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Abstract

Consider a scenario in which we have a huge labeled dataset D and a limited time to
train some given learner using D. Since we may not be able to use the whole dataset, how
should we proceed? Questions of this nature motivate the definition of the Time Constrained
Learning Task (TCL): Given a dataset D sampled from an unknown distribution µ, a learner
L and a time limit T , the goal is to obtain in at most T units of time the classification
model with highest possible accuracy w.r.t. to µ, among those that can be built by L using
the dataset D.

We propose TCT, an algorithm for the TCL task designed based that on principles from
Machine Teaching. We present an experimental study involving 5 different Learners and 20
datasets where we show that TCT consistently outperforms two other algorithms: the first is
a Teacher for black-box learners proposed in [Dasgupta et al., ICML 19] and the second is
a natural adaptation of random sampling for the TCL setting. We also compare TCT with
Stochastic Gradient Descent training – our method is again consistently better.

While our work is primarily practical, we also show that a stripped-down version of TCT
has provable guarantees. Under reasonable assumptions, the time our algorithm takes to
achieve a certain accuracy is never much bigger than the time it takes the batch teacher
(which sends a single batch of examples) to achieve similar accuracy, and in some case it is
almost exponentially better.

1 Introduction

A common problem that arises in many supervised machine learning applications is the difficulty
of acquiring labeled data. To overcome this problem techniques as active learning and semi-
supervised learning have been successfully employed.

However, in other situations one faces the complementary scenario where a large number of
labeled examples are available but the computational resources to train a model over them are
limited. That may arise when one has a limited financial budget to train a model on a cloud;
in this case the limited budget naturally translates into a time limit. In another setting, very
current, one may set a limit on the training time to reduce the environmental impact. There
are also applications such as ad advertisement and learning from search logs where the number
of labeled examples is massive and repeated training is necessary to track new user behaviour
distributions, so that training with all labeled examples is not feasible.

For a more concrete situation, assume that our financial budget only allows 4 hours of cloud
usage but we want to train a random forest on a huge set (e.g. billions) of examples. Given
that we may not be able to use the whole dataset, how should we proceed?
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Questions of this nature are faced by machine learning practitioners. This is the motivation
behind the Time Constrained Learning task (TCL for short), which is the focus of our work.
We consider the following formulation for TCL:

Input. A dataset D of labeled examples sampled from an unknown probability distribution
µ, a learner L and a time limit T

Output. The most accurate classification model w.r.t. µ that can be built by Learner L,
spending at most T time units.

TCL admits two natural variations: one in which we have a considerable amount of
information about the Learner (e.g. its hypothesis class and training/classification time
complexity) and the other in which the information is limited (black-box Learners). We are
interested in the latter due to its wider applicability. Given the lack of information about the
Learner, the following question arises:

Is it possible to outperform random sampling (or some natural variation) for TCL?

To give a positive answer to this question, we approach the TCL task via a Machine Teaching
framework Shinohara [1991], Zhu et al. [2018] where a Teacher and a Learner interact over
multiple rounds and in each of them the former sends selected examples to the latter, which
returns a trained model. Our goal is then to design a teacher that guides the Learner towards
a model with high accuracy w.r.t. µ in a way that is as time efficient as possible.

While most of the initial works on Machine Teaching [Shinohara, 1991, Goldman and Kearns,
1995] assume that the Teacher has significant knowledge about the Learner, there have been
several recent advances on the case of interest where there is limited knowledge about the
Learner [Melo et al., 2018, Liu et al., 2018, Dasgupta et al., 2019, Cicalese et al., 2020, Devidze
et al., 2020].

However, these methods do not exactly address the TCL task and instead focus on minimizing
the number of samples sent to the Learner, that is, in the teaching set. While the size of the
teaching set and time complexity are related, there are factors, such as training time and the
amount of interaction with the Learner, that should be considered when the latter is taken
into account. This aspect is illustrated in the beginning of Section 2. Indeed, methods that
disregard these factors are not suitable for TCL, as indicated by our experiments. Thus, new
methods shall be developed to properly handle time constrained learning.

1.1 Our contributions.

Our main contribution is the algorithm Time Constrained Teacher (TCT) for the Time Con-
strained Learning task that is designed based on well-established principles/ideas from Compu-
tational Learning Theory and Machine Teaching. We compare TCT with two other Teachers,
using 5 different Learners over 20 datasets. The first Teacher can be viewed as an adaptation
of random sampling for the TCL task and, thus, is a natural baseline. The second, denoted
here by OSCT, is based on an algorithm for the Online Set Covering problem [Alon et al., 2009].
Its use for teaching black-box learners (aiming at minimizing the size of the teaching set) was
proposed in [Dasgupta et al., 2019] and refined/extended in [Cicalese et al., 2020].

For two of the Learners, namely SVM and Logistic Regression, we also compare the error
achieved by TCT with that achieved by training them via Stochastic Gradient Descent (SGD).

Our algorithm TCT consistently outperforms its competitors and, for some Learners, perhaps
surprisingly, TCT is competitive even against the “oracle” teacher that sends (in one single
batch) m∗ random samples to the Learner, where m∗ (which is guessed by the oracle) is the
largest number of examples that the Learner can handle within the time limit. A nice feature
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of our algorithm is its simplicity: it just employs one parameter that is easy to set and it
does not require any information about the learner. Hence, we believe that it could be easily
implemented as a wrapper in machine learning libraries to address Time Constrained Learning
– the user provides the time limit and the Learner that she is comfortable with, and then TCT

completes the job.
While our work is primarily practical, we also show that a stripped-down version of TCT has

provable guarantees. Under reasonable assumptions, the time our algorithm takes to achieve a
certain accuracy is never much bigger than the time it takes the batch teacher (which sends
a single batch of examples) to achieve similar accuracy. Moreover, for learning a threshold
function, a canonical problem in Active Learning and Machine Teaching, our algorithm is
almost exponentially faster, despite not being tailored to this hypothesis class.

1.2 Related work.

Although some Learners admit online versions that can be employed to TCL task, we are not
aware of works that directly address this task for black-box Learners. In [Dasgupta et al., 2019],
this task is mentioned as a potential application for their proposed Teacher. [Jun Du, 2011]
mention the possibility of minimizing the training time rather than the size of the teaching set,
although it handles the latter.

On the other hand, there are quite a few papers aiming at minimizing the size of the
teaching set. Among these works, we can find some that consider the batch setting Singla
et al. [2014], Ma et al. [2018] and others that consider the sequential one [Jun Du, 2011, Liu
et al., 2018, Chen et al., 2018]. We can also find Teachers that assume a considerable amount
of information about the Learner [Singla et al., 2014] as well as some that require very limited
information [Jun Du, 2011, Dasgupta et al., 2019, Cicalese et al., 2020]

Most of these Teachers do not admit a simple adaptation for the TCL task because they
require a lot of information about the Learner’s hypothesis class or training algorithm (e.g., [Liu
et al., 2018] considers learners that use SGD for training). One exception is the method OSCT,
from Dasgupta et al. [2019] and Cicalese et al. [2020], that assumes very limited information
about the Learner. Experiments from the latter, using LGBM and Random Forest as Learners,
show that OSCT requires significantly fewer examples to reach a given accuracy (on the training
set) than a Teacher that sends random examples. Despite these gains in number of examples,
on time constrained learning OSCT performs much worse than our algorithm TCT, and is even
worse than random sampling, as we show in our experiments.

