

tection, classification and segmentation. The PQ metric transforms this problem

into four separate detection and segmentation tasks (one for each class), whose240

results are averaged for each patient into a single score. The metric prevents any

distinction between an algorithm that detects nuclei, but assigns them wrong

classes, and an algorithm that does not detect the nuclei correctly at all. It

also does not take into account the segmentation quality of the misclassified

objects into its segmentation score. To hightlight these potential differences, we245

compute separate metrics for the three different tasks.

Detection. For this task, we treat the problem as single-class and look at

nuclei detection, regardless of the predicted class. Most detection metrics are

based on the ”area under the ROC curve” which requires knowledge of the

confidence levels of the predictions to calculate precision and recall at different250
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confidence thresholds [11]. As these data are not published for the challenge,

we only compute a single precision and recall measure for each team, as well

as the resulting F1-score.

Classification. For this task, we look at all the correctly detected nuclei, and

compute the confusion matrix (CM) of the nuclei classification and its normal-255

ized version (NCM) to remove the impact of class imbalance when computing

other metrics. If CMi,j is the number of objects of ground truth class i predicted

as class j, then NCMi,j =
CMi,j∑
k
CMi,k

. For a general view of the classification

performance, we compute the overall NCM accuracy, also known as bal-

anced accuracy, which is the arithmetic mean of the recall of each class. To260

get more insights on class-specific performance, we also compute the per-class

precision, recall and F1-score, each time considering one class versus all

others.

Segmentation. For this task, we again look at all the correctly detected nu-

clei, and compute the IoU between the predicted segmentation and the matched265

ground truth mask, regardless of the predicted class. We also look at the per-

class IoU, where each matching pair of objects is counted towards the IoU of

the ground truth class. Additionally, as the IoU is sensitive to the area overlap

but not so much to the shape differences, we compute the Hausdorff Distance

(HD) between matching pairs of objects, computed as the maximum distance270

between any point in the contour of an object and the nearest point on the

contour of the other.

All of these metrics are computed per patient so that we can examine and

statistically compare the distributions of results obtained on the test set by

the algorithms. We also exclude all regions marked as “ambiguous” from the275

computations, as in the challenge.

4. Results

In this section, we will present the results of the different experiments, and

point out the most interesting insights that they offer. A more general dis-
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Table 1: Final averaged PQs (averaged per patient) of the restored n-ary masks of the different

teams by the border-removed and border-dilated methods, with a matching rule based on the

strict-IoU and the centroid-rule, compared to the ground truth annotations generated from

the .xml files. In addition, we performed the same operation on the “color-coded” version of

the ground truth provided by the challenge.

PQ (Rank) Border-removed Border-dilated

Strict-IoU Centroid Strict-IoU Centroid

Team 1 0.559 (2) 0.574 (1) 0.572 (1) 0.586 (1)

Team 2 0.545 (3) 0.562 (3) 0.561 (2) 0.574 (2)

Team 3 0.541 (4) 0.554 (4) 0.504 (4) 0.516 (4)

Team 4 0.560 (1) 0.568 (2) 0.555 (3) 0.561 (3)

Color-coded GT 0.892 0.892 0.913 0.913

cussion of these results will be done in the next section. The four teams for280

which the predictions were available5 are, by alphabetical order, “Amirreza

Mahbod” (hereafter Team 1), “IIAI” (Team 2), “Sharif HooshPardaz” (Team

3) and ”SJTU 426” (Team 4). As a reminder, the metric values reported in this

section were computed using our re-implementation of the post-challenge rule

(see section 3.1).285

For brevity and clarity’s sake, it is sometimes inconvenient to report the

results obtained under the four conditions tested (border-removed versus border-

dilated masks and strict IoU versus centroid rule matching). In those cases, the

“border-dilated, strict IoU” condition will be reported, as it is the one that most

closely matches the condition of the original challenge. Results that are omitted290

here are available in the supplementary materials on GitHub.

4.1. Robustness of the PQ metric

Table 1 details the PQ values computed from the n-ary masks generated

using either the “border-removed” or “border-dilated” method, and matched

5https://monusac-2020.grand-challenge.org/Data/
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against the ground truth using either the strict-IoU or centroid rule. The n-295

ary masks generated from the color-coded ground truth, also provided by the

challenge, are similarly compared.

