
Orthonormal Product Quantization Network for
Scalable Face Image Retrieval

Ming Zhanga,b,c,∗, Xuefei Zhed, Hong Yana,b

aDepartment of Electrical Engineering, City University of Hong Kong, Hong Kong
bCentre for Intelligent Multidimensional Data Analysis Limited, Hong Kong

cHong Kong Applied Science and Technology Research Institute Company Limited, Hong
Kong

dTencent AI Lab, Shenzhen, China

Abstract

Existing deep quantization methods provided an efficient solution for large-scale

image retrieval. However, the significant intra-class variations, like pose, illu-

mination, and expressions in face images, still pose a challenge. In light of

this, face image retrieval requires sufficiently powerful learning metrics, which

are absent in current deep quantization works. Moreover, to tackle the growing

unseen identities in the query stage, face image retrieval drives more demands re-

garding model generalization and scalability than general image retrieval tasks.

This paper integrates product quantization with orthonormal constraints into an

end-to-end deep learning framework to effectively retrieve face images. Specif-

ically, we propose a novel scheme that uses predefined orthonormal vectors as

codewords to enhance the quantization informativeness and reduce codewords’

redundancy. A tailored loss function maximizes discriminability among identi-

ties in each quantization subspace for both the quantized and original features.

An entropy-based regularization term is imposed to reduce the quantization

error. Experiments are conducted on four commonly-used face datasets under

both seen and unseen identity retrieval settings. Our method outperforms all

the compared state-of-the-art under both settings. The proposed orthonormal

codewords consistently boost both models’ standard retrieval performance and

generalization ability, demonstrating the superiority of our method for scalable

∗Corresponding author
Email addresses: mzhang367-c@my.cityu.edu.hk (Ming Zhang), elizhe@tencent.com

(Xuefei Zhe), h.yan@cityu.edu.hk (Hong Yan)

Preprint submitted to Pattern Recognition LATEX Templates May 15, 2023

ar
X

iv
:2

10
7.

00
32

7v
4

 [
cs

.C
V

]
 1

2
M

ay
 2

02
3

face image retrieval.

Keywords: Product quantization, Face image retrieval, Orthonormal

codewords, Convolutional neural networks

1. Introduction

Rapid growth in the internet user population and the popularity of mobile

devices with advanced cameras have prompted the sharing of visual content on

social media. A large number of user-generated human face images, e.g., selfies

and portraits, are uploaded every day. Due to the need for image indexing and

searching, large-scale image retrieval [1, 2] has been an active area of research.

Face image retrieval [3, 4, 5] aims to return images from the database images that

are of the same person as the query image. However, large intra-class variances

caused by expressions, illumination, or occlusion, and small inter-class distances

between visually similar people, make developing an accurate and efficient sys-

tem for unconstrained face image retrieval challenging. Another problem is, in a

real-world application where the number of newly joined identities keeps grow-

ing, high scalability of the retrieval system is needed. The poor generalization

performance prevents the scaling of these retrieval systems to larger datasets.

One basic idea for highly efficient image retrieval is using binary code repre-

sentations to encode the data, thereby enabling an approximate nearest neigh-

bor (ANN) search to accelerate the query process. According to their applied

retrieval metrics, the works of obtaining binary code representations can be

divided into two types: 1) Hamming distance- or 2) dictionary-related distance-

based. Following practice in the literature [6, 7, 8], we refer to Hamming

distance-based approaches as hashing models and dictionary-related distance-

based approaches as quantization models. The goal of hashing is to map high

dimensional real-valued data to lower dimensional binary codes in Hamming

space while preserving their original similarity. The Hamming distance of the

binary codes between the query and database images can be computed extremely

fast by the XOR operation. Recently, supervised deep hashing [9, 10, 11], us-

ing deep convolutional neural networks (CNNs), was proposed for end-to-end

learning of feature representations and hashing functions and substantially out-

2

performed traditional hashing methods [12] for image retrieval.

For any pair of binary codes of length l, hashing-based methods can only

generate l + 1 distinct values to depict their pairwise similarity making it hard

to draw rich similarity relations for large-scale face image datasets with many

classes of identities. Another disadvantage is most hashing methods obtain

binary codes by applying a sign function to continuous features [13, 10]. To

solve the intractable discrete optimization in the training process, they usually

relax the discrete constraint to be continuous and convert it to a regularization

term. Consequently, it causes inevitable information loss.

In parallel with binary hashing, product quantization (PQ) [14, 15, 16] has

been widely employed in the fields of computer vision and information retrieval.

It decomposes feature vectors in the original space into several disjoint sub-

vectors. Each sub-vector then needs to find the nearest centroid (codeword)

in the subspace (codebook). By replacing each sub-vector with the index of

the nearest codeword, the original features in one subspace are encoded into

binary codes. For binary codes of length l = M log2K, where M is the number

of codebooks, and K is the number of codewords in each codebook, PQ is

capable of producing
(
K
2

)M
distinct distance values. Thus, it is more powerful

to describe the similarity distance between fine-grained face samples. During

the query stage, PQ-based methods allow the use of multiple look-up tables

(LUTs) for query speed acceleration, which is only slightly more costly than

hashing-based methods [14, 17]. Although deep hashing has drawn increasing

attention for face image retrieval [18, 3, 5], deep quantization methods are rarely

publicly explored for the task.

The PQ technique was initially designed under an unsupervised setting. Re-

cently, some deep quantization methods [19, 6] have been proposed to learn

codewords with supervision. The feature representations are divided into several

sub-vectors and quantized by learnable codewords depending on the similarity

between the sub-vectors and codewords. Typically, a softmax or triplet loss

can be constructed based on the resulting quantizations. Thereby, the learn-

ing metrics preserve the label information in both the feature representations

and the learnable codewords. We refer to these deep quantization methods

with the learning manner as learning to quantization (l2q). Nevertheless,

3

since the codewords themselves do not contain any discriminative information

for the quantization process, it is possible to decorrelate the discriminative vi-

sual information and codewords individually. Under this hypothesis, we can

learn the codewords assignment of feature representations even with predefined

codewords.

From the view of codewords, how codewords’ distribution has an influence

on the quantization quality is seldom explored previously. Firstly, codewords

in a codebook can be regarded as prototypes in a subspace that spread over

the subspace but should retain some distance from each other. To visualize how

codewords are distributed in l2q methods, we compute the angles between code-

word pairs in each codebook in two deep quantization models [6, 7] and illustrate

their distributions in Fig. 1(a) and (b). We can see that the compared methods

show variable angular distributions, which are sub-optimal in terms of distinct

codewords separation and low codewords redundancy. Secondly, hand-crafted

codewords impose explicit constraints directly on the codewords distribution.

Considering the orthogonal case, the designed codewords will exhibit a fixed

decent 90-degree separation from each other. Last but not least, predefined

codewords enable reusing identical codebooks for different datasets, helping to

lower the system’s storage cost and reduce preprocessing time.

Figure 1: Distribution of angles between pairs of codewords in different deep quanti-
zation models: (a) DPQ [6], (b) GPQ [7], (c) the proposed OPQN method, and (d)
the variant of OPQN without predefined codewords. Each angular distribution is a
normalized histogram, generated by quantization from 0◦ to 180◦, step by 0.5◦.

Motivated by the aforementioned codeword analysis, we argue that code-

words’ distribution plays an important role in quantization learning. Specif-

4

ically, codewords that scatter uniformly in the subspace and keep a distinct

distance from each other benefit both the model’s quantization performance

and generalization ability. It is noteworthy that validation on model gener-

alization to unseen data is largely neglected by prior deep hashing-based face

image retrieval works [10, 5]. Consequently, prior works only limit their evalua-

tion protocol to seen identities so that the queries used for evaluation share the

same identity classes as the training set. However, hashing models performing

well under this setting may work badly for unseen identity retrieval, as reported

in [20]. To this end, this paper proposes a method called Orthonormal Product

Quantization Network (OPQN) to explicitly design codewords and employ them

to learn alternative parameters for quantization. OPQN predetermines sets of

orthonormal vectors as codewords instead of learning them for use. Thus, it

exhibits the angular distribution of 90-degree between each pair of codewords,

as illustrated in Fig. 1(c). Since the procedure is the opposite of the conven-

tional l2q methods, OPQN belongs to quantization to learning . Equipped

with these predefined codewords, OPQN learns more separable features in the

hyper-sphere space. To further enhance the competence of the learning metric,

an angular margin-based loss is proposed which makes the most of the discrim-

inability of feature representations in each subspace. The main contributions of

this paper are summarized as followings:

• We propose a novel deep quantization method producing compact binary

codes for large-scale face image retrieval. Our method uses predefined

orthonormal vectors as codewords to increase quantization informativeness

and reduce codeword redundancy. Besides, it has lower storage costs and

more efficient asymmetric comparisons in the retrieval phase.