Our Time Constrained Learning scenario can be related to the traditional Active Learning
scenario Settles [2009]. On one hand, the scenarios are quite different: in Active Learning,
labeled examples are the constrained resource, while in our setting they are abundant. On
the other hand, we cannot use all the available labeled examples and, thus, we need to choose
(carefully) the ones to be used for training; this is related to the key aspect of Active Learning,
that is, the selection of informative examples. Thus, Active Learning strategies could be used
to select examples for Time-Constrained Learning. One issue here is that classical strategies,
e.g. uncertainty sampling, may require assumptions about the Learner (e.g. the ability to
produce class probabilities), which is not aligned with our goal of training black-box learners.
One strategy that does not need these assumptions is Query by Committee, but it is too
time-consuming for our setting. In Section 3, we present experiments where we evaluate a
variation of TCT that uses ideas from a classical active learning strategy to select examples.
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2 A Teacher for the Time Constrained Learning task

In this section we describe our algorithm TCT. Its design takes into account the following
principles:

P1 The larger the number of examples, the better the learning;

P2 Examples where a Learner fails are more helpful to improve its accuracy than those in
which it succeeds;

P3 Examples selected to train a Learner should follow approximately the probability distri-
bution µ, employed in TCL’s definition.

Principle 1 is very natural and justified by both empirical studies and standard statistical
guarantees. However, to obtain a model trained on a large number of examples by a time limit
T , it is important not to send too few examples in each round, as illustrated below.

Example 1. Consider a learner with quadratic running time, that is, Θ(m2) time units are
required to train a model when m examples are available. If the teacher always sends one single
example per round, then the largest model will have O( 3

√
T ) examples, where T is the time limit.

On the other hand, if the teacher always doubles the size of the set of examples sent to the
learner, then the largest model will have Ω(

√
T ) examples.

We note that in contrast to this idea, previous works on Machine Teaching that focus on
minimizing the size of the teaching set suggest the addition of few examples per round [Jun Du,
2011, Dasgupta et al., 2019, Cicalese et al., 2020].

Principle 2 is motivated by human learning and also by works on Machine Teaching [Dasgupta
et al., 2019, Cicalese et al., 2020] and boosting [Schapire, 1999], where wrong examples get
larger priority than those in which the Learner succeeds. While wrong examples are helpful,
their acquisition may be expensive in terms of computational time since finding them may
require the classification of a large number of examples. Thus, we need to balance between
the usefulness of having wrong examples and the computational cost to get them. Moreover,
we have to add wrong examples with parsimony, otherwise we may build models using a set
of examples that is not representative of the real population and hence with potential poor
performance on unseen data. This is captured in Principle 3. Indeed, issues with using biased
samples for learning is well-documented in active learning [Dasgupta, 2009].

Based on these observations, we designed TCT, presented in Algorithm 1. It receives an
integer m0 (number of examples for the first model), a learner L, a parameter α ∈ [0, 1] that
defines the ratio between wrong and random examples provided to the learner at each round;
a time limit T and a pool P of labeled examples. We note that α allows a trade-off between
following Principles 2 and 3. For the ease of presentation we assume that the pool P is large
enough so that it is always possible to obtain unselected examples from it.

At each round, TCT receives from the learner a model M , trained on a set S, and then builds
and provides to the learner a new set of examples that contains (approximately) α|S| examples
in which M fails and also (1 − α)|S| random unseen examples from P . More precisely, TCT
first employs M to classify a random set A1 containing |S| examples (Lines 4 -5). As a result,
it also obtains an unbiased estimation acc1 for the accuracy of M . Next, based on acc1 TCT

builds a second set of samples A2, which is done to guarantee that in expectation we have at
least α|S| examples in A1 ∪A2 where M fails. It then classifies this set A2 using M (Lines 6-7),
obtaining a second unbiased estimation for the accuracy of M , which is combined with acc1 to
evaluate whether the current model is better than the best so far (Lines 10-13). We note that
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the CurrentEstimator at Line 9 corresponds to the lower limit of the 95% confidence interval
of acc. To update S, TCT first adds a set U containing (1− α)|S| random examples from A1.
Then, it adds α|S| examples from A2 ∪ (A1 \ U), prioritizing the wrong ones.

Algorithm 1 TCT (m0: integer; L: Learner; α: real parameter; P : pool of examples; T : time
limit )

1: S ← set of m0 random examples from P
2: repeat
3: M ← model trained by learner L on set S
4: A1 ← set of |S| random examples from P that have not been selected so far
5: acc1 ← Classify(M,A1)
6: A2 ← set of α|S|acc1/(1− acc1) random examples from P that have not been selected so far
7: acc2 ← Classify(M,A2)
8: acc← (acc1|A1|+ acc2|A2|)/(|A1|+ |A2|)
9: CurrentEstimator ← acc− 1.96

√
acc(1−acc)
|A1|+|A2|

10: if ElapsedTime ≤ T AND (first round OR CurrentEstimator > BestEstimator) then
11: BestModel ←M
12: BestEstimator ← CurrentEstimator

13: end if
14: U ← set of (1− α)|S| random examples from A1

15: V ← list of examples in A2 ∪ (A1 \ U) with the wrong ones (w.r.t. M) appearing before the
correct ones.

16: W ← α|S| first examples from V
17: S ← S ∪ U ∪W
18: until ElapsedTime ≥ T
19: Return BestModel.

Some observations are in order:

• If the parameter α is very small, then TCT becomes similar to pure random sampling. In
contrast, if α is large, the Learner is guided to learn a model that relies on a distribution
that may be significantly different from the real one, which is not in line with Principle 3.
Indeed, we present an example in Appendix B.1, where using a large α is problematic.
In addition, a large value of α may have a negative impact on the running time due to
the Lines 6 and 7. The results from our experiments suggest that α = 0.2 works well in
practice and also that the method is robust to moderate variations of this parameter.

• TCT is more suitable for the typical scenario where the classification time per example is
(much) smaller than the training time per example. For scenarios where this property
does not hold, TCT may spend a large amount of time classifying examples and, hence,
end up with a model trained on a relatively small set.

• Since TCT classifies several new examples in each round, it obtains, at no additional
cost, an unbiased estimation of the real accuracy of M . Thus, it is reasonable to use
this estimation for selecting the model (Lines 10-13). The reason why TCT picks the
lower bound of the 95% confidence interval (line 9) rather than the estimated accuracy is
because in the first rounds it uses few examples and, as a consequence, the variance of
the estimation is high.

• We have assumed that the pool P is large enough so that we can always sample examples
that have not been considered so far (Lines 4 and 6). In practice, this does not necessarily
occur. In that case, when TCT reaches the point in which all the examples have already
been classified, it starts to use examples that have not been added to set S yet.
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3 Experimental Study

In out first set of experiments, we compare the algorithm TCT with two others teachers, namely
Double and OSCT [Dasgupta et al., 2019, Cicalese et al., 2020] that are briefly described below.

• Double is a Teacher that at each round i sends new m02i randomly selected examples to
the Learner, where m0 is the number of examples used to train the first model. Next, the
Learner returns a model trained on all examples received so far and, then, round i+ 1
starts. The model returned by Double is the last one built within the given time limit;

• OSCT keeps a weight for each example in the training set. At each round, it receives
a new model (hypothesis) from the Learner and uses it to classify all the examples in
the training set. Next, it repeatedly doubles the weights of the wrong examples until
their sum exceeds 1. At this point, it samples O(log n) examples following a distribution
induced by these weights, where n is an estimate of the number of effective hypotheses
in the Learner’s class. The Learner receives these sampled examples and use them to
update its current model.