As we compare the ground truth to itself, the results of “color-coded ground

truth” are not sensitive to the matching rule but are nevertheless surprisingly

low. A small part of the error is due to the overlap problem previously men-300

tioned: when restoring the n-ary masks, overlapping regions that are between

the two borders (as can be seen in Figure 1) result in new, separate objects.

A large part of the error is due to the IoU’s contribution to PQ and its strong

sensitivity to small changes in the object size (as we discuss in section 5.1).

Indeed, our necessary redefinition of the object contours leads to a decrease of305

about 9% in their size for the border-dilated version. The very small differences

between the border-removed and border-dilated versions lead to an additional

2% decrease in the metric.

The results of the different teams show a few interesting things. First, the

PQ can be clearly affected by a very small change in the shape of the objects.310

For a given matching rule, the differences between the border-removed and

border-dilated n-ary masks are of the same order of magnitude as the differences

between the teams themselves. The teams are not affected in the same way by

these small changes, although the centroid rule always provides the highest PQ.

Team 1 and 2, for instance, have their best performances in the “border-dilated,315

centroid-rule” condition. The best performances of Team 3 and 4, meanwhile,

are achieved in the “border-removed, centroid-rule” condition. The rankings are

therefore also affected, except for Team 3 which is consistently ranked last of the

four. Finally, the matching rule only alters the ranking for the border-removed

masks.320

For a more objective analysis of these differences between teams, we can look

at the PQ distributions on the 25 test patients. Figure 4 shows the boxplots

computed under the different conditions. They show very similar distributions

for Team 1, 2 and 4 in all conditions, with Team 3 only slightly different in the

border-dilated cases. This is confirmed by Friedman tests which show no signif-325
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Figure 4: Boxplots of the PQ distributions on the 25 test patients computed for the four

teams in the four conditions analyzed. Horizontal lines show the median value, triangles show

the mean value. The boxes delimitate the quartile range (P25%-P75%) and the external bars

the non-outlier minimum and maximum values.

icant difference in the border-removed cases (p-values > 0.05). On the contrary,

there are significant differences in the border-dilated cases (p-values < 0.005),

where the Nemenyi post-hoc tests confirm that only Team 3 is significantly dif-

ferent from the others (p-values < 0.05). These data also show the interest to

analyse metric value distributions over the test set in place of globalizing them330

in a sole averaged value per Team.

4.2. Decomposition of the PQ

The PQ metric gives no indication whether a difference in score is due to

weaknesses in the object detection or segmentation. Additional information can

be obtained by examining the distribution of the SQ and DQ components, as335

detailed in Figure 5. An interesting pattern emerges in the “strict IoU” results

(cf. top frames in Figure 5). As this matching rule excludes good detections

with bad segmentations, the SQ distribution is very narrow, and almost all the
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Figure 5: Scatterplots of the DQ/SQ distributions obtained in the different conditions an-

alyzed. Empty shapes represents the DQ and SQ value pair computed per patient. Filled

shapes represent the average DQ and SQ over all patients.

differences in the PQ come from the detection performance. In the border-

dilated strict IoU condition, we can see that Team 3’s segmentation score is as340

good as the others, but its detection score is smaller. The centroid matching

rule admits detections with lower IoU, which leads to a much larger dispersion

in the SQ (see bottom frames in Figure 5).

4.3. Fully separated metrics

As shown above, we gain insight into the performances of the algorithms by345

examining the components of the PQ. In this section, we go one step further

by computing separate metrics for the three tasks that make up the challenge:

detection, classification and segmentation.

For the detection metrics, we look at the precision, recall and F1-score

of cell nuclei detection computed per patient. As a reminder, this time we do350

not consider the nuclei classes at all, as they will be taken into account in the

classification metrics. Figure 6 shows the distributions of the precision and
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Figure 6: Scatterplots of the precision and recall distributions obtained in the four conditions

analyzed. The F1-scores are shown in the legend. The filled shapes represent the average

point over all patients.

recall obtained in the four conditions analyzed. The stability of the detection

metrics is better than what we observed with the PQ, as the distributions are

relatively well preserved across the four conditions, as well as the rankings of355

the F1-scores. This consistency in the results also appears when performing

on the F1-scores the same statistical analysis as above on the PQ. This time,

the Friedman test strongly rejects the null hypothesis of equality between the

teams (p-value < 10−7) in the four conditions, and the Nemenyi post-hoc shows

significant differences between Team 3 and all others (p-value < 10−3), as well360

as between Team 1 and Team 4 (p-value < 0.05) when using the strict IoU

matching.