• We design a tailored loss function, which maximizes the discriminability of

identities in each subspace. It works simultaneously on the original and the

quantized features to give a better quantization quality. We also impose

an entropy-based regularization term to boost the retrieval performance

under tiny bits.

• Extensive experiments show that OPQN outperforms all compared state-

of-the-art and generalizes the best to retrieve unseen identities. Combin-

5

ing with further experiments for general image retrieval1, it demonstrates

the broad superiority of the proposed codewords scheme and the learning

metric, providing a general framework for deep quantization-based scal-

able image retrieval.

Following in this paper, Section 2, recalls prior works related to our approach.

The proposed OPQN method, including the generation of codewords and design

of the loss function, is described in Section 3. In Section 4, OPQN is evaluated on

four benchmark datasets: FaceScrub [21], CFW-60K [22], VGGFace2 [23], and

YouTube Faces [24] under both seen and unseen identity retrieval settings. In

Section 5, an ablation study with elaboration is reported and the performance of

the model with respect to codebook configurations and parameter sensitivity is

discussed. The paper’s conclusions and outlook for future research are presented

in Section 6.

2. Related work

In this section, some representative works on supervised deep hashing are

reviewed first. Then, traditional quantization methods and state-of-the-art deep

quantization methods for image retrieval are introduced.

2.1. Supervised Deep Hashing for Image Retrieval

Based on the approach of labels utilization, existing supervised deep hashing

methods can be roughly classified into three types: pairwise label-based [9, 25],

triplet label-based [26, 27], and class-wise label-based [28, 11]. It is known that

pairwise label-based methods cannot capture the complete similarity informa-

tion underlying the dataset, and the triplet label-based methods suffer from

high computational costs. To address these, recently, some methods [28, 11, 29]

using class-wise label-based similarity were developed, which can generate more

discriminative and compact hashing codes. More recently, DCGH [30] proposed

a collaborative graph hashing framework, which utilized multi-level semantic

1Experiment results on two general image datasets are shown in the supplementary mate-
rial.

6

information across visual and semantic spaces. DCGH built a graph neural

network to retain the latent structural relations in the learned hashing codes.

Previous deep hashing works on face image retrieval mainly focused on the

design of the network architecture and widely adopted softmax classification loss

for supervision. Specifically, a fully connected (FC) layer transformed bottleneck

features to hashing outputs in Euclidean space, which were usually supervised

by a softmax classifier. Generally, a quantization loss was also imposed to relax

discrete binary constraints to be continuous and to reduce the quantization er-

ror. In Discriminative Deep Hashing (DDH) [10], deep CNNs were trained with

a divide-and-encode module to obtain compact binary codes for face image re-

trieval. Following DDH, Discriminative Deep Quantization Hashing (DDQH) [3]

found that retrieval performance can be further enhanced by inserting a batch

normalization layer between the FC layer and the Tanh activation function. Re-

cently, several works utilized label information with other supervisions. Inspired

by the class-wise label-based similarity [28], [5] proposed Deep Center-based

Dual-constrained Hashing (DCDH). It used a center-based framework to jointly

learn hashing functions and class centers end-to-end, achieving state-of-the-art

results on face image retrieval. However, the method cannot necessarily cap-

ture the underlying semantic similarity of datasets. This limitation is reflected

in the model’s poor generalization performance for unseen identity retrieval in

Section 4.5.

2.2. Traditional Quantization Techniques

Vector Quantization (VQ) is the most classical quantization technique, which

quantizes the feature space by maintaining one codebook. Suppose that the

codebook consists of K codewords, VQ divides the feature space into K clus-

ters using unsupervised clustering methods so that each feature vector can be

encoded by log2K bits. The LUT stores the pre-computed distance matrix

between every two clusters and has O(K2) entries. An increase in VQ’s bit

length will lead to exponential growth in the number of clusters, K, and the

number of entries in LUT grows quadratically with K, making the method

impractical for large values of K and restricting its utility. PQ [14] over-

comes this limitation. It decomposes a feature vector xi ∈ RMd into M dis-

7

joint sub-vectors with dimension d, i.e. xi = [xi1, xi2, · · · , xiM]. The sub-

vector xim is related to the m-th subspace, which is quantized by the codebook

Cm = [Cm1, Cm2, · · · , CmK] ∈ Rd×K , composed of K codewords. By repre-

senting a feature vector with M codebooks, PQ can achieve KM combinations

of codeword. Therefore, it outperforms VQ with more expressive power for

quantization. Optimized PQ methods, such as AQ [31] and CQ [16] have been

developed to achieve a more accurate decomposition of the feature space and

learning of codewords.

2.3. Deep Quantization for Image Retrieval

Recently, deep quantization methods have emerged as an effective solution

for image retrieval tasks, integrating quantization into deep CNNs for simul-

taneous feature learning and codeword learning. Deep Quantization Network

(DQN) [17] was the first attempt of this kind, which introduced a combined

similarity-preserving and product quantization loss. Deep Product Quantiza-

tion (DPQ) [6] learned both soft and hard quantizations for a more accurate

asymmetric search. It applied a straight-through (ST) estimator to enable back-

propagation (BP) on the argmax(·) function. More recently, [19] proposed a

product quantization network (PQN), which used a soft PQ layer to directly de-

termine codeword assignments from the cosine similarity between features and

codewords. Specifically, both xim and Cmk are `2 normalized to unit length so

that their similarity can be taken directly from their inner product. The soft

quantization sim of xim in PQN is:

sim =

K∑
k=1

eα〈xim,Cmk〉∑K
j=1 e

α〈xim,Cmj〉
Cmk =

K∑
k=1

umk ∗ Cmk (1)

where α is a scaling factor. When α → +∞, umk → 1(k = k∗), which is a

one-hot encoding vector with one in the k∗-th entry and zeros elsewhere. Here,

k∗ = argmaxk x
T
imCmk, represents the index of the most similar codewords for

hard quantization. PQN avoids an infeasible derivative caused by argmax(·) and

allows the network to be optimized by a standard gradient descent algorithm.

Based on PQN, researchers in [8] further develop RPQN and TPQN, which

achieved a higher accuracy for image retrieval and accelerated video retrieval,

8

respectively. More recently, a multiple exemplars learning (MLE) approach is

proposed in [32]. Instead of learning a codebook shared by different classes, MLE

learns a class-specific codebook consisting of multiple exemplars to partition the

class-specific feature space. It makes the samples of different classes disentangled

and improves retrieval accuracy.

One major problem when employing existing deep quantization methods to

face image retrieval tasks is that the prior learning metrics are not sufficiently

competent. For example, PQN [8] used an asymmetric triplet loss as the similar-

ity metric and required a complex hard sample mining strategy during training.

Moreover, the computational cost is prohibitive when using a large number of

triplet samples. Therefore, it cannot learn the full dataset structure of the fine-

grained face images. DPQ [6] applied a joint central loss based on classical

softmax loss. Nevertheless, prior works on deep face recognition [33, 34] show

that angular margin-based methods have a superior discriminative ability. To

provide sufficient discriminative power for PQ-based face image retrieval, this

paper proposed a subspace-wise joint classification loss that maximizes discrim-

inability for both the quantized and original features in each subspace. Another

problem is the kind of codewords preferred in deep quantization models for bet-

ter performance. Instead of learning codewords end-to-end that have significant

variations in pairwise distance, we use predefined orthonormal codewords which

have fixed 90-degree angular separation in between.

3. Orthonormal Product Quantization

We propose OPQN, a deep quantization-based method specialized for the

face image retrieval task. The overview of the training procedure for OPQN

is illustrated in Fig. 2. We investigate the functionality of the distribution of

codewords in the quantization process, then propose to use sets of predefined

orthonormal codewords for quantization. The sub-vectors of deep features are

transformed into assignment probabilities via feature-probability decorrelation.

Then, they are combined with the predefined codewords to construct the soft

quantizations. To provide sufficient discriminative power for PQ-based similar-

ity search, a subspace-wise joint classification loss for the original sub-vectors

9

and their soft quantizations is proposed. Besides, we impose an entropy-based

regularization that allows for more precise quantization.

Figure 2: The overall training procedure of the OPQN method: xm represents the
sub-vector from the bottleneck features. xm is projected by a linear transform layer
followed by a softmax operation to produce the probability vector pm. The soft quan-
tization sm is constructed as a convex combination between pm and the orthonormal
codewords Cm. Wm represents the weight matrix of the subspace-wise classification
loss. The complete loss function consists of classification loss and entropy loss.