Double can be viewed as an adaptation of random sampling for the TCL task and, thus, we
understand that it is a very natural baseline. OSCT is a recent method for teaching black-box
learners that focuses on minimizing the size of the teaching set. In our experiments we employed
the implementation discussed in [Cicalese et al., 2020]. A pseudo-code of the implementation
can be found on Appendix A.3

We also compare TCT with Stochastic Gradient Descent (SGD) based training, a widely
used strategy for online training. For this purpose, we use the class SGDClassifier from
Scikit-Learn, with its default parameters.

To compare TCT with Double and OSCT, we considered 5 Learners: LGBM, Random Forest,
Decision Tree, SVM and Logistic Regression. In our comparison with SGD, we only consid-
ered the last two Learners since it is not clear how to (directly) train the others via SGD.

LGBM belongs to the family of Gradient Boosting methods and it is very popular on contests
like Kaggle. Random Forest is also widely used. We selected Decision Trees with small
depth as a representative of interpretable methods, while SVM and Logistic Regression were
selected as representatives of linear classifiers.

Our learners were implemented using Python, version 3.8.5, with the libraries numpy
(1.20.1), pandas (1.2.2), lightgbm (3.1.1), scikit-learn (0.24.1), scipy (1.6.1). We use the
default parameters for all learners but for Decision Trees, where we set min samples split =
30 and max depth = 5 to build interpretable trees and for Random Forest where we set
min samples split = 30 to prevent very long running time and, hence, limiting our experimental
study. To obtain a SVM and a Logistic Regression classifiers via SGD we set the parameter
loss from class SGDClassifier to hinge and log, respectively.

We considered 20 datasets in our experiments, whose main features are shown in Table 1.
The experiments from Section 3.1-3.3 were executed using processor Core i9-7900X 3.3GHz,
with 128GB RAM DDR4 and Windows 10, while those from Section A.6 were executed with the
following settings: Core i7-4790 3.60GHz, 32GB RAM DDR3, Ubuntu 20.04.3 LTS For timing
we used the method timeit.default timet from timeit library. Our code can be found at
https://github.com/sfilhofreitas/TimeConstrainedLearning. More details about the
datasets and learners can be found in Appendix A.

For each combination of dataset D and Learner L, we calculated the time tD,L required by
L to build a classification model for the whole dataset D (averaged over 4 runs) and kept the
pairs (D,L) for which tD,L is at least 10 seconds. We define V alid(L) := {D | tD,L > 10}.

6
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Table 1: Datasets. m: size of training set, d: number of attributes; k: number of classes
Dataset m d k

vehicle sensIT 68969 100 2
MiniBooNE 91044 50 2

SantanderCustomer 140000 200 2
BNG spambase 699993 171 2
BNG spectf test 700000 44 2
Diabetes130US 71236 2518 3

BNG wine 700000 13 3
jannis 58613 54 4

BNG eucalyptus 700000 95 5
BNG satimage 700000 36 6

covtype 406708 54 7
volkert 40817 180 10
cifar 10 42000 3072 10
mnist 60000 784 10

BNG mfeat fourier 700000 76 10
poker hand 1000000 85 10

Sensorless drive 40956 48 11
BNG letter 5000 1 700000 16 26
GTSRB-HueHist 36287 256 43

aloi 75600 128 1000

For each valid combination (D,L), we run each of the teachers to build a classification
model within time limit tD,L. During these trainings, whenever a new model was obtained we
evaluated it on the testing set (pausing the timing), which allowed us to plot the evolution
curves that are presented next. For all experiments we set m0, the size of the first set of
examples sent to the learner, as 0.5% of the size of the full dataset. In practice, m0 should
be set as the maximum value for which we are confident that a training set with m0 labeled
examples can be trained within the time limit.

3.1 Comparisons with OSCT and Double

Figure 1 shows 5 images, each of them corresponding to a comparison between TCT (α = 0.2)
and OSCT for each of the Learners. The horizontal axis corresponds to the normalized time limit
t ∈ [0, 1] (as a fraction of tD,L), and the vertical axis corresponds to the (average) accuracy on
testing sets. More precisely, for a Teacher T and a learner L, the accuracy associated with the
normalized time t ∈ [0, 1] is given by∑

D∈V alid(L)

acc(T ,L,D, t · tD,L)

|V alid(L)|
, (1)

where acc(T ,L,D, t · tD,L) is the accuracy of the model obtained by Teacher T , with learner L,
over dataset D when the time limit for training is t · tD,L.

As an example, consider a dataset where training an SVM with all datapoints took 1000
secs. Then, Figure 1 ”SVMLinear” at x-axis equal to 0.6, for example, shows the accuracy of
the algorithms TCT and OSCT when given 0.6 · 1000 = 600secs of execution time (actually this
figure shows the average of such accuracy over all datasets).
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Figure 1: Average accuracies on testing set along normalized time for TCT and OSCT. The
numbers next to the labels are their average accuracies at the last normalized time limit t = 1.
The initial guess for n is 2.
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Figure 2: Average accuracies on testing set along normalized time for TCT, Double and OSCT.
The numbers next to the labels are their average accuracies at the last normalized time limit
t = 1.
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Table 2: Additional Relevant Statistics

TCT vs Double TCT vs Full % of Training Set

Learner # Datasets Win Loss Win Loss Double TCT

LGBM 15 9 1 6 7 24.1 17.1

Random Forest 20 13 1 4 4 45.0 45.5

SVM 13 7 2 5 5 39.0 34.6

Log. Regression 13 2 2 1 8 29.2 23.3

Decision Tree 7 2 3 2 4 33.4 25.0

Overall 68 33 9 18 28

We see that TCT presents a huge advantage compared to OSCT. One of the reasons is that
OSCT does not manage to build models on large training set since it adds a few examples per
round and spends a non-negligible time classifying examples. We tried variations of OSCT to
improve its accuracy (see Appendix A.3), but the results did not change significantly.

Figure 2 shows a similar comparison where Double, rather than OSCT, is used. We observe
that TCT outperforms Double for all Learners but Decision Trees, where their performances
are very similar. We also note that at the final time limit tD,L, for most of the Learners, both
TCT and Double are able to reach accuracy comparable to that of training using the whole
dataset (label Full Training). The accuracy associated with training on the whole dataset
can be thought as what can be achieved by an “oracle” Teacher for TCL that knows beforehand
the size of the largest batch of (random) examples that can be trained within a given time limit
(tD,L in this case) and sends such batch to the Learner.

Table 2 shows other relevant statistics at the final time limit tD,L. The multi-column TCT

vs Double (resp. TCT vs Full) gives, for each Learner, the number of datasets where the
classifier built by TCT outperforms that of Double (resp. Full) with 95% confidence (Section
5.5 of [Mitchell, 1997]). As an example, for LGBM, TCT outperformed Double 9 times and it was
outperformed just once. We observe a clear advantage of TCT over Double for LGBM, Random
Forest and SVM. For Logistic Regression and Decision Trees these algorithms have similar
performance. Perhaps surprisingly, TCT is even competitive against the training with the full
dataset for Random Forest and SVM and, thus, also competitive against the aforementioned
“oracle” Teacher. The multi-column “% of the Training Set” gives the average of the number of
examples, relative to the size of the full training set, employed by the models built by each pair
(Teacher, Learner). We observe that TCT builds more accurate models than Double, despite
using 15% fewer examples (simple average over the different learners).