The balanced classification metrics extracted from the NCM are also

informative. The overall accuracy and the per-class precision, recall and F1-

score are reported in Table 2 for the border-dilated, strict-IoU condition. The365

three other conditions show very similar results and can be found in the sup-

plementary materials. The accuracy distributions are significantly different be-
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Table 2: Balanced classification metrics computed in the border-dilated strict IoU condition.

The bolder values identify the best class for a team and metric (e.g., 0.991 is the best precision

among the four classes for Team 1). Results are the average of the scores computed per patient.

The standard deviation is shown for the overall accuracy.

Balanced classification Team 1 Team 2 Team 3 Team 4

Accuracy Overall 0.89±0.07 0.92±0.07 0.91±0.09 0.86±0.12

Precision

Epithelial 0.862 0.787 0.884 0.751

Lymphocyte 0.811 0.913 0.894 0.832

Neutrophil 0.895 0.890 0.952 0.885

Macrophage 0.991 0.888 0.973 0.933

Recall

Epithelial 0.956 0.979 0.984 0.952

Lymphocyte 0.985 0.952 0.930 0.956

Neutrophil 0.703 0.824 0.839 0.691

Macrophage 0.852 0.885 0.838 0.768

F1-Score

Epithelial 0.881 0.813 0.923 0.779

Lymphocyte 0.884 0.926 0.885 0.876

Neutrophil 0.731 0.801 0.874 0.710

Macrophage 0.907 0.849 0.874 0.791

tween the teams (Friedman p-value < 0.05) in all conditions except the border-

dilated, strict-IoU (detailed in Table 2). According to the post-hoc tests (p-value

< 0.05), only Team 2 and 4 have significantly different accuracies when using370

the centroid matching rule, and only Team 3 and 4 in the border-removed,

strict-IoU condition.

The per-class metrics show that teams generally have better precision for the

macrophage and neutrophil classes (except Team 2), and better recall for the

epithelial and lymphocyte cells. Looking at the F1-scores, all teams are generally375

worse at classifying neutrophils, but otherwise have different “specializations”.

Indeed, Team 1 is better in the classification of macrophages, Team 2 and 4 in

that of lymphocytes, and Team 3 in that of epithelial cells. This insight is very

interesting given the imbalance of the dataset. Team 1 and 4 in particular have
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Table 3: Overall confusion matrices for all teams in the border-dilated, strict-IoU condition.

The rows are the ground truth classes, the columns the predicted ones. The first line of each

confusion matrix shows the predicted objects that do not correspond to any object in the

ground truth (false positive detections), the first column shows the ground truth objects that

were not detected by the team (false negative detections).

Team 1 ∅ E L N M Team 2 ∅ E L N M

∅ 0 1338 829 14 59 ∅ 0 962 629 5 285

E 831 6098 260 8 12 E 824 6240 88 0 57

L 507 79 7214 2 1 L 500 162 7131 4 6

N 8 5 39 118 2 N 10 1 18 133 10

M 102 16 11 8 170 M 115 16 1 11 164

Team 3 ∅ E L N M Team 4 ∅ E L N M

∅ 0 2932 1545 50 99 ∅ 0 1035 770 10 13

E 1152 5960 96 0 1 E 690 6193 302 2 22

L 860 76 6864 3 0 L 349 179 7274 1 0

N 11 1 20 137 3 N 12 3 38 117 2

M 99 30 8 11 159 M 90 30 7 25 155

very low recall for the neutrophils, which are underrepresented in the training380

set. The same trends can be observed in all four conditions analyzed, showing

once again a much greater robustness for single-purpose metrics.