Here are the notations used in this paper. We denote a dataset with N face

images as {Ii}Ni=1, and the corresponding label vector as y ∈ RN . For an input

image Ii, xi ∈ RD is the bottleneck features as shown in Fig. 2 produced by the

backbone network f(Θ), where Θ are the network parameters. xi is divided into

M disjoint sub-vectors with dimension d = D/M , i.e., xi = [xi1, xi2, · · · , xiM]

where xim ∈ Rd. Assume the codebooks C = [C1, C2, · · · , CM] ∈ RM×d×K

and each codebook consists of K codewords, i.e., Cm = [Cm1, Cm2, · · · , CmK] ∈
Rd×K . The soft and hard quantizations of xim are sim and him, respectively.

Concretely, him = Cmk∗ , is the approximation of xim by the codeword with

index k∗ in m-th codebook. Thus, the soft and hard quantizations of Ii can be

represented as si = {sim}Mm=1 and hi = {him}Mm=1, respectively.

3.1. Soft Quantization via Feature-Probability Decorrelation

The soft quantization shown in Eq. (1) implicitly encodes the similarity be-

tween sub-vectors and codewords. Consequently, how each codeword constitutes

sim, and how far the distance between sim and Cmk∗ is, are both difficult to

observe. As the scaling factor cannot be set to positive infinity, there is always

10

a gap between sim and him. Alternatively, OPQN learns the codewords assign-

ment explicitly via an intermediate FC layer. Note that since the codewords are

now predefined, it offsets the number of parameters in the intermediate layer.

Thus, the total number of learnable parameters does not grow. Inspired by

DPQ [6], a linear transformation layer is built on top of each sub-vector xim

individually. Denote the parameter matrices in all linear transform layers as

F = [F1, F2, · · · , FM] ∈ RM×d×K . For simplicity, we omit the biases in each

layer. By appending a softmax function to layer outputs, we can formulate the

probability of assigning the codeword Cmk to the subvector xim as:

pim,k =
ex

T
imFmk∑K

j=1 e
xT
imFmj

(2)

where Fmj is the j-th column of the parameter matrix Fm. The K probabilities

are concatenated to the vector: pim = [pim,1, pim,2, · · · , pim,K] ∈ RK . The soft

quantization sim of xim in the proposed method is represented as:

sim =

K∑
k=1

pim,k ∗ Cmk (3)

Eq. (3) means each soft quantization sim is the convex combination of {Cmk}
with softmax coefficients pim. Based on this, one can naturally derive the hard

quantization as him = Cmk∗ . Here, k∗ is the index of the codeword with the

largest value in pim, formulated as:

k∗ = argmax
k

pim,k s.t. k = 1, 2, · · ·K (4)

Note that the proposed method does not compute the hard quantization in

the training process, which avoids the problem of calculating the derivative of

argmax(·). Eq. (4) serves to encode database items during the testing query

phase, which will be detailed in Section 3.6.

3.2. Orthonormal Codewords Generation

The above soft quantization method connects the sub-vectors and codewords

by learning a linear transform matrix to represent the quantization composition

explicitly. Thus, it is feasible to use predefined codewords for quantization.

11

Assume there is a codebook Cm, with each column being a codeword. For any

pair of codewords Cmi and Cmj : 0 ≤ ∠(Cmi, Cmj) ≤ π. The basic idea of

codeword design is to improve the informativeness of quantization and reduce

the redundancy in the codewords. We require each pair of codewords to have

a sufficiently large angle between them and the variance of angles to be as

small as possible. To eliminate side effects caused by the magnitudes, Cmi

and Cmj should be normalized to unit length. In terms of these requirements,

we apply the orthonormal vectors as codewords, which possess the desirable

characteristics: ‖Cmk‖ = 1 and CTmCm = IK . The orthonormal vectors are

naturally of the unit norm and every two different orthonormal vectors keep a

π/2 angular separation from each other.

There are some other choices to generate a set of orthonormal vectors. For

example, one can perform Singular Value Decomposition (SVD) on a random

matrix and return the columns of the left-singular vectors as codewords. How-

ever, a better solution is to use deterministic orthonormal vectors that exclude

the randomness biases caused by codewords themselves. Thereby, we utilize

the cosine basis of Discrete Cosine Transform (DCT) [35], in the DCT-II al-

gorithm. Since DCT-II is defined by a set of orthogonal/orthonormal cosine

basis functions, one can always obtain the exact same orthonormal vectors if

only the dimension is specified. Suppose the dimension of sub-vectors, as well

as codewords, are d, the basis matrix A ∈ Rd×d in the DCT-II transform can

be calculated as:

Aij = cos [
jπ

d
(i+

1

2
)] s.t. i, j = 0, 1, 2, · · · d− 1 (5)

The procedure to generate orthonormal codewords using the cosine basis is

summarized in Algorithm 1. By several processing steps (steps 2 and 3) on A,

we could obtain an orthogonal matrix A†, whose first K column vectors are the

desired codewords in one codebook. The orthonormal vectors multiplied by an

orthogonal matrix are still orthonormal vectors. Thus, we iteratively multiply

the previous codebook by A† to get the new codebook, which guarantees the

diversity between different sets of codebooks while still retaining the orthogo-

nality of each codebook. Since the orthogonal matrices A† are square, OPQN

12

requires that the number of codewords is no more than the dimension of the sub-

vectors. For a network with a bottleneck of 2048-dimensional features, OPQN

can generate binary codes up to 64-bit (8 log2 256) in length, which is sufficient

to cover most cases.

Algorithm 1 Generation of deterministic orthonormal codewords

Input: Features dimension D, number of codebooks M , number of codewords
per codebook K, sub-features dimension d (d = D/M and d ≥ K)
Output: Codebooks C ∈ RM×d×K

1: Compute the cosine basis matrix A according to Eq. (5)
2: A[:, 0]← A[:, 0]/

√
2

3: A† ←
√

2A/
√
d

4: C1 = A†[:, : K]
5: for m = 2 : M + 1 do
6: Cm = A† ∗ Cm−1

7: end for

3.3. Subspace-Wise Joint Classification Loss

By substituting codewords in Eq. (3) with orthonormal codewords gener-

ated by Algorithm 1, we can obtain the soft quantization of feature vectors

in each subspace. These quantized features will be fed into the carefully de-

signed objective function supervised with label information for discriminative

retrieval. Meanwhile, it is natural that the bottleneck features directly limit the

quantization performance. The well-learned original features should benefit the

embedding of identity-specific clues in quantized features. Therefore, we propose

to preserve the discriminability in both the original and soft quantized features.

From another view, since original features and their quantized versions fall into

several disjoint subspaces in PQ-based methods, the associated full identity in-

formation breaks into different partitions. For better classification, we expect

intra-identity features and their soft quantizations to be separable from those

belonging to other identities in each subspace. Thus, a set of subspace-wise

classifiers are learned individually for each segment of xim and sim.

We denote a fully connected layer containing a set of weight matrices as

W = [W1,W2, · · · ,WM] ∈ RM×d×C , where C is the number of identity classes

in the datasets. Wmc represents the c-th column vector of Wm in the m-

th subspace. We normalize Wmc: Wmc ← Wmc/‖Wmc‖2 that is commonly

13

used in deep face recognition. Correspondingly, xim is also `2 normalized:

xim ← xim/‖xim‖2. Thus, the cosine similarity between xim and Wmc is di-

rectly implied from their inner product. Specifically, cos θyi,xim
= xTimWmyi ,

where θyi,xim
represents the angle between xim with label yi and its correspond-

ing weight vector Wmyi . Inspired by the popular and effective line of angular

margin-based deep face recognition [33, 34], we add a cosine margin u between

cos θyi,xim and cos θy¬i,xim . The introduced margin helps to enhance the intra-

identity compactness and inter-class discriminability of the original features in

each subspace. By formulating the angular margin into the softmax classifica-

tion loss and summing up the loss terms coming from all the M segments, we

obtain the loss function concerning x and W as:

Lx =

N∑
i=1

M∑
m=1

− log
er(cos θyi,xim

−u)

er(cos θyi,xim
−u) +

∑
j 6=yi e

r cos θj,xim

(6)

where r is a scaling factor for the normalized sub-features. We also `2 normalize

sim to remove the variation in the radius. Then, the cosine distance between

sim and Wm is indicated by their multiplication, and the angle between sim and

Wmyi is denoted as θyi,sim . Similarly, the angular margin-based loss function

w.r.t. s and W is formulated as:

Ls =

N∑
i=1

M∑
m=1

− log
er(cos θyi,sim−u)

er(cos θyi,sim−u) +
∑
j 6=yi e

r cos θj,sim
(7)

The values of margin u and scaling factor r in Eq. (7) are the same as in Eq. (6)

to encourage consistency between xim and sim. Combining Eq. (6) and Eq. (7),

the joint similarity-preserving loss is represented as:

min
Θ,F,W

Lclf =
1

2MN
(Lx + Ls) (8)

Eq. (8) targets subspace-wise intra-identity variance minimization and inter-

identity variance maximization for both the original and quantized features.