3.2 Comparisons with SGD

We compare TCT and SGD for training SVM and Logistic Regression. For that, we use the
SGDClassifier module from the sklearn library with its default settings. In each iteration
the Learner receives a set (mini-batch) of random labeled examples and SGD, via partial fit

method, is used to update the classification model. This is repeated as long as we do not reach
the time limit (possibly with several passes over the training set).

To choose the size of the mini batch we considered all the possibilities in the set {64, 128, 256, 512}.
The results reported here consider those that achieved the best results, namely 256 for hinge
loss (SVM) and 512 for log loss (Logistic Regression).

TCT had a much better performance: for Logistic Regression, with 95% statistical
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Figure 3: Average accuracies on testing set along normalized time for SGD and TCT. The
numbers next to the labels are their average accuracies at the last normalized time limit t = 1.

Table 3: Sensibilty to α: Win and Losses of TCT over Double and average accuracy of TCT

α Win Loss Total Avg. Accuracy

0.05 24 3 27 69.9

0.1 31 4 35 70.2

0.2 33 9 42 70.3

0.3 37 12 49 70.4

0.45 32 21 53 70.0

0.6 25 35 60 69.5

0.9 19 38 57 68.6

confidence, it outperformed SGD in 11 out of 13 datasets and was worse in only 1; for SVM, also
out of 13 datasets, it was better in 10 and worse in 2. Figure 3 shows the average accuracy over
time on the testing set. Additional tables regarding this experiment are given in the appendix
A.5.

We note that the advantage of TCT may have to do with the fact that the Scikit-Learn

classes that it uses to train Logistic Regression and SVM employ optimization techniques
and have hyper-parameters that are different from those of SGD. That said, the key information
revealed by our experiments is that TCT obtains much better results than using a very natural
alternative for a practitioner, that is, training via the SkLearn’s implementation of SGD with
its default parameters. This confirms the practical appeal of a wrapper for Time Constrained
Learning that relies on our proposed method.

3.3 Sensibility to hyper-parameter α

Finally, we performed some experiments to understand the impact of parameter α that controls
the number of wrong examples allocated at each round. Table 3 shows the number of wins
and losses of TCT over Double for different values of α. In general, the larger the value of α
the larger the number of pairs (L, D), given by column Total, for which there is a difference
with 95% confidence between the accuracy of TCT and that of Double. This is not surprising
since the smaller the α the larger the intersection between the training sets employed by TCT

and Double. The most interesting result is the deterioration of the average accuracy with the
growth of α, which is in line with Principle 3. These experiments suggest that TCT is robust
with respect to the choice of α: one can set it safely on the interval [0.05, 0.3] and expect
consistent gains.
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Table 4: Comparison Between TCT and variation of TCT that selects examples via active learning

# Datasets Win Loss

LGBM 15 7 4

Random Forest 20 13 1

Log. Regression 15 0 4

Decision Tree 8 1 5

Figure 4: Average accuracies on testing set along normalized time for TCT and TCTAL. The
numbers next to the labels are their average accuracies at the last normalized time limit t = 1.

3.4 Selecting Examples via Active Learning

We also evaluate the possibility of replacing the wrong examples in our strategy with examples
selected via uncertainty sampling, a classic active learning strategy.

More precisely, we consider the following variation of TCT, dubbed TCTAL. At the beginning
of each round, TCTAL uses the current training set to build a new model. Next, this model is
employed to classify the examples of a set S, containing 2i random examples, where i is the
number of examples employed by the last trained model. Then, TCTAL selects a set S′ ⊂ S
containing i examples and adds it to the current training set, which triggers the beginning
of a new round. The set S′ is built by picking the α · i most uncertain examples from S and
(1− α) · i additional random examples from S, where the uncertainty of an example is given by
the difference between the probabilities (assigned by the Learner) to the two most probable
classes. In our experiments we used α = 0.2 for both TCT and TCTAL.

The results are presented in Table 4. The “standard” TCT is clearly better for Random

Forest, it has some advantage for LGBM and it is worse for both Log. Regression and
Decision Tree. We do not have results for SVM because the probabilities required for the
strategy are not directly available.

Figure 4 shows the normalized accuracy of TCT and TCTAL over time. Additional tables can
be found in Appendix A.6.
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4 Theoretical Analysis

To complement our work, we present theoretical results that provide some insight on how the
parameter α affects the performance of TCT. The main conclusions of this analysis are: a large
α can be harmful; with a small α TCT is never much worse than random sampling and, in some
situations, it is significantly better. To carry out the analysis we consider the following setting:

(i) The training algorithm has access to as many labeled examples from the unknown
distribution µ as it wants;

(ii) The training time of the learner L can be approximated by a non-sublinear function that
does not grow very fast, that is, training L with m examples takes time mkf(m), where
k is a small positive integer and f is a sublinear non-decreasing function;

(iii) The learner is an empirical risk minimizer (ERM), that is, it returns a hypothesis h in its
hypothesis class H that makes the smallest number of mistakes in the set of examples S
it receives;

(iv) It takes no time to pick an example and have it classified by the learner L using its current
classification model

Assumption (i) can be approximated by having a huge dataset D sampled from µ and
is exactly the one that motivates our research, since for smaller datasets Time-Constrained
Learning is not particularly relevant. The second assumption is also reasonable in the sense that
most of the known learning methods neither take sublinear time nor have a high time complexity.
Assumption (iii) is a standard assumption employed to perform theoretical analyses.

With regards to the last item, it is motivated by the quite common situation in which the
classification time is very small compared to the training time (e.g. decision trees and SVM’s).
In fact, we could have replaced assumption (iv) by a weaker one but that would compromise
the clarity of the presentation without changing our main conclusions regarding the impact of
the parameter α.

To understand the accuracy of the models obtained by TCT, we analyze a stripped-down
version of the algorithm denoted by TCTbase; we compare it against the batch teacher TBatch
that receives a time limit T and simply sends to the learner in one round the largest number of
random examples from µ that the learner can be trained over within time T . As TCT, in each
round TCTbase sends to the learner a (1−α) fraction of examples from the original distribution
and an α fraction of examples where the learner is currently wrong. The pseudo-code of
TCTbase is presented below.

Algorithm 2 TCTbase (α: real parameter; T : time limit)

Start with a random set S0 with a single labeled example from µ.
For each round i (starting with i = 1):

1. Run the Learner on examples Si. Get back hypothesis hi

2. Get (1− α) 2i unbiased labeled examples from µ.

Then repeatedly sample from µ until getting α 2i labeled examples (x, y) where hi is
wrong, namely hi(x) 6= y.

3. Set Si+1 as Si plus these new 2i samples

Return the last hypothesis hi found within the time limit T
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We note that due to assumption (iv), the second step of the algorithm incurs negligible
running time. If hi has a small error, however, this assumption becomes unrealistic since we
would need to sample a huge number of examples from µ to obtain α2i wrong ones. This issue
can be fixed by stopping the algorithm as soon as it obtains a hypothesis with error at most
some ε (e.g. < 1%). This only incurs an additional +ε in the bounds of Theorems 1 and 2
presented further in this section.

Before presenting our results, we briefly recall some definitions from statistical learning. For
an unknown distribution µ over labeled examples X × Y, the true error of a classifier h is

err(h) := Pr
(X,Y )∼µ

(h(X) 6= Y ).

Given a set of samples S = ((X1, Y1), . . . , (Xm, Ym)) from µ, the sample error of h is

errS(h) :=
1

m

m∑
i=1

1(h(Xi) 6= Yi).