The full confusion matrices (including the background class labeled as ∅) are

shown in Table 3 for the border-dilated n-ary masks and strict-IoU matching rule

(for the other conditions, see the supplementary materials). They give further385

information on what kind of classification and detection errors are made by the

teams. For instance, if the large detection errors of Team 3 are immediately

apparent (see the “∅” line and column), we can also see that Team 2 has a lot

of false (positive) detections for the macrophage class, compared to the other

teams.390

As it could be expected from the DQ/SQ decomposition, the segmenta-

tion metrics show less variation between the teams when using the strict IoU

matching rule (see Table 4). The IoU distributions are significantly different (p-

value < 0.05) between the teams in most conditions except the border-dilated,

strict-IoU, but the (more conservative) post-hoc tests show that Team 4 is sig-395

nificantly different than all the others only in the border-removed, centroid-rule
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Figure 7: Ground truth and color-coded results of the four teams on an image from the

MoNuSAC challenge. Epithelial cells are shown in red, lymphocytes in yellow, neutrophils

in blue, macrophages in green. Object boundaries are highlighted in brown. The green

contours correspond to regions marked as ambiguous in the challenge and excluded from the

computation of the metric. (A) Annotated macropahge which is badly classified by every team.

(B) Examples of missed detections. (C) Oversegmented prediction, with two predicted objects

which both have an IoU under 0.5 with the target object. (D) Oversegmented prediction with

an additional classification error. (E) For unknown reasons, Team 3 consistently predicts

objects in the regions marked as ambiguous in all images.

condition, and the p-values are barely significant. The HD, however, tells a

different story, with highly significantly different distributions in all conditions

(p-value < 10−8), with Team 2 and 4 generally better than the others (Team 2

particularly for the border-dilated conditions, Team 4 for the border-removed400

conditions).

Additional information can also be extracted from the per-class segmentation

results (full results provided in supplementary materials). For macrophages, for

instance, Team 2 is consistently worse than the other three teams in terms of

the IoU metric (and is at best ranked third using HD), while Team 4 is always405

the best. For all other classes, the IoU metric shows almost equal performances

from all teams. In contrast, using the HD metric, Team 3 is consistently worse

than all other teams on epithelial and lymphocyte cells, while all teams are

nearly equivalent on neutrophils. An example of an image from the challenge
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Table 4: Average IoU and HD obtained from the per-patient computation in the different

conditions. As opposed to IoU, lower HD scores are better. For each condition, the best

result is bolded if the distributions are significantly different (Friedman p-value < 0.05).

Average IoU
Border-removed Border-dilated

Strict-IoU Centroid Strict-IoU Centroid

Team 1 0.786±0.03 0.744±0.07 0.799±0.03 0.761±0.07

Team 2 0.785±0.03 0.744±0.07 0.795±0.03 0.762±0.05

Team 3 0.788±0.03 0.741±0.06 0.795±0.02 0.751±0.05

Team 4 0.800±0.03 0.771±0.05 0.793±0.03 0.766±0.05

Average HD
Border-removed Border-dilated

Strict-IoU Centroid Strict-IoU Centroid

Team 1 3.759±0.70 4.425±1.11 3.742±0.72 4.344±1.09

Team 2 3.588±0.57 4.097±0.81 3.602±0.56 4.051±0.78

Team 3 4.471±0.98 5.242±1.34 4.470±0.94 5.334±1.43

Team 4 3.453±0.60 3.814±0.82 3.702±0.57 4.075±0.81

with annotated macrophages and the color-coded predictions from all teams are410

shown in Figure 7.

5. Discussion

5.1. Limitations of the Panoptic Quality

The Panoptic Quality was introduced as a way to provide a single, uni-

fied metric for joint semantic and instance segmentation [15], with the authors415

arguing that using independent metrics “introduces challenges in algorithm de-

velopment, makes comparisons more difficult, and hinders communication.” It

is understandable that competitions would be tempted to use such a metric, as

it makes it easier to produce a single ranking and thus declare a single winner

to the competition. The objective of a competition, however, is not just limited420

to finding a competition winner, but is also to advance our knowledge of the

tasks involved and of the methods that can help us to solve them. The ability to
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gather such knowledge from challenge results is impaired by the use of unified,

entangled metrics, as they make it much harder to determine the reasons for

(the presence or absence of) differences in performance from one algorithm to425

another.