14

3.4. Entropy Minimization for One-Hot Codewords Assignment

The joint classification loss utilized soft quantization sim without consider-

ing hard quantization him in training. However, we would like to reduce the

discrepancy between sim and its corresponding original version him. The proba-

bility vector pim, which takes the role of codewords assignment, should be close

to one-hot encoding. Therefore, we propose an entropy-based regularization

term to force the sub-features to move towards a single codeword while pushing

it apart from other codewords. The entropy-based loss is formulated as:

Lent = − 1

MN

N∑
i=1

M∑
m=1

K∑
k=1

pim,k log pim,k (9)

pim,k log pim,k has the minimum value 0 if and only if pim,k = 0 or pim,k = 1.

Under the constraint of
∑
k pim,k = 1, the proposed entropy loss tends to shape

the distribution of pim into a pattern with a single peak at one index with small

values elsewhere. By adding the loss from all the M probability vectors, it

aims to reduce the discrepancy between si and hi for more precise quantization.

Integrating Lclf and Lent to obtain the finalized loss function of OPQN:

L = Lclf + λLent (10)

where λ is a balance weight of the entropy loss.

3.5. Learning and Optimization

The proposed OPQN contains three sets of learnable parameters: back-

bone network parameters Θ, linear transform layer parameters F and the clas-

sification weight W . We adopt the mini-batch strategy and stochastic gra-

dient descent (SGD) in training and all parameters can be learned by back-

propagation (BP). Denote xTim multiplied by Fm shown in Eq. (2) as gm =

[gm1, gm2, · · · , gmK]. The gradients of pim w.r.t gm can be computed as:

∂pim,k
∂gmk

= pim,k(1− pim,k);
∂pim,k

∂gmj(j 6=k)
= −pim,kpim,j (11)

15

Thus, we can derive the gradient of the soft quantization sim w.r.t. gmk by BP:

∂sim
∂gmk

=

[
∂sim
∂pim

]T
∂pim
∂gmk

= pim,k(Cmk − sim) (12)

Similarly, since ∂Lent/∂pim = −(1 + log pim), we obtain the derivatives of

Lent w.r.t. gmk using Eq. (11) as:

∂Lent
∂gmk

= pim,k

(K∑
j=1

pim,j log pim,j − log pim,k

)
(13)

Combining Eq. (12) and Eq. (13) and applying BP, the derivative of L re-

garding Fmk is:

∂L

∂Fmk
=

[
1

2

(
∂Ls
∂sim

)T
∂sim
∂gmk

+ λ
∂Lent
∂gmk

]
xim (14)

Likewise, the derivative of L regarding W is calculated by:

∂L

∂Wmk
=

1

2

(
∂Lx
∂Wmk

+
∂Ls
∂Wmk

)
(15)

The derivative of L w.r.t. xim is:

∂L

∂xim
=

1

2

∂Lx
∂xim

+
1

2

(
∂Ls
∂gmk

+ λ
∂Lent
∂gmk

)
Fmk (16)

The complete training procedure of OPQN is summarized in Algorithm 2.

3.6. Asymmetric Distance Comparison for Retrieval

Following previous works [19, 6, 8, 7], we apply asymmetric quantization

distance (AQD) [14] as the similarity metric in the search phase. AQD enables

using soft quantizations to represent a query but hard quantizations to encode

database images. It has the advantages of both memory footprint reduction and

retrieval speed acceleration. To this end, the query and database items in the

search phase are processed with different procedures.

Given a query image q, we propagate it through the model until the lin-

ear transform layers. These outputs are passed to the softmax function, as in

Eq. (2), to obtain the probability vector pqm of each subvector xqm. Then,

16

Algorithm 2 OPQN Training Procedure

Input: Training set {Ii}Ni=1 with labels y, the network f(·), the dimension of
codebooks: M × d×K;
Initialization: Backbone network parameters Θ, linear transform layer F , clas-
sification weight matrix W ;

1: Generate orthonormal codewords by Algorithm 1;
2: repeat
3: Randomly sample a mini-batch data from the training set;
4: Feed forward the mini-batch images through the model and compute

xi = f(Θ; Ii) for each image;
5: Calculate the objective function L according to Eq. (10);
6: Compute the derivatives of L w.r.t. W , F and xim according to Eq. (15),

Eq. (14) and Eq. (16), respectively;
7: Back propagate the gradients to the backbone network, then update the

parameters W , F and Θ;
8: until Convergence

combined with Cm to obtain the soft quantization sqm, as in Eq. (3). For each

database image Ii, we pre-compute {pim} following the same procedure as the

query image. Ii is associated with its hard quantization {him} via the indices

of the largest values in {pim}. Suppose that we have a matrix B ∈ RN×M , then

each element bim of B stores the index k∗ of codewords in Eq. (4). Therefore,

the Euclidean distance between q and Ii, is computed as:

AQD(q, Ii) =

M∑
m=1

‖sqm − him‖22 =

M∑
m=1

‖Cmpqm − Cmbim‖22 (17)

Note the orthogonality of Cm. By expanding the right-hand side of Eq. (17)

and eliminating the constant and the term irrelevant to Cmbim , we can derive

the following equation:

argmin
i

AQD(q, Ii) = argmin
i

M∑
m=1

−2pqm
TCTmCmbim = argmax

i

M∑
m=1

pqm,bim

(18)

From Eq. (18), argminiAQD(q, Ii) depends on {pqm}Mm=1 and {bim}Mm=1.

It indicates the quantization similarity comparison between the query and any

database item can be realized efficiently by indexing pqm with LUTs. Specif-

17

ically, we build M LUTs, denoted as {LUTm}, w.r.t. M probability vectors

{pq}, where LUTm[i] = bim. Since the matrix B can be pre-computed, it only

takes several addition calculations in the searching process. Compared with

DQN [17] and DPQ [6], OPQN does not require explicit online reconstruction

of the soft quantization or calculation of the Euclidean distance between the

soft quantization and each codeword. Therefore, it is more scalable and time-

efficient to handle a query that arrives on-the-fly. Besides, the codebooks in

our method are data-independent and predefined. This allows models to use

the same codebook for different datasets, helping to lower the system’s storage

cost. The retrieval procedure of OPQN is summarized in Algorithm 3.

Algorithm 3 OPQN Top-k Retrieval Procedure

Input: Database images DB = {dbi}|DB|i=1 , query set images Q = {qi}|Q|i=1, the
trained model;
Output: Top k instances in DB for each qi;

1: Forward pass DB through the model in advance, and pre-compute the in-
dices matrix B according to Eq. (2) and Eq. (4);

2: LUTs construction for DB based on matrix B;
3: for i in 1, 2, · · · , | Q |: do
4: Forward pass qi through the model and compute pqim by Eq. (2);
5: Compute similarity between qi and each database image by Eq. (18)

using LUTs, and sort the results in descending order;
6: end for

4. Experiments and Results

4.1. Datasets and Evaluation Metrics

To demonstrate the performance of the proposed OPQN, we conduct ex-

periments on four commonly-used publicly available datasets: FaceScrub [21],

CFW-60K [22], VGGFace2 [23], and YouTube Faces [24]. For seen identity

retrieval, the training-testing split is used as database images and queries, re-

spectively, for each dataset. For simplicity, we refer to the evaluation of seen

identities as the standard retrieval. Three kinds of evaluation metrics are ap-

plied to evaluate the quality of the retrieval: mean average precision (MAP),

precision-recall (PR) curve, and precision w.r.t. top T returned images (P@T).

The details of each dataset and their corresponding protocols are:

18

FaceScrub [21] contains 106,863 face images of 530 celebrities with about

200 images per identity. We use the same training-testing split as in [10, 18, 3]:

five images per identity are selected for testing, and the remaining images are

used for training. All the face images have been cropped and resized to 32×32.

CFW-60K [22] is a dataset containing 60,000 images of 500 identities. As

in [5], we use the official test split in CFW-60K, which has 10 images per identity

and a total of 5000 images for testing. Among the other images, a total number

of 55,000 images with category labels were used for training. All the face images

have the same size of 32×32.

The VGGFace2 [23] dataset contains 3.31 million images of 9,131 identities,

officially split into 8,631 identities for training and 500 identities for testing. The

identities in the training testing split are disjoint. We choose 2,787 identities,

with approximately 300 images each, from the official training set. 50 images

per identity were taken for testing, with the rest used for training. In the unseen

identity retrieval protocol, we take all the identities in the official testing set. 50

images per identity are used as queries, with the remainder used as a database.