Let H be the Learner’s set of hypotheses. In the realizable setting all the labels of the samples
are given by a h∗ ∈ H, namely y = h∗(x) for every (x, y) in the support of µ. If the setting is
not realizable then it is called agnostic.

Fallback analysis. As discussed in Principle 3 above, there is a concern that by including
“wrong examples” we bias the distribution of the examples sent to the learner and compromise
the real accuracy of the hypothesis learned. Indeed, we construct a small instance where
TCTbase set with a large value of α (thus, sending a large fraction of “wrong examples”) is
significantly worse than TBatch; see Appendix B.1 for details.

Despite this difficulty, we prove that even in the worst case TCTbase returns a hypothesis
with the same accuracy as TBatch as long as: the percentage α of wrong examples is not so
big and it is given a slightly bigger time limit (again, crucially this includes the total time
consumed by the Learner during the executions of these algorithms).

To make this concrete, we discuss here the realizable case. Notice that in this case any ERM
learner trained by TBatch returns some hypothesis h with zero sample error. Let mT be the
number of examples that TBatch sends to the learner under time limit T and let εT = εT (H, µ, δ)
be the smallest value such that

Pr

(
∃h ∈ H such that errS(h) = 0 but err(h) > εT

)
< δ,

where the probability is taken over sets S of mT examples sampled according to µ. In words,
εT is the best provable guarantee in terms of error for TBatch, with 1− δ probability, when the
time limit is T .

Theorem 1. Given δ ∈ (0, 1) and time limit T , let εT be defined as above. Under assumptions
(i)-(iv), in the realizable setting, with probability at least 1− δ, TCTbase returns in time at most
T · 2( 2

1−α)k+1 a classifier with error at most εT .

Proof. Again let mT be the number of samples sent by TBatch when the time limit is T .
Moreover, let î be the first round in which TCTbase sends at least 1

1−αmT samples, that is,
1

1−αmT ≤ 2î ≤ 2
1−αmT . Due to the assumptions (ii) and (iv), the time TCTbase takes to finish
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round î is at most

î∑
i=0

(
(2i)k · f(2i)

)
≤ f(2î)

(2î+1)k

2k − 1
≤ 2f(2î)2kî (2)

≤ 2f

(
2

1− α
mT

)(
2

1− α
mT

)k
≤ 2

(
2

1− α

)k+1

T,

the last inequality holding because of the sublinearity of f and because (mT )k · f(mT ) ≤ T , by
definition of mT .

Let S be the set of samples sent by TCTbase to the Learner at round î, and let h be the
returned hypothesis. The choice of î guarantees the existence of a subset U of S containing
(1− α)|S| ≥ mT samples that were drawn unbiasedly from µ. Since we are in the realizable
case, we have that errU (h) = 0 and by definition of εT the probability of h having true error at
most εT is at least 1− δ.

We shall note that when α is small, the time overhead is approximately 2k+2, which is not
big due to the assumption that k is small. A similar result for the agnostic setting is presented
in the appendix B.2.

An almost exponential speedup. Importantly, not only TCTbase always takes time similar
to that of TBatch as long as α is not big, but we also show that in some cases TCTbase is
almost exponentially faster.

We consider the classic problem of learning a threshold function on the real line R (so the
classifiers are of the type h(x) = 1 if x ≥ v and h(x) = −1 if x < v, for v ∈ R), in the realizable
case. This is the canonical example where Active Learning gives an exponential improvement
in sample complexity compared to standard PAC learning [Dasgupta, 2009].

The next theorem (proof in Appendix B.3 ) shows that even though the teaching algorithm
TCTbase is not tailored to this problem, it also achieves an almost exponential speedup. Recall
that 2O(

√
log x) is asymptotically smaller than xc for any constant c > 0.

Theorem 2 (Improvement over TBatch). Consider ε, δ ∈ (0, 1). Let TTBatch be the smallest
time limit that guarantees that TBatch returns a hypothesis with error at most ε with probability
at least 1− δ for all realizable instances of the problem of learning a threshold function on the
real line, and define TTCTbase analogously.

Then, TTCTbase ≤ 2 c·
√
log TTBatch , where c is a constant that depends on k, α, δ.

5 Concluding Remarks

We introduced the time-constrained learning task and the algorithm TCT for tackling it. Our
algorithm relies on methodologically sound ideas, is supported by theoretical results, and, most
importantly, experiments including 20 datasets, 5 different Learners, and two other baselines
suggest that it is a good choice for the time-constrained learning task. Due to its simplicity
and generality, TCT could be easily implemented as a wrapper in machine learning libraries to
address Time Constrained Learning

As a future work it would be interesting to investigate ways of mixing examples selected by
TCT and active learning strategies. This seems to be a promising direction as indicated by the
experiments presented in Section 3.4.
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A Experimental Study: Additional Details

A.1 Dataset transformations

We performed some transformations on the datasets.

• Each dataset was randomly shuffled.

• Each dataset (with size m) was split into a training set (with size 0.7 ·m) and a test
set (with size 0.3 ·m). The split ensures that both sets have (roughly) the same class
distribution as the original set 1.

• Each non-numerical feature with ncategories possible values were converted into ncategories
binary features, with one of them 1, and all others 0.

• Each numerical feature was standardized.

1The minist dataset were already split, so the relatives sizes of the training set and the dataset in this case
are not 0.7 and 0.3
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A.2 Dataset sources

Most of the datasets were obtained from the OpenML Repository, the UCI Machine Learning
Repository and Kaggle. Most of the datasets have the “Public Domain licence type”. Below
we make some additional citation requests:

• Diabetes130US: Beata Strack, Jonathan P. DeShazo, Chris Gennings, Juan L. Olmo,
Sebastian Ventura, Krzysztof J. Cios, and John N. Clore, “Impact of HbA1c Measurement
on Hospital Readmission Rates: Analysis of 70,000 Clinical Database Patient Records,”
BioMed Research International, vol. 2014, Article ID 781670, 11 pages, 2014.

• covtype: copyright for Jock A. Blackard and Colorado State University.

• vehicle sensIT: M. Duarte and Y. H. Hu.

• MiniBooNE: B. Roe et al., ’Boosted Decision Trees, an Alternative to Artificial Neural
Networks’ https://arxiv.org/abs/physics/0408124, Nucl. Instrum. Meth. A543,
577 (2005).

• cifar 10: Alex Krizhevsky (2009) Learning Multiple Layers of Features from Tiny Images,
Tech Report.

• GTSRB-HueHist: https://www.openml.org/d/41990

• aloi: http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html

A.3 TCT × OSCT - additional comparisons

Algorithm OSCT

Input: Set of m examples X , (guess of) the number of Learner’s hypotheses N

1. Initialize weights W 0
e = 1

2m for all examples e ∈ X

2. For each round t = 1, 2, . . .:

• Receive hypothesis Ht ∈ H from the Learner

• If Ht is correct in all examples, stop and return Ht

• (Weight update) Double the weights of all wrong examples until their weight adds
up to at least 1. That is, define

W t
e =

{
2` ·W t−1

e , if e ∈ wrong(Ht)
W t−1

e , if e /∈ wrong(Ht),

where ` is the smallest non-negative integer such that W t(Ht) :=
∑

e∈wrong(Ht)
W t

e ≥ 1

• (Sending examples) For every example e, let Dt
e := W t

e − W t−1
e be the weight

increase of example e (note Dt
e = 0 if Ht is not wrong on e)

Repeat 4log N times: sample at most one example so that e is sampled with probability
Dt

e, and send it to Learner together with its correct label (note that Ht is wrong on
this example)

• If no examples were sent, return OSCT (X , N2, ω)

Figure 5: Teacher’s algorithm based on an algorithm for the Online Set Covering problem.
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The OSCT algorithm corresponds to the algorithm Abase that was discussed and empirically
evaluated in [Cicalese et al., 2020]. Abase is a refinement of the algorithm proposed in Dasgupta
et al. [2019]. It maintains weights W t

e over the examples e ∈ X for each round t. When a new
hypothesis h comes from the Learner, the Teacher verifies whether h makes no mistakes on the
examples from X . If so, it accepts h. Otherwise, it increases in exponential fashion the weights
of the examples where h fails until the sum of these weights becomes at least 1; then it randomly
sends examples to Learner with probability proportional to the increase of the weights of the
examples in this round. If no example is sent by the end of the round, the algorithm starts
again with a new guess of N . Although not explicitly stated in the pseudo-code, in our use for
Time Constraint Learning, OSCT returns the last model trained within the given time limit.