The comparison between the n-ary masks generated from the “colour-coded”

ground truth with the “true” masks retrieved from the .xml annotations (Ta-

ble 1) provides a good illustration of these difficulties. Indeed, the decomposition

of the PQ value (of around 0.9) into Detection and Segmentation Quality shows430

that DQ is almost perfect (0.986 in all condition) aside from the minor errors

due to the overlap problem mentioned previously, while SQ ranges from 0.905

(border-removed) to 0.925 (border-dilated). However, the same PQ score could

be achieved with a 0.9 DQ and an almost perfect segmentation.

While it may be argued that combining both is a good thing if we want to435

encourage algorithms to focus on more than just one aspect of the task, this

combination also implies that a 0.1 decrease in average IoU is “as bad” as a 0.1

decrease in the F1-score (see Equations 2, 3 and 4). This statement seems more

difficult to defend. Indeed, if we compute the IoU between two very similar

objects, such as two squares centred at the same point but with sides of length l440

and l+2, we have IoU = l2

(l+2)2 . Unlike the HD value which is constant (=
√
2),

the IoU value can therefore vary greatly depending on the size of the original

object, whereas the error is very slight and could be due to a small difference

in the annotation software’s rasterization process, or to an annotator’s habit of

drawing an “inner contour” rather than an “outer contour”. Other metrics will445

have their own biases and peculiarities, which makes it even more important

to report them separately so that the causes of the scores’ differences can be

clearly attributed.

5.2. Insights from the disentangled metrics

A summary of the significant differences between the teams according to450

the detection, classification and segmentation metrics is presented in Table 5.

The main conclusions that can be drawn from this analysis are that Team 3 is
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consistently worse than the others at overall detection and segmentation (using

the HD metric). Meanwhile, there are no significant differences in any of the

results between Team 1 and 2, and Team 4 is consistently better than the455

others at segmentation according to IoU and, often, HD. The only significant

difference in the classification accuracy is between Team 2 and 4, with Team

4 consistently worse than Team 2. While not addressing class-specific aspects,

these conclusions are already much richer and more nuanced than those that can

be extracted from a ranking as presented in Table 1 (e.g. the ”dilated border,460

strict IoU” column close to the original challenge). Indeed, the fact that Team

1 and 2 are equivalent and that Team 4 can be superior for segmentation is

completely overlooked. Per-class results provide additional information which,

for example, sheds light on differences in specialization between Team 1 and

Team 2.465

Additionnally, using statistical tests on the distributions of results on the

test set instead of only considering the average value is necessary to determine

if observed differences are significant and should count in the rankings. Teams

with no significant differences - such as Team 1 and 2 in this case - should be

ranked ex aequo. Rankings that include this statistical robustness would be less470

likely to be subject to the instability observed in previous challenges [4].

The main drawback of using disentangled metrics is that declaring a chal-

lenge winner (which, often accompanied by a prize, is a powerful incentive to

motivate researchers to work on the task) becomes less obvious. Several dif-

ferent approaches are available to challenge organizers. The first is to rank475

the performance separately for each identified subtask, and to split the prize

accordingly. The second is to compute the final ranking based on the sum of

ranks obtained on the subtasks (as was done, for instance, in the GlaS 2015

challenge [17]). The third is to split the competition and the scientific knowl-

edge aspects. This could involve using a complex metric, like the PQ, only for480

the challenge ranking, while reporting the results with the disentangled metrics

(or enough information to compute them) alongside, and to focus the analysis

of the challenge results on those more informative measures.
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Table 5: Significant differences between the teams based on the overall (non-class-specific)

metrics. We consider a difference to be significant if it is robust (i.e. it appears for all the

n-ary mask generation methods and matching rules) and statistically significant (p-value of

the Nemenyi post-hoc < 0.05 in at least two of the four n-ary mask generation / matching rule

conditions). Inequality signs should be read from rows to columns, with > and < meaning

”better than” and ”worse than”, respectively.