All the images in VGGFace2 are cropped and aligned following the instructions

of MTCNN [36]. Each image is resized to 112×112.

YouTube Faces [24] contains thousands of videos of 1,595 celebrities. Fol-

lowing the configuration in [10], we select 40 images per identity for training

and 5 images for testing. The employed dataset has 63,800 training images and

7,975 testing images. Each image is resized to 32×32.

4.2. Experiment Settings

We compare OPQN with a series of hashing-based and PQ-based methods.

The hashing methods include DDQH [3], DCWH [28], CSQ [11], DCDH [5], and

DPAH [37]. Since DDQH and DCDH in their papers apply different backbone

networks from OPQN, we denote the original results as DDQH and DCDH,

while our unified implementations as DDQH* and DCDH*, respectively. For

PQ-based methods, we compare OPQN with DPQ [6] and GPQ [7], which are

initially designed for general image retrieval. We also present results of the

variant of OPQN, namely OPQN-l2q, which employs the same learning metric

as OPQN but learns codewords instead of predetermining them.

19

To ensure a fair comparison, we unify the backbone network for all the binary

hashing and PQ-based methods. Thus, the difference in the networks between

binary hashing and PQ-based methods only exists in the last few layers, which

distinguish the approaches from each other. Without loss of generality, the em-

ployed backbone network is based on the ResNet20 [38] architecture. 2 Similar

architectures have been used in prior deep face recognition works [33, 34]. For

PQ-based methods, the outputs of the last convolutional layer are flattened and

projected into the FC1 layer to generate the bottleneck features shown in Fig. 2.

In contrast, for hashing-based methods, the flattened convolutional layer’s out-

puts are first transformed into 512 dimensions by the FC1 layer, followed by an

FC hashing layer to produce hashing outputs with the expected code length.

Batch normalization [39] is used after each FC layer in both methods.

4.3. Implementation Details

We evaluate the performance of OPQN under code lengths ranging from 16

to 64 bits. During training, OPQN uses a mini-batch SGD algorithm for opti-

mization with momentum of 0.9 and weight decay of 5e-4. For small datasets,

i.e., FaceScrub [21] and CFW-60K [22], the initial learning rate is set to 0.1

and decayed by 0.5 every 35 epochs, while in VGGFace2 [23] dataset, the initial

learning rate is set to 0.01 and decayed by 0.5 every 20 epochs. The batch size

is fixed to 256 for all datasets, and the whole network is trained for 200 epochs.

From cross-validation, the parameter settings for OPQN are the scaling factor

r = 40, the margin u = 0.4, and the balance weight λ = 0.1. We apply the same

data augmentation process including random cropping and random horizontal

flipping to all methods during training. Experiments of the compared methods

use the codes available from the original authors if possible. Otherwise, we

carefully implement the methods. All experiments are performed on two Nvidia

RTX-2080 GPU cards and implemented with PyTorch. The source codes are

released at https://github.com/mzhang367/opqn.

2The applied network architecture is illustrated in the supplementary material.

20

https://github.com/mzhang367/opqn

4.4. Seen Identity Retrieval

We first conduct experiments on the FaceScrub and CFW-60K datasets,

following the standard retrieval protocol in prior works. We evaluate the binary

codes under 16, 24, 36, and 48 bits, with the number of codebooks, M , set

empirically to 2, 4, 6, and 8, respectively. Thus, the number of codewords in

each codebook, K, are accordingly 256, 64, 64, and 64. Note that the bottleneck

features, with dimension D, should fulfill the conditions D/M ≤ K and D |M .

For simplicity, we fix D to 512 for all cases except 36 bits where D is set to 516 to

be divisible by the number of codebooks, i.e., 6. The other PQ-based methods

adopt the same codebook and codeword settings as the proposed OPQN.

The MAP results on FaceScrub and CFW-60K datasets are summarized

in Table 1. OPQN outperforms all the other methods over all code lengths.

OPQN achieves average performance improvements of 3.83% and 2.26% over

the state-of-the-art deep hashing method DCDH* on the FaceScrub and CFW-

60K datasets, respectively. The superiority of OPQN is more prominent under

short code lengths. For example, under 16-bit codes, it outperforms the second

place DCDH* by a margin of 5.36% and 4.92% on two datasets, respectively.

Table 1: MAP (%) results on FaceScrub, CFW-60K, and VGGFace2 datasets under the
standard retrieval setting

Method
FaceScrub CFW-60K VGGFace2

16-bit 24-bit 36-bit 48-bit 16-bit 24-bit 36-bit 48-bit 24-bit 36-bit 48-bit 64-bit

DDQH - 44.82 50.71 51.91 - - - - - - - -
DDQH* 83.93 85.61 87.14 88.28 78.32 78.80 80.69 82.22 81.19 90.14 91.67 92.89
DCWH 83.52 84.45 85.62 88.72 70.14 72.51 74.80 78.39 34.23 52.24 64.58 72.59
DPAH 83.98 88.59 90.06 90.41 76.02 82.66 83.99 84.54 81.59 87.15 88.97 90.42
CSQ 71.23 80.32 82.06 86.61 69.69 72.19 78.44 83.35 70.72 79.34 83.04 83.71
DPQ 38.70 84.05 90.43 90.71 30.43 57.61 70.37 70.55 71.05 77.03 84.35 86.81
GPQ 63.38 80.36 85.93 86.99 64.02 49.31 61.46 71.90 67.90 70.41 72.86 -

DCDH - 77.79 83.47 84.64 - 81.68 83.56 85.48 - - - -
DCDH* 84.96 87.18 89.53 91.43 80.55 86.08 86.69 87.16 87.52 90.95 91.81 92.32

OPQN (Ours) 90.32 91.54 92.70 93.85 85.47 86.37 88.26 89.40 89.86 95.08 95.04 95.29
OPQN-l2q 62.73 89.71 91.62 92.54 52.78 83.51 87.25 87.80 76.00 85.75 91.27 90.59

The other deep quantization models, DPQ and GPQ, do not perform as

well as deep hashing-based methods. Particularly, the performances of DPQ

and GPQ are poor for 16-bit codes. This may be due to their applied learning

21

metrics being insufficient to extract discriminative features given that the com-

plete visual information attached to the feature vector is divided into several

subspaces. It is worth noting that the variant, OPQN-l2q, performs worse than

OPQN, with relatively minor decreases for 24 to 48-bit codes but is 27.59% and

32.69% lower for the 16-bit codes on FaceScrub and CFW-60K, respectively. The

results strongly support the effectiveness of the proposed orthonormal scheme.

As shown in Fig. 1, we compare the angular distribution of pairwise codewords

of four methods on FaceScrub under 16-bit codes. Fig. 1 implies that the or-

thonormal codewords contribute to better preserving the visual information in

the subspace, by which the codewords are evenly distributed with a specific and

moderate (90 degrees) separation from each other.

We further conduct experiments on the employed VGGFace2 dataset under

four code lengths, 24, 36, 48, and 64 bits. The number of codebooks is set

to 3, 4, 6, and 8, respectively. Accordingly, the number of codewords in each

codebook is 256 except for the 36-bit case where it is 512. The dimension D of

the bottleneck features in OPQN is set to D = MK. For a fair comparison, the

DPQ [6] method is evaluated with the same configuration of D, M , K, while

the GPQ [7] method, could only perform well with a large value of K in this

case. Thus, we fix K as 4096 (212), and M as 2, 3, and 4 to obtain 24-bit,

36-bit, and 48-bit codes, respectively. We adopt D = 2048 for 24 and 48-bit

codes, and 2049 for 36-bit codes. The 64-bit result for GPQ is not shown as it

does not support a reasonably large value of K.

The MAP performance on the VGGFace2 is shown in the right part of Ta-

ble 1. It is clear that OPQN outperforms all the other methods over all code

lengths, exceeding the two best competitors, DCDH [5] and DDQH [3], by 3.18%

and 4.85% on average, respectively. At 36 bits, OPQN’s more than 95% MAP

is 4.13% higher than the second place DCDH*. However, OPQN-l2q and DPQ

have much poorer performance than their hashing-based counterparts, DCDH*

and DDQH*, especially at 24 bits.

We then evaluate the performance on the PR-curve as shown in Fig. 3.3

We can see the PR-curves of OPQN almost always span outermost from the

3More PR-curve results are given in the supplementary material.