We tested some variations for the OSCT with the aim of improving its performance. First,
we increased the initial guess N on the size of the Learner’s class. By doing so we prevent the
Teacher sending few examples in the first rounds. Figure 6 shows the results for N = 20.005m,
which ensures that the Teacher sends approximately 0.005m wrong examples per round before
the estimation of N is updated. We observe that these new results are very similar to those
presented in Figure 1, that is, there was no significant impact.

In another attempt, we adopted the same approach employed by TCT to select the final
classification model: among the several models built by OSCT within the time limit, we return
the one with the largest lower limit for the (95%) accuracy’s confidence interval. This incurs
no additional cost because OSCT, by design, classifies all the examples from the training set to
select the new ones that are sent to the Learner. The results for this test are shown in Figure 7,
where a significant improvement of OSCT can be observed, in particular with regards to its
stability. Despite of this improvement, TCT still outperforms OSCT for all Learners and for every
(normalized) time t ∈ [0, 1].

A.4 Additional Tables and Plots

Table 5 (resp. Tables 6, 7, 8 and 9) shows the average accuracy obtained by LGBM (resp. Random
Forest, SVM, Decision Tree and Logistic Regression) on each dataset for TCT (α = 0.2),
Double, OSCT and the average accuracy obtained using the entire training set (column Full).
The results for OSCT refer to the version of the algorithm that returns the model with the best
accuracy estimate (Figure 7). The Time Limit column denotes the average time in seconds
taken to train with the entire dataset. This is also the time given as a limit for the Teachers. It
is noteworthy that some tables have more rows than others because combinations (D,L) in
which the time limit is less than 10 seconds are discarded.

We boldfaced the datasets for which there is a statistical difference (95% of confidence)
between the accuracies of Double and TCT. More specifically, we boldface Double (TCT) for
dataset D if the accuracy of Double ( TCT) is larger than that of TCT (Double) and

|accDbl − accTCT| − 1.645

√
accDbl(1− accDbl)

mtest
+
accTCT(1− accTCT)

mtest
> 0,

where mtest is the size of the testing set for dataset D. To calculate the confidence interval
we assume that the examples of the testing set are drawn independently from an unknown
distribution µ (Chapter 5 of Mitchell [1997]). We have not considered OSCT in this comparison
because it is not competitive with the two other Teachers.

Figure 8 shows how the accuracy of both TCT and Double evolve over the normalized time
for some datasets. The images for the other datasets can be found in https://github.com/

sfilhofreitas/TimeConstrainedLearning/tree/main/experiments/results/graphics_by_

dataset.
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Figure 6: Average accuracies on testing set along normalized time for TCT and OSCT starting
with N = 20.005m. The numbers next to the labels are their average accuracies at the last
normalized time limit t = 1.

Table 5: LGBM accuracies in the testing sets for TCT, Double, OSCT and Full Training for
each dataset.

Dataset Time Limit TCT Double OSCT Full

BNG letter 5000 1 198.5 75.9% 74.8% 59.5% 76.7%

poker hand 48.7 73.0% 72.8% 52.5% 83.3%

SantanderCustomerSatisfaction 18.6 91.3% 90.6% 90.0% 90.7%

BNG spectf test 14.5 82.5% 82.4% 77.6% 82.9%

BNG wine 19.7 96.1% 95.8% 94.2% 96.0%

BNG eucalyptus 49.8 74.9% 73.9% 63.0% 74.3%

mnist 134.5 97.4% 96.0% 92.5% 97.7%

covtype 15.5 86.6% 85.3% 73.8% 85.3%

cifar 10 793.4 38.6% 38.5% 37.9% 52.8%

volkert 34.0 60.3% 60.1% 52.3% 69.1%

BNG satimage 77.2 92.2% 91.6% 87.2% 92.1%

Sensorless drive diagnosis 11.7 99.3% 98.8% 93.8% 99.9%

GTSRB-HueHist 258.0 38.9% 39.9% 33.0% 57.6%

BNG mfeat fourier 214.6 93.7% 92.9% 86.4% 93.4%

aloi 638.1 11.6% 11.4% 4.6% 11.3%

20



Figure 7: Average accuracies on testing set along normalized time for TCT and OSCT which
returns the model with the best accuracy estimate. The numbers next to the labels are their
average accuracies at the last normalized time limit t = 1.
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Table 6: Random Forest accuracies in the testing sets for TCT, Double, OSCT and Full Training
for each dataset.

Dataset Time Limit TCT Double OSCT Full

Diabetes130US 76.4 58.5% 58.4% 55.1% 59.0%

BNG letter 5000 1 231.9 71.9% 70.1% 68.5% 72.9%

poker hand 277.5 92.2% 91.8% 92.3% 92.2%

SantanderCustomerSatisfaction 485.8 90.0% 90.0% 88.4% 90.0%

BNG spectf test 781.3 80.0% 79.0% 78.0% 79.2%

BNG wine 417.6 95.6% 95.5% 95.6% 95.6%

vehicle sensIT 112.2 87.0% 86.7% 83.5% 86.9%

MiniBooNE 59.7 93.9% 92.5% 92.6% 93.2%

BNG eucalyptus 166.2 69.2% 67.5% 64.9% 69.1%

mnist 32.2 96.3 95.9% 92.7% 96.3%

BNG spambase 409.6 66.6% 66.7% 66.0% 66.7%

covtype 92.7 93.0% 88.1% 88.7% 92.4%

cifar 10 123.6 42.9% 42.1% 40.8% 45.4%

jannis 36.2 69.6% 68.5% 65.5% 70.0%

volkert 18.9 62.4% 60.6% 61.1% 64.4%

BNG satimage 680.2 89.7% 88.2% 88.7% 89.0%

Sensorless drive diagnosis 13.7 99.8% 99.4% 99.7% 99.8%

GTSRB-HueHist 42.2 47.8% 43.8% 44.2% 47.3%

BNG mfeat fourier 1021.6 88.9% 88.4% 87.8% 88.9%

aloi 26.0 81.1% 84.4% 32.8% 90.6%

Table 7: SVM accuracies in the testing sets for TCT, Double, OSCT and Full Training for each
dataset.