Team 1 Team 2 Team 3 Team 4

T1 No significant

difference

> Detect. (F1),

> Seg. (HD)

< Seg. (IoU,

HD)

T2 No significant

difference

> Detect. (F1),

> Seg. (HD)

> Class. (Acc),

< Seg. (IoU)

T3 < Detect. (F1),

< Seg. (HD)

< Detect. (F1),

< Seg. (HD)

< Detect. (F1),

< Seg. (IoU,

HD)

T4 > Seg. (IoU,

HD)

< Class. (Acc),

> Seg. (IoU)

> Detect. (F1),

> Seg. (IoU,

HD)

5.3. Limitations of our study

Our study has two major limitations. First, as we rely on a possibly imper-485

fect reconstruction of the original (unpublished) prediction masks, we cannot

draw conclusions about the algorithms with certainty. Second, the previously

mentioned fact that the published challenge results are incorrect [16] means

that there may be a selection bias on the teams whose results are available for

analysis. There may therefore be other participating algorithms that performed490

better (for PQ or untangled metrics) but could not be included in our analysis.

Due to lack of available data, our study is therefore more a demonstration of

the type of insights that can be gathered by further analysis of the results of

a challenge, outside the constraints of having to declare a single winner, than

actual insights on the algorithms participating in the MoNuSAC challenge.495
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6. Conclusions

The decision by the MoNuSAC challenge’s organizers to publish the predic-

tions of some of the teams provides a great opportunity for other researchers

to go beyond the surface-level information given by the challenge metric and

results. As noted in previous reviews of challenges [4, 12], this level of trans-500

parency is unfortunately rarely seen in such competitions. Our own analysis

of the available results show that many potentially useful insights are hidden

by the computation of the single PQ score. Complex tasks such as the one

proposed by MoNuSAC are composed of distinct subtasks. Each of those tasks

(detection, classification, segmentation. . . ) can be assessed by many different505

metrics, each with its own biases and limitations. While such complex tasks

are more closely related to the needs of pathologists [12], it is clear that their

evaluation is also more complex. It is certainly unreasonable to expect challenge

organizers to compute all possible metrics and to think about extracting all the

information that might be of interest to other researchers. However, limiting the510

published results to a single entangled metric severely restricts the usage that

can be made from those results beyond announcing a “challenge winner”. It

also encourages future researchers (and future challenges) working on the same

problem to restrict or focus the evaluation of methods to the use of the same

metric, so as to compare their solution to the challenge’s results. The PQ was515

introduced for nuclei instance segmentation and classification by Graham et al.

in 2019 [18], and has since been adopted by several publications on instance

segmentation in digital pathology [19, 20, 21]. It is also the metric chosen by

the Colon Nuclei Identification and Counting (CoNIC) 2022 challenge [22].

Publishing the raw predictions provided by participating teams and the520

ground truth annotations along with the challenge results is an excellent way

to make the most out of the work of the teams and the organizers. This publi-

cation allows for “crowd-sourcing” the analysis of the results and extending the

usefulness of the challenge to use cases that were not foreseen by the organiz-

ers. It is also essential for the reproducibility of the results and to reduce the525
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dependence on the particular implementation of the chosen metrics by the or-

ganizers. Indeed, many metric computations come with arbitrary choices (from

the exact definition of a “matching rule” to the way missing values are handled

or values are aggregated), some of which are sometimes not precisely described

in the challenge publications. The only way to ensure the validity of the results,530

and/or to allow for valid extensions and benchmarking at a later stage, is for

the predictions provided by the participating teams and the source code of the

evaluation metric to be publicly available.

Another important point made possible by increased transparency is to al-

low testing the robustness and stability of the chosen metrics. As our results535

show, small changes in the prediction masks can affect the ranking of certain

performances and even the identification of statistically significant differences

between these performances. Disentangled metrics tend to be more robust to

these changes, as a particular change may only affect some of the metrics. For

instance, in this study we show that mask dilation will mostly affect segmenta-540

tion metrics (as expected), but not detection and classification metrics.

It is therefore highly desirable to go one step further and not limit the pub-

lication of prediction masks to the “top” teams for a particular metric, to avoid

selection bias on any other insight that can be extracted from the challenge. The

more transparency there is on challenge results, the more collaborative work is545

possible and the more value can be extracted from all the hard work of organiz-

ing challenges, annotating data and developing solutions by the participants.
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[7] D. Chicco, N. Tötsch, G. Jurman, The Matthews correlation coefficient575

(MCC) is more reliable than balanced accuracy, bookmaker informedness,

and markedness in two-class confusion matrix evaluation, BioData Mining

14 (13) (2021) . doi:10.1186/s13040-021-00244-z.