22

Figure 3: Performance measured by PR-curves: (a) 48-bit codes on FaceScrub, (b)
48-bit codes on CFW-60K, (c) 64-bit codes on VGGFace2.

top-left to the bottom-right corner of the whole figures for three datasets. This

means that OPQN can maintain a higher precision with an increase in the

recall score. Since face image retrieval system users generally only look at top-

ranking images, it is also necessary to evaluate the retrieval accuracy in terms

of different numbers of top-returned images. Thus, Fig. 4 plots P@T curves on

the three datasets. One can see that OPQN always provides superior precision

scores over a moderate quantity of returns. Specifically, OPQN is the only

method that maintains higher than 80% precision in the top 300 positions in

VGGFace2, which has an average number of 300 images per identity in the

database. Considering the challenging variation in the VGGFace2, retrieving

more than 80% of related images is satisfying. Combing MAP and PR-curves

results, we know that OPQN is robust to different evaluation metrics.

Finally, to intuitively compare the feature representations in a subspace

learned by different deep quantization methods, we illustrate visualizations of

the sub-vectors under 36-bit codes on the VGGFace2 dataset in Fig. 5. Ten

Figure 4: Performance w.r.t. different P@T on three datasets: (a) 48-bit codes on
FaceScrub, (b) 48-bit codes on CFW-60K, (c) 64-bit codes on VGGFace2.

23

identities are randomly selected from the testing set, and the trained deep

quantization models are deployed on the samples to generate feature vectors

directly. Instead of using the complete vector for visualization, we visualize

sub-vectors, for which the quantization is performed by each codebook individ-

ually. In the experiment, the first 512-dimensional features are split from the

2048-dimensional bottleneck features. t-SNE [40] is applied to map the high-

dimensional features of each method to 2-dimensional. From Fig. 5, OPQN

produces the most separable feature representations in the subspace with the

least overlapping when compared with other methods.

To summarize experiment results under the standard retrieval setting, the

superiority of OPQN is due to the following reasons. 1) The orthonormal code-

words help enhance the informativeness of quantization and reduce redundancy

in the codewords. The soft quantization strategy explicitly decorrelates the

feature and probability, providing greater flexibility in the composition of the

quantization when codewords are predefined. 2) OPQN can maximize the dis-

criminability in soft quantizations, and in the original features, by benefiting

from the joint subspace-wise classification loss, while the optimization of the

original features facilitates obtaining better quantization representations.

Figure 5: Visualization of 10-class deep feature representations in a subspace produced
by DPQ, GPQ, OPQN-l2q, and OPQN. Each color represents a unique identity.

24

4.5. Unseen Identity Retrieval

Different from the standard retrieval setting, where the evaluation dataset

contains the same set of classes as the training dataset, unseen identity re-

trieval [6, 20] used a set of unseen classes as queries and the database in

the query stage. The employed protocol is given as follows. The deep hash-

ing/quantization models have been pre-trained on the VGGFace2 training set

for standard retrieval. These models are used for feature extraction and repre-

sentation of unseen identity images. We conduct experiments on the database-

query split of three datasets, i.e., VGGFace2 official testing set, CFW-60K,

and YouTube Faces datasets, as described in Section 4.1. In addition to MAP,

P@T is used to emphasize the top ranking. Specifically, P@10 is used for the

VGGFace2, while P@5 is used for CFW-60K and YouTube Faces datasets.

Table 2: MAP (%) results on VGGFace2, CFW-60K and YouTube Faces under the unseen
identity retrieval setting

Method
VGGFace2 CFW-60K YouTube Faces

24-bit 36-bit 48-bit 64-bit 24-bit 36-bit 48-bit 64-bit 24-bit 36-bit 48-bit 64-bit

DDQH* 7.71 9.71 12.39 14.69 6.52 8.61 9.87 11.97 4.53 6.85 9.00 11.29
DCWH 2.68 4.65 6.48 8.13 2.08 3.59 4.98 6.24 2.71 5.25 7.80 9.63
DPAH 2.71 4.99 6.25 11.22 2.55 4.04 5.12 8.68 2.26 3.86 5.72 9.43
CSQ 2.30 2.86 3.36 3.82 2.25 2.39 3.09 3.70 2.41 2.75 3.73 4.35

DCDH* 3.15 5.89 7.00 9.05 3.36 5.70 6.21 7.35 2.56 4.33 4.89 6.40
DPQ 7.67 8.21 8.99 13.68 5.51 6.22 6.82 10.01 5.20 6.08 7.02 10.75
GPQ 10.24 10.69 11.24 - 8.52 8.96 9.42 - 4.24 4.69 5.03 -

OPQN (Ours) 15.29 22.27 25.93 34.19 12.81 18.08 20.75 25.54 10.44 16.12 20.79 26.59
OPQN-l2q 7.29 10.84 15.50 22.00 6.06 8.77 12.45 17.61 6.21 8.27 16.00 23.33

The MAP and P@T results of unseen identity retrieval on three datasets are

shown in Tables 2 and 3, respectively. From Table 2, OPQN outperforms other

methods by a distinct margin over all the compared code lengths. Its MAP

performance surpasses the second place GPQ by 10.44% and 8.25% on average,

respectively, on VGGFace2 and CFW-60K datasets. On YouTube Faces, it

exceeds the second place DDQH* by 10.57% on average. Compared with the

l2q variant, OPQN generalizes better with an average superiority of 10.51%,

8.07%, and 5.03% on VGGFace2, CFW-60K, and YouTube Faces, respectively.

The results confirm the effectiveness of the proposed orthonormal constraint on

25

codewords to both standard retrieval and unseen identity retrieval.

Table 3: P@T (%) results on VGGFace2, CFW-60K and YouTube Faces under the unseen
identity retrieval setting

Method
VGGFace2 (P@10) CFW-60K (P@5) YouTube Faces (P@5)

24-bit 36-bit 48-bit 64-bit 24-bit 36-bit 48-bit 64-bit 24-bit 36-bit 48-bit 64-bit

DDQH* 19.85 27.28 33.91 40.00 13.94 20.14 23.49 28.44 11.77 17.48 23.06 28.05
DCWH 13.67 23.13 30.58 35.98 8.46 14.26 20.24 24.35 10.01 18.42 25.77 30.47
DPAH 12.21 21.61 27.53 40.38 8.21 14.29 17.58 26.73 7.74 13.43 19.02 28.13
CSQ 12.55 16.15 18.03 22.02 7.52 9.14 11.65 12.97 8.48 10.12 12.36 14.91

DCDH* 14.26 20.63 29.15 34.89 10.03 15.83 18.28 23.36 8.53 13.21 16.20 20.42
DPQ 21.51 26.21 34.07 40.57 14.92 17.68 19.00 26.77 12.83 14.65 16.00 28.51
GPQ 20.51 21.65 22.58 - 16.58 16.82 17.24 - 8.17 9.19 9.48 -

OPQN (Ours) 39.87 51.31 58.23 69.32 30.50 40.90 45.00 56.28 22.17 35.56 45.77 55.05
OPQN-l2q 26.38 36.64 47.88 59.76 18.94 25.08 36.91 47.50 17.97 23.48 35.19 46.49

As for P@T results in Table 3, the pre-trained OPQN model performs sig-

nificantly better than other methods with nearly 70% P@10 and more than

55% P@5 results on VGGFace2 and other two datasets at 64 bits. And the

results are 28.75%, 27.84%, and 24.58% higher than the second best methods

DPQ (VGGFace2), DDQH (CFW-60K) and DCWH (YouTube Faces), respec-

tively. The P@T performance of OPQN averaged over all bit values on the

VGGFace2, CFW-60K, and YouTube Faces datasets are better than the sec-

ond best methods DPQ, DDQH, and DCWH by 24.09%, 21.67% and 18.47%,

respectively. Once again, using predefined orthonormal codewords considerably

improves the performance of OPQN over OPQN-l2q, inducing an average im-

provement of 12.02% (VGGFace2), 11.06% (CFW-60K), and 8.86% (YouTube

Faces) on three datasets. Since retrieving all the related samples is much more

challenging than retrieving the most related samples, one can find the substan-

tial performance gap between MAP and P@T results comparing Tables 2 and 3.

Considering the high priority of top returned items in a face image retrieval

system, the long-bit P@T results of OPQN are still encouraging.

There are two noteworthy observations from Tables 2 and 3. Firstly, OPQN

and OPQN-l2q, greatly outperform the baseline deep hashing methods, espe-

cially on long bits. However, OPQN-l2q is inferior to their deep hashing com-

petitors in the task of seen identity retrieval (Table 1). The reason is that PQ-

26

based methods use real-valued codewords to reduce the deviations generated

during encoding. With the exponential number of combinations on codewords,

it can realize more fine-grained distance measurements between the database

and queries. We further visualize the top samples returned by OPQN in com-

parison with DCDH, which is the second best method for standard retrieval, in

Fig. 6. It is straightforward to see that OPQN can return more truly relevant

items when given an unseen identity as the query. The second observation is that

the unseen identity retrieval performance, measured by both MAP and P@T ,

consistently improved with increasing code length for all methods. It indicates

that longer binary code representations effectively improve the generalization

ability of deep hashing/quantization methods.