Dataset Time Limit TCT Double OSCT Full

Diabetes130US 81.6 57.3% 57.6% 51.5% 58.1%

BNG letter 5000 1 105.6 42.8% 41.3% 42.6% 41.3%

poker hand 17.7 48.1% 50.0% 47.8% 50.0%

MiniBooNE 11.6 90.1% 89.7% 89.8% 90.1%

BNG eucalyptus 80.3 57.0% 56.4% 54.5% 56.4%

mnist 1320.7 90.4% 89.0% 89.6% 91.7%

BNG spambase 16.5 66.5% 66.6% 66.1% 66.6%

covtype 123.7 70.8% 70.4% 70.0% 70.5%

volkert 117.9 57.5% 57.3% 55.4% 57.8%

BNG satimage 33.8 81.6% 80.7% 81.8% 80.7%

Sensorless drive diagnosis 156.7 78.9% 73.7% 89.1% 74.3%

GTSRB-HueHist 154.2 14.2% 14.3% 12.3% 27.2%

BNG mfeat fourier 71.4 82.7% 83.1% 82.1% 83.2%
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Table 8: Decision Tree accuracies in the testing sets for TCT, Double, OSCT and Full Training
for each dataset.

Dataset Time Limit TCT Double OSCT Full

Diabetes130US 12.9 57.1% 57.0% 54.4% 57.5%

SantanderCustomerSatisfaction 17.7 89.0% 89.7% 86.9% 89.9%

BNG spectf test 30.0 77.6% 78.5% 77.4% 78.5%

BNG eucalyptus 12.5 53.8% 54.2% 52.7% 54.2%

cifar 10 33.6 24.9% 25.2% 24.8% 25.9%

BNG satimage 25.7 ‘73.8 % 73.0% 74.0% 73.0%

BNG mfeat fourier 47.5 66.3% 64.1% 64.0% 63.9%

Table 9: Logistic Regression accuracies in the testing sets for TCT, Double, OSCT and Full
Training for each dataset.

Dataset Time Limit TCT Double OSCT Full

Diabetes130US 289.6 58.6% 58.7% 56.0% 59.0%

BNG letter 5000 1 31.5 45.6% 45.8% 44.1% 45.8%

poker hand 391.5 48.1% 50.0% 47.7% 50.0%

BNG eucalyptus 35.5 57.8% 57.8% 55.9% 57.9%

mnist 184.7 91.6% 91.3% 91.5% 92.6%

BNG spambase 34.1 66.4% 66.6% 66.2% 66.6%

covtype 84.0 68.2% 67.6% 62.5% 68.8%

cifar 10 465.0 37.1% 37.6% 33.7% 39.6%

volkert 29.6 57.4% 57.5% 54.4% 58.6%

BNG satimage 18.6 83.8% 83.7% 83.4% 83.7%

Sensorless drive diagnosis 11.3 83.9% 70.0% 81.7% 78.8%

GTSRB-HueHist 134.9 26.3% 26.6% 24.6% 29.1%

BNG mfeat fourier 46.1 84.4% 84.6% 82.8% 84.8%
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Figure 8: Average accuracies on testing set along normalized time for TCT and Double per
dataset. The numbers next to the labels are their average accuracies at the last normalized
time limit t = 1.
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A.5 TCT × SGD - additional tables

Table 10 (resp. Table 11) shows the average accuracy obtained by SVM (resp. Logistic

Regression) on each dataset for TCT (α = 0.2) and SGD.

Table 10: SVM accuracies in the testing sets for TCT and SGD.

Dataset Time Limit TCT SGD

Diabetes130US 81.6 57.3 % 53.1%

BNG letter 5000 1 105.6 42.8% 29.9%

poker hand 17.7 48.1% 49.4%

MiniBooNE 11.6 90.1% 86.8%

BNG eucalyptus 80.3 57.0% 53.2%

mnist 1320.7 90.4% 85.3%

BNG spambase 16.5 66.5% 66.5%

covtype 123.7 70.8% 55.5%

volkert 117.9 57.5% 53.4%

BNG satimage 33.8 81.6% 80.3%

Sensorless drive diagnosis 156.7 78.9% 61.3%

GTSRB-HueHist 154.2 14.2% 16.2%

BNG mfeat fourier 71.4 82.7% 81.7%
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Table 11: Logistic Regression accuracies in the testing sets for TCT and SGD..

Dataset Time Limit TCT SGD

Diabetes130US 289.6 58.6% 48.2%

BNG letter 5000 1 31.5 45.6% 43.3%

poker hand 391.5 48.1% 50.0%

BNG eucalyptus 35.5 57.8% 55.9%

mnist 184.7 91.6% 87.1%

BNG spambase 34.1 66.4% 66.5%

covtype 84.0 68.2% 49.2%

cifar 10 465.0 37.1% 25.6%

volkert 29.6 57.4% 54.7%

BNG satimage 18.6 83.8% 81.3%

Sensorless drive diagnosis 11.3 83.9% 69.3%

GTSRB-HueHist 134.9 26.3 % 19.3%

BNG mfeat fourier 46.1 84.4% 82.4%
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A.6 Selecting examples via active learning - additional tables

Tables 12, 13, 14 and 15 show the average accuracy of TCT and TCTAL for the different Learners
and datasets.

Table 12: Logistic Regression accuracies in the testing sets for TCT and TCT AL.

Dataset Time Limit TCT TCT AL

BayesianNetworkGenerator spambase 45.6 66.4% 66.6%

BNG eucalyptus 48.3 57.8% 57.9%

BNG letter 5000 1 45.1 45.6% 46.0%

BNG mfeat fourier 80.5 84.4% 84.5%

BNG satimage 26.3 83.8% 83.8%

BNG spectf test 10.6 76.9% 78.4%

cifar 10 938.8 37.1% 37.5%

covtype 110.7 68.2% 67.9%

Diabetes130US 350.7 58.6% 58.8%

GTSRB-HueHist 237.7 26.3% 26.6%

jannis 12.9 63.7% 64.2%

mnist 266.1 91.6% 91.8%

poker hand 526.5 48.1% 52.1%

Sensorless drive diagnosis 16.9 83.9% 88.1%

volkert 48.9 57.4% 57.4%
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Table 13: Random Forest accuracies in the testing sets for TCT and TCT AL.

Dataset Time Limit TCT TCT AL

aloi 25.1 81.1% 68.7%

BayesianNetworkGenerator spambase 517.3 66.6% 66.7%

BNG eucalyptus 194.2 69.2% 68.0%

BNG letter 5000 1 264.6 71.9% 70.8%

BNG mfeat fourier 889.9 88.8% 88.5%

BNG satimage 864.6 89.3% 89.1%

BNG spectf test 829.8 80.0% 79.3%

BNG wine 289.5 95.7% 95.5%

cifar 10 133.8 42.9% 42.1%

covtype 63.8 92.9% 89.5%

Diabetes130US 69.4 58.5% 58.7%

GTSRB-HueHist 35.0 40.0% 39.8%

jannis 35.5 69.6% 68.8%

MiniBooNE 62.8 93.9% 93.2%

mnist 40.3 96.3% 96.4%

poker hand 189.8 91.4% 92.1%

SantanderCustomerSatisfaction 460.7 90.5% 90.0%

Sensorless drive diagnosis 14.9 99.8% 99.6%

vehicle sensIT 77.9 86.9% 86.7%

volkert 20.4 62.4% 61.3%

Table 14: LGBM accuracies in the testing sets for TCT and TCT AL.

Dataset Time Limit TCT TCT AL

aloi 982.4 12.6% 13.4%

BNG eucalyptus 57.6 74.9% 74.2%

BNG letter 5000 1 162.4 74.1% 73.5%

BNG mfeat fourier 279.5 93.7% 93.1%

BNG satimage 83.7 92.2% 91.5%

BNG spectf test 18.5 82.6% 82.6%

BNG wine 20.7 95.9% 95.9%

cifar 10 977.3 42.6% 42.7%

covtype 18.1 86.6% 85.8%

GTSRB-HueHist 270.7 34.0% 36.8%

mnist 109.0 96.4% 96.8%

poker hand 54.7 73.0% 77.9%

SantanderCustomerSatisfaction 23.0 91.3% 90.9%

Sensorless drive diagnosis 14.1 99.3% 99.0%

volkert 36.1 59.7% 59.1%
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Table 15: Decision Tree accuracies in the testing sets for TCT and TCT AL.

Dataset Time Limit TCT TCT AL

BNG eucalyptus 13.3 53.1% 54.5%

BNG mfeat fourier 52.1 62.4% 64.0%

BNG satimage 22.1 73.8% 73.0%

BNG spectf test 27.1 77.6% 78.5%

cifar 10 34.0 24.9% 25.4%

Diabetes130US 10.8 57.1% 57.1%

poker hand 10.6 51.3% 53.5%

SantanderCustomerSatisfaction 18.4 89.0% 89.8%

29



B Proofs of Section 4

B.1 Sending too many “wrong examples” is bad

We construct a simple instance where the algorithm TCTbase set with the “wrong samples”
percentage α too high has very poor accuracy.

More precisely, this non-realizable instance has points X = {1, 2, . . . , 6} and a hypothesis
class with 4 classifiers H = {h1, h2, h3, h̄} that classify points as +1 as follows (the remaining
points are classified as −1):

h1 : {1, 2, 3, 4}
h2 : {1, 2, 5, 6}
h3 : {3, 4, 5, 6}
h̄ : {1, 2, 3, 4, 5, 6}.

The correct classification h∗ classifies as +1 the odd points {1, 3, 5}. Finally, the distribution µ
puts 2

9 probability on each odd number and probability 1
9 on each even number of X .

The best classifier in H is h̄, which has error err(h̄) = 1
3 , while all other classifiers have error

err(hi) = 4
9 .

We conducted experiments with TCTbase where it sends α = 90% “wrong” samples in
each round. We ran the algorithm for 20 rounds, so at the last round it has a total of
221 − 1 ≈ 2, 000, 000 samples (there can be/are multiple copies the same sample (x, h∗(x))).
Over 100 attempts, this algorithm only found the best classifier h̄ (in any of its rounds) 8% of
the time. In contrast, TBatch with 1, 000 samples found the best classifier 100% of the time.

Note that at the last round TCTbase has (1− α) · (221 − 1) ≈ 200, 000 unbiased samples,
which is orders of magnitude larger than those used by TBatch, but still the “wrong samples”
caused it to have a very poor performance.

Also notice that when α is large as in this example, the bound from Theorem 3 below is
vacuous, due to the last error term.

B.2 The Agnostic Case

Consider the agnostic case. Let εAT = εAT (H, µ, δ) be such that TBatch with time limit T returns
a hypothesis with true error at most that of the best classifier in H plus εAT with probability at
least 1− δ regardless of the ERM learner; more precisely, let S be a set of mT random samples
from µ and let εAT be the smallest value such that

Pr
(

sup
h∈H
|err(h)− errS(h)| >

εAT
2

)
< δ.

We then have the following guarantee.

Theorem 3. Given δ ∈ (0, 1) and time limit T , let εAT be the (1 − δ)-probability additional
error of TBatch as defined above.

Under assumptions (i)-(iv), in the agnostic setting, with probability at least 1− δ, TCTbase
returns in time at most T · 2( 2

1−α)k+1 a classifier h with additional error at most εAT + α
1−α ,

namely

err(h) ≤ min
h′∈H

err(h′) + εAT +
α

1− α
.
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Proof. Again let mT be the number of samples sent by TBatch when the time limit is T .
Moreover, let î be the first round in which TCTbase sends at least 1

1−αmT samples, that is,
1

1−αmT ≤ 2î ≤ 2
1−αmT . Again due to the assumptions (ii) and (iv), inequality (2) shows that

TCTbase finishes round î by time 2( 2
1−α)k+1T .

Let S be the set of samples sent by TCTbase to the Learner by the end of round î, and let
ĥ be the returned hypothesis. Also let U be the subset of the samples S that were sampled
unbiasedly from µ, and W = S \ U the remaining ones.

Since U and W make up a (1− α)- and α-fraction of S respectively, we have

errS(·) = (1− α) errU (·) + α errW (·). (3)

In addition, by definition of î we have |U | ≥ (1− α)|S| ≥ mT , and so using the definition of εAT
we have that with probability at least 1− δ, for all h ∈ H

|err(h)− errU (h)| ≤
εAT
2

;

in particular, in light of (3), for all h ∈ H

errS(h) ≤ (1− α)

[
err(h) +

εAT
2

]
+ α and errS(h) ≥ (1− α)

[
err(h)−

εAT
2

]
.

Under this event, the classifier ĥ returned by the ERM learner satisfies the following bound
against every h ∈ H:

(1− α) err(ĥ) ≤ errS(ĥ) + (1− α)
εAT
2
≤ errS(h) + (1− α)

εAT
2
≤ (1− α)err(h) + (1− α)εAT + α,

and so taking an infimum over h ∈ H we get

err(ĥ) ≤ min
h′∈H

err(h′) + εAT +
α

1− α
.

This concludes the proof.

B.3 Proof of Theorem 2

To prove this result we will need to use martingales. Recall that a sequence of random variables
X1, . . . , Xn is a martingale difference sequence if E[Xi | X1, . . . , Xi−1] = 0 for all i. We need
the classic Freedman’s Inequality for martingales.

Theorem 4 (Theorem 1.6 of Freedman [1975]). Consider a martingale difference sequence
X1, . . . , Xn such that Xi ≤ 1, and its predictable quadratic variation V :=

∑
i E[X2

i | X1, . . . , Xi−1].
Then for any λ ≥ 0 and v > 0

Pr

(∑
i≤n

Xi ≥ λ and V ≤ v
)
≤
(

v

λ+ v

)λ+v
eλ.

Proof of Theorem 2. It suffices to prove that

TTBatch ≥
(

Ω(1ε log 1
δ )
)k
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and

TTCTbase ≤
(

2O(
√

log 1/ε) · log 1
δ ·
(
1
α

)O(1)
)k+1

.

For the lower bound on TTBatch, standard sample complexity lower bound for statistical
learning threshold functions (for example Theorem 5.3 of Anthony and Bartlett [1999]) says
that there is a realizable instance where Ω(1ε log 1

δ ) samples are required by the Learner to
obtain error at most ε with probability at least 1− δ. Thus, given assumption (ii), the time
limit needs to be at least

TTBatch ≥
(

Ω(1ε log 1
δ )
)k
· f
(

Ω(1ε log 1
δ )
)
≥
(

Ω(1ε log 1
δ )
)k

to allow the Learner to train with these many samples.
We now upper bound TTCTbase by first seeing how many examples and rounds are required

to attain error ε with probability at least 1 − δ. Recall that Si is the set of examples that
TCTbase sends to the learner in round i, and hi is the hypothesis obtained in return. We again
use the notation that Ui ⊆ Si is the set of samples up to the beginning of round i that were
drawn unbiasedly from µ, and Wi ⊆ Si is the set “wrong examples” drawn thus far. We use µx
to denote the marginal of µ on X = R.

Let v∗ ∈ R be the correct threshold for the given instance. Let Ii ⊆ R be the maximal
interval containing v∗ that contains none of the examples