[8] M. Grandini, E. Bagli, G. Visani, Metrics for Multi-Class Classification:

an Overview (2020) arXiv:2008.05756.580

27

http://dx.doi.org/10.1109/TMI.2009.2013851
http://dx.doi.org/10.1007/978-3-642-17711-8_23
http://dx.doi.org/10.1109/TMI.2021.3085712
http://dx.doi.org/10.1038/s41467-018-07619-7
http://dx.doi.org/10.1016/j.media.2020.101796
http://dx.doi.org/10.1016/j.media.2020.101796
http://dx.doi.org/10.1016/j.media.2020.101796
http://dx.doi.org/10.1016/j.patcog.2019.02.023
http://dx.doi.org/10.1016/j.patcog.2019.02.023
http://dx.doi.org/10.1016/j.patcog.2019.02.023
http://dx.doi.org/10.1186/s13040-021-00244-z
http://arxiv.org/abs/2008.05756


[9] R. Delgado, X.-A. Tibau, Why Cohen’s Kappa should be avoided as per-

formance measure in classification, PLOS ONE 14 (9) (2019) e0222916.

doi:10.1371/journal.pone.0222916.

[10] A. Reinke, et al., Common Limitations of Image Processing Metrics: A

Picture Story. (2021). arXiv:2104.05642.585

[11] R. Padilla, others., A comparative analysis of object detection metrics with

a companion open-source toolkit, Electronics 10 (3) (2021) 279. doi:10.

3390/electronics10030279.

[12] D. J. Hartman, et al., Value of public challenges for the development

of pathology deep learning algorithms, Journal of Pathology Informatics590

11 (7) (2020) . doi:10.4103/jpi.jpi_64_19.

[13] A. Foucart, O. Debeir, C. Decaestecker, Processing multi-expert annota-

tions in digital pathology: a study of the Gleason2019 challenge, in: Proc.

SPIE 12088, 17th International Symposium on Medical Information Pro-

cessing and Analysis, 2021. doi:10.1117/12.2604307.595

[14] R. Verma, et al., Multi-organ Nuclei Segmentation and Classification Chal-

lenge 2020 (2020). doi:10.13140/RG.2.2.12290.02244/1.

[15] A. Kirillov, et al., Panoptic segmentation, in: 2019 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 9396–

9405. doi:10.1109/CVPR.2019.00963.600

[16] A. Foucart, O. Debeir, C. Decaestecker, Comments on “monusac2020: A

multi-organ nuclei segmentation and classification challenge”, IEEE Trans-

actions on Medical Imaging 41 (2022) 997–999. doi:10.1109/TMI.2022.

3156023.

URL https://ieeexplore.ieee.org/document/9745980/605

[17] K. Sirinukunwattana, J. P. Pluim, H. Chen, Others, Gland segmentation in

colon histology images: The glas challenge contest, Medical Image Analysis

35 (2017) 489–502. doi:10.1016/j.media.2016.08.008.

28

http://dx.doi.org/10.1371/journal.pone.0222916
http://arxiv.org/abs/2104.05642
http://dx.doi.org/10.3390/electronics10030279
http://dx.doi.org/10.3390/electronics10030279
http://dx.doi.org/10.3390/electronics10030279
http://dx.doi.org/10.4103/jpi.jpi_64_19
http://dx.doi.org/10.1117/12.2604307
http://dx.doi.org/10.13140/RG.2.2.12290.02244/1
http://dx.doi.org/10.1109/CVPR.2019.00963
https://ieeexplore.ieee.org/document/9745980/
https://ieeexplore.ieee.org/document/9745980/
https://ieeexplore.ieee.org/document/9745980/
http://dx.doi.org/10.1109/TMI.2022.3156023
http://dx.doi.org/10.1109/TMI.2022.3156023
http://dx.doi.org/10.1109/TMI.2022.3156023
https://ieeexplore.ieee.org/document/9745980/
http://dx.doi.org/10.1016/j.media.2016.08.008


[18] S. Graham, Q. D. Vu, S. E. A. Raza, A. Azam, Y. W. Tsang, J. T. Kwak,

N. Rajpoot, Hover-net: Simultaneous segmentation and classification of610

nuclei in multi-tissue histology images, Medical Image Analysis 58 (2019)

101563. doi:10.1016/j.media.2019.101563.