Figure 6: Examples of top-5 retrieved images by OPQN and DCDH under the unseen
identity retrieval setting. The models are pre-trained with 64-bit codes and evaluated
on the VGGFace2 dataset.

5. Discussion

5.1. Ablation Study

We investigate four variants of OPQN that apply different loss function

designs, namely OPQN-A, OPQN-C, OPQN-S, and OPQN-W.

27

OPQN-A: In the OPQN-A variant, the learning metric only utilizes in-

formation within soft representations for training and the discriminability of

the original features is discarded. In other words, the classification loss Lclf in

OPQN-A only contains the part derived in Eq. (7). OPQN-C: The OPQN-C

variant concatenates the composed soft representations and original sub-vectors

in all the subspaces to full vectors before being fed into the classifier. Thus,

it only utilizes the visual information of xi and si in the concatenated space.

OPQN-S: The OPQN-S variant replaces the angular margin-based classifier

with a traditional softmax classifier as used in DPQ. Thus, no `2 normaliza-

tion is applied to sub-vectors, soft representations, or weight vectors. It still

utilizes soft quantization and the original feature vectors in each subspace for

training. OPQN-W: The OPQN-W variant represents the finalized objective

function without the regularization term Lent shown in Eq. (9). This variant is

set to observe to what extent the one-hot encoding of codewords can improve

the performance of image retrieval.

Table 4: MAP (%) results of three variants of OPQN for seen identity retrieval

Method
FaceScrub CFW-60K

16-bit 24-bit 36-bit 48-bit 16-bit 24-bit 36-bit 48-bit

OPQN-A 60.59 87.62 89.32 89.89 23.48 74.97 80.52 81.72
OPQN-C 61.64 88.07 83.90 83.11 54.55 78.47 73.84 74.23
OPQN-S 20.16 28.92 60.72 78.88 16.86 26.18 62.15 72.81
OPQN-W 80.66 90.72 92.40 93.36 73.38 85.39 87.89 88.62

OPQN 90.32 91.54 92.70 93.85 85.47 86.37 88.26 89.40

For a fair comparison, the same codeword configuration as in the original

OPQN is applied to the four variants. We report the MAP results on FaceScrub

and CFW-60K datasets in Table 4. One can see that all these methods exhibit

different degrees of deterioration in performance as measured by MAP compared

to OPQN. The comparison of OPQN-A and OPQN shows that involving orig-

inal feature information in training is beneficial to obtain more discriminative

representations. The improvement in performance from OPQN-C to OPQN

verifies the advantage of discriminability maximization in each subspace for

better precision in quantization. OPQN-S performs the worst among the four

variants, indicating the necessity of `2 normalization and the angular margin

28

for the removal of radial variations and learning of separable representations.

Finally, from the comparison of OPQN-W and OPQN, the entropy-based reg-

ularization boosts the performance under tiny code lengths, e.g., 16-bit, while

for longer bits, our OPQN slightly performs better than OPQN-W. It indicates

that disturbances from quantization errors may be more severe under short bit

lengths. With longer bits, the adverse impact is lessened due to more possible

combinations of codewords for quantization.

5.2. Codebook Configuration

We further explore the influence of different codebook configurations on code

performance. Basically, a l-bit binary code can be generated in the form of

l = M × O, where M is the number of codebooks, O = log2K, and K is the

number of codewords per codebook. Thus, binary codes with the same length

can be obtained from different combinations of M and O. For simplicity, we

consider two relative configurations with K ranging between 26 and 29: the

first configuration adopts bigger M and smaller O for encoding while the other

uses smaller M and bigger O. Two sets of experiments on 24-bit, 36-bit, and

48-bit codes are conducted w.r.t two configurations. The combinations of the

first configuration are 4 × 6, 6 × 6, and 8 × 6 for three code lengths, while the

other configuration uses 3× 8, 4× 9, 6× 8 as code lengths.

Table 5: Comparison of MAP (%) results by different codebook configurations

Dataset
24-bit 36-bit 48-bit

4× 6 3× 8 6× 6 4× 9 8× 6 6× 8

FaceScrub 91.54 92.98 92.70 93.67 93.85 93.29
VGGFace2 77.22 89.86 90.26 95.08 93.86 95.04

The standard retrieval results on FaceScrub and VGGFace2 under different

codebook configurations are presented in Table 5. We can see performance im-

provement in almost all the cases when using a larger O for quantization. These

improvements are more distinct for the VGGFace2 dataset. OPQN performs

better with a larger value of K, especially for smaller bits. Using more code-

words in a codebook implies richer prototypes in the subspace for quantization,

making it easier for sub-vectors to find the nearest prototype with less quanti-

29

zation error. By using K = 256, rather than K = 64, under 24-bit codes on

the VGGFace2 dataset, OPQN can achieve nearly a 90% MAP score and the

performance of 36-bit codes with a 4× 9 configuration is better than that with

48-bit codes. The benefit of a larger K may become less with longer bit codes

as the increase in the number of subspaces might reduce the quantization error.

5.3. Parameter Sensitivity

The effect of parameters on model performance is examined. From the ab-

lation study shown in Table 4, entropy-based regularization mainly exhibits its

advantage under shorter codes. Thus, we present MAP results w.r.t. different

values of the balance weight, λ under 16-bit codes in Table 6. One can see that

the performance increases steadily as the regularization with λ varies from 0.01

to 0.1 but decreases sharply for values bigger than 0.1.

Table 6: 16-bit MAP (%) results w.r.t. different values of λ

λ 0 0.01 0.05 0.1 0.3

FaceScrub 80.66 82.47 85.43 90.32 1.59
CFW-60K 73.38 76.28 78.01 85.47 10.29

Figure 7: MAP results w.r.t. different values of (a) the scaling factor r, (b) the margin
u, both under two experimental settings, respectively.

We then study the impacts of the scaling factor r and the angular margin

u, in Eqs. (6) and (7). The plots of MAP performances w.r.t. different values

of r and u are illustrated in Fig. 7(a) and (b), respectively. From Fig. 7(a),

performance measured by MAP improves substantially from r = 5 to r = 10,

reaching good values, and then is nearly stable. In Fig. 7(b), as u increases

from 0.2 to 0.6, the performance of the model rises and then decreases. The

30

turning point appears earlier on the VGGFace2 dataset with the best values of

u being around 0.4 in VGGFace2 and 0.5 in the CFW-60K dataset. Generally,

the model performs robustly under variations of u.

5.4. Advantage of Orthogonality

One key feature of the proposed OPQN is that we use orthonormal code-

words instead of other types of predefined codewords. We design this orthogo-

nality accounting for three main reasons. Firstly, it is more feasible to produce

orthonormal vectors than vectors with other specified angles in between. By

using simple but effective DCT transform or SVD, one can easily obtain the de-

sired codewords. Secondly, regarding improving codeword informativeness and

reducing codeword redundancy, we expect codewords to scatter uniformly and

retain a distance from each other. The orthogonality provides a decent separable

property to predefined codewords. Lastly, orthogonality leads to simplifying the

asymmetric distance comparison according to Eq. 18. Consequently, it requires

less computation cost than any other type of codewords.

One may wonder how is the performance when using predefined codewords

without orthogonality. To this end, we add some random noise of N (0, 1e− 4)

to the generated orthonormal codewords as non-orthonormal codewords. Ex-

periment results comparing the seen identity retrieval performance of these two

kinds of codewords on FaceScrub and CFW-60K datasets are shown in Fig. 8.

We can see that the permanence drops dramatically when breaking the or-

thogonality, even with a small variance of 1e-4. And the degradation is more

significant with the decrease in the code length. The results validate the supe-

riority of orthogonality for predefined codewords quantitatively, indicating the

necessity of orthogonality under the proposed deep quantization framework.

6. Conclusion

This paper develops a deep product quantization-based method, OPQN, par-

ticularly for face image retrieval. Unlike previous deep quantization works, a

novel framework is proposed using predefined orthonormal codewords for quan-

tization. A tailored loss function is designed as the learning metric to maximize

31

Figure 8: Comparison of using predefined codewords with and w/o orthogonality under
four code lengths on two datasets.

discriminability in both the soft quantization and original features in all sub-

spaces. Comprehensive and extensive experiments are conducted under both

seen and unseen identity retrieval settings. OPQN outperforms a series of com-

pared deep hashing/quantization methods under both settings. Its superior

generalization performance induced by the proposed orthonormal codewords

verifies the importance of codewords distribution to quantization quality.

Future work could include investigating how the visual information is scat-

tered into subspaces in the PQ-based method. The sub-vector of bottleneck

features in different subspaces may encode specific facial regions or attributes.

Thus, it would be useful to design a learning metric that is adaptive to different

parts of visual discriminability in the quantization subspace.

Acknowledgement

This work is supported by Hong Kong Innovation and Technology Commis-

sion (InnoHK Project CIMDA), Hong Kong Research Grants Council (Project

11204821), and City University of Hong Kong (Project 9610034).

References

[1] J. Yu, D. Tao, M. Wang, Y. Rui, Learning to rank using user clicks and visual features

for image retrieval, IEEE transactions on cybernetics 45 (4) (2014) 767–779.

[2] Q. Zhao, X. Wang, S. Lyu, B. Liu, Y. Yang, A feature consistency driven attention

erasing network for fine-grained image retrieval, Pattern Recognition 128 (2022) 108618.

[3] J. Tang, J. Lin, Z. Li, J. Yang, Discriminative deep quantization hashing for face image

retrieval, IEEE transactions on neural networks and learning systems 29 (12) (2018)

6154–6162.

32

[4] A. Zaeemzadeh, S. Ghadar, B. Faieta, Z. Lin, N. Rahnavard, M. Shah, R. Kalarot, Face

image retrieval with attribute manipulation, in: ICCV, 2021, pp. 12116–12125.

[5] M. Zhang, X. Zhe, S. Chen, H. Yan, Deep center-based dual-constrained hashing for

discriminative face image retrieval, Pattern Recognition (2021) 107976.

[6] B. Klein, L. Wolf, End-to-end supervised product quantization for image search and

retrieval, in: CVPR, 2019, pp. 5041–5050.

[7] Y. K. Jang, N. I. Cho, Generalized product quantization network for semi-supervised

image retrieval, in: CVPR, 2020, pp. 3420–3429.

[8] T. Yu, J. Meng, C. Fang, H. Jin, J. Yuan, Product quantization network for fast visual

search, International Journal of Computer Vision 128 (2020) 2325–2343.

[9] W.-J. Li, S. Wang, W.-C. Kang, Feature learning based deep supervised hashing with

pairwise labels, in: IJCAI, 2016, pp. 1711–1717.

[10] J. Lin, Z. Li, J. Tang, Discriminative deep hashing for scalable face image retrieval, in:

IJCAI, 2017, pp. 2266–2272.

[11] L. Yuan, T. Wang, X. Zhang, F. E. Tay, Z. Jie, W. Liu, J. Feng, Central similarity

quantization for efficient image and video retrieval, in: CVPR, 2020, pp. 3083–3092.

[12] J. Song, L. Gao, L. Liu, X. Zhu, N. Sebe, Quantization-based hashing: a general frame-

work for scalable image and video retrieval, Pattern Recognition 75 (2018) 175–187.

[13] Q. Li, Z. Sun, R. He, T. Tan, Deep supervised discrete hashing, in: NIPS, 2017, pp.

2482–2491.

[14] H. Jegou, M. Douze, C. Schmid, Product quantization for nearest neighbor search, IEEE

transactions on pattern analysis and machine intelligence 33 (1) (2010) 117–128.

[15] T. Ge, K. He, Q. Ke, J. Sun, Optimized product quantization for approximate nearest

neighbor search, in: CVPR, 2013, pp. 2946–2953.

[16] T. Zhang, C. Du, J. Wang, Composite quantization for approximate nearest neighbor

search, in: ICML, PMLR, 2014, pp. 838–846.

[17] Y. Cao, M. Long, J. Wang, H. Zhu, Q. Wen, Deep quantization network for efficient

image retrieval, in: AAAI, 2016, pp. 3457–3463.

[18] J. Tang, Z. Li, X. Zhu, Supervised deep hashing for scalable face image retrieval, Pattern

Recognition 75 (2018) 25–32.

[19] T. Yu, J. Yuan, C. Fang, H. Jin, Product quantization network for fast image retrieval,

in: ECCV, 2018, pp. 186–201.

33

[20] A. Sablayrolles, M. Douze, N. Usunier, H. Jégou, How should we evaluate supervised

hashing?, in: ICASSP, IEEE, 2017, pp. 1732–1736.

[21] H.-W. Ng, S. Winkler, A data-driven approach to cleaning large face datasets, in: ICIP,

IEEE, 2014, pp. 343–347.

[22] Y. Li, R. Wang, H. Liu, H. Jiang, S. Shan, X. Chen, Two birds, one stone: Jointly

learning binary code for large-scale face image retrieval and attributes prediction, in:

ICCV, 2015, pp. 3819–3827.

[23] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, A. Zisserman, Vggface2: A dataset for recognising

faces across pose and age, in: FG, IEEE, 2018, pp. 67–74.

[24] L. Wolf, T. Hassner, I. Maoz, Face recognition in unconstrained videos with matched

background similarity, in: CVPR, 2011, pp. 529–534.

[25] C. Fu, G. Wang, X. Wu, Q. Zhang, R. He, Deep momentum uncertainty hashing, Pattern

Recognition 122 (2022) 108264.

[26] X. Wang, Y. Shi, K. M. Kitani, Deep supervised hashing with triplet labels, in: ACCV,

Springer, 2016, pp. 70–84.

[27] T. Yao, F. Long, T. Mei, Y. Rui, Deep semantic-preserving and ranking-based hashing

for image retrieval, in: IJCAI, 2016, pp. 3931–3937.

[28] X. Zhe, S. Chen, H. Yan, Deep class-wise hashing: Semantics-preserving hashing via

class-wise loss, IEEE transactions on neural networks and learning systems 31 (5) (2020)

1681–1695.

[29] M. Zhang, H. Yan, Improved deep classwise hashing with centers similarity learning for

image retrieval, in: ICPR, IEEE, 2021, pp. 10516–10523.

[30] Z. Zhang, J. Wang, L. Zhu, Y. Luo, G. Lu, Deep collaborative graph hashing for dis-

criminative image retrieval, Pattern Recognition (2023) 109462.

[31] A. Babenko, V. Lempitsky, Additive quantization for extreme vector compression, in:

CVPR, 2014, pp. 931–938.

[32] T. Yu, P. Li, Multiple exemplars learning for fast image retrieval, in: Proceedings of the

30th ACM International Conference on Information & Knowledge Management, 2021,

pp. 2455–2465.

[33] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, W. Liu, Cosface: Large

margin cosine loss for deep face recognition, in: CVPR, 2018, pp. 5265–5274.

[34] J. Deng, J. Guo, N. Xue, S. Zafeiriou, Arcface: Additive angular margin loss for deep

face recognition, in: CVPR, 2019, pp. 4690–4699.

34

[35] N. Ahmed, T. Natarajan, K. R. Rao, Discrete cosine transform, IEEE transactions on

Computers 100 (1) (1974) 90–93.

[36] K. Zhang, Z. Zhang, Z. Li, Y. Qiao, Joint face detection and alignment using multitask

cascaded convolutional networks, IEEE Signal Processing Letters 23 (10) (2016) 1499–

1503.

[37] R. Wang, R. Wang, S. Qiao, S. Shan, X. Chen, Deep position-aware hashing for semantic

continuous image retrieval, in: WACV, 2020, pp. 2493–2502.

[38] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: CVPR,

2016, pp. 770–778.

[39] S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing

internal covariate shift, in: ICML, 2015, pp. 448–456.

[40] L. v. d. Maaten, G. Hinton, Visualizing data using t-sne, Journal of machine learning

research 9 (Nov) (2008) 2579–2605.

35

	1 Introduction
	2 Related work
	2.1 Supervised Deep Hashing for Image Retrieval
	2.2 Traditional Quantization Techniques
	2.3 Deep Quantization for Image Retrieval

	3 Orthonormal Product Quantization
	3.1 Soft Quantization via Feature-Probability Decorrelation
	3.2 Orthonormal Codewords Generation
	3.3 Subspace-Wise Joint Classification Loss
	3.4 Entropy Minimization for One-Hot Codewords Assignment
	3.5 Learning and Optimization
	3.6 Asymmetric Distance Comparison for Retrieval

	4 Experiments and Results
	4.1 Datasets and Evaluation Metrics
	4.2 Experiment Settings
	4.3 Implementation Details
	4.4 Seen Identity Retrieval
	4.5 Unseen Identity Retrieval

	5 Discussion
	5.1 Ablation Study
	5.2 Codebook Configuration
	5.3 Parameter Sensitivity
	5.4 Advantage of Orthogonality

	6 Conclusion