URL https://linkinghub.elsevier.com/retrieve/pii/

S1361841519301045

[19] D. Liu, D. Zhang, Y. Song, H. Huang, W. Cai, Panoptic feature fusion615

net: A novel instance segmentation paradigm for biomedical and biological

images, IEEE Transactions on Image Processing 30 (2021) 2045–2059. doi:

10.1109/TIP.2021.3050668.

URL https://ieeexplore.ieee.org/document/9325955/

[20] K. Benaggoune, Z. A. Masry, C. Devalland, S. Valmary-degano, N. Zer-620

houni, L. H. Mouss, Data labeling impact on deep learning models in

digital pathology: a breast cancer case study (2022). doi:10.1007/

978-981-16-7771-7_10.

URL https://link.springer.com/10.1007/978-981-16-7771-7_10

[21] S. Butte, H. Wang, M. Xian, A. Vakanski, Sharp-gan: Sharpness loss625

regularized gan for histopathology image synthesis, IEEE, 2022, pp. 1–

5. doi:10.1109/ISBI52829.2022.9761534.

URL https://ieeexplore.ieee.org/document/9761534/

[22] S. Graham, M. Jahanifar, Q. D. Vu, G. Hadjigeorghiou, T. Leech, D. Snead,

S. E. A. Raza, F. Minhas, N. Rajpoot, Conic: Colon nuclei identification630

and counting challenge 2022 (2021) 1–6.

URL http://arxiv.org/abs/2111.14485

29

https://linkinghub.elsevier.com/retrieve/pii/S1361841519301045
https://linkinghub.elsevier.com/retrieve/pii/S1361841519301045
https://linkinghub.elsevier.com/retrieve/pii/S1361841519301045
http://dx.doi.org/10.1016/j.media.2019.101563
https://linkinghub.elsevier.com/retrieve/pii/S1361841519301045
https://linkinghub.elsevier.com/retrieve/pii/S1361841519301045
https://linkinghub.elsevier.com/retrieve/pii/S1361841519301045
https://ieeexplore.ieee.org/document/9325955/
https://ieeexplore.ieee.org/document/9325955/
https://ieeexplore.ieee.org/document/9325955/
https://ieeexplore.ieee.org/document/9325955/
https://ieeexplore.ieee.org/document/9325955/
http://dx.doi.org/10.1109/TIP.2021.3050668
http://dx.doi.org/10.1109/TIP.2021.3050668
http://dx.doi.org/10.1109/TIP.2021.3050668
https://ieeexplore.ieee.org/document/9325955/
https://link.springer.com/10.1007/978-981-16-7771-7_10
https://link.springer.com/10.1007/978-981-16-7771-7_10
https://link.springer.com/10.1007/978-981-16-7771-7_10
http://dx.doi.org/10.1007/978-981-16-7771-7_10
http://dx.doi.org/10.1007/978-981-16-7771-7_10
http://dx.doi.org/10.1007/978-981-16-7771-7_10
https://link.springer.com/10.1007/978-981-16-7771-7_10
https://ieeexplore.ieee.org/document/9761534/
https://ieeexplore.ieee.org/document/9761534/
https://ieeexplore.ieee.org/document/9761534/
http://dx.doi.org/10.1109/ISBI52829.2022.9761534
https://ieeexplore.ieee.org/document/9761534/
http://arxiv.org/abs/2111.14485
http://arxiv.org/abs/2111.14485
http://arxiv.org/abs/2111.14485
http://arxiv.org/abs/2111.14485

	Introduction
	Related works
	Materials and methods
	Description of the dataset and evaluation metrics
	Description of the experiments
	Robustness of the PQ metric
	Decomposition of the PQ
	Fully separated metrics


	Results
	Robustness of the PQ metric
	Decomposition of the PQ
	Fully separated metrics

	Discussion
	Limitations of the Panoptic Quality
	Insights from the disentangled metrics
	Limitations of our study

	Conclusions

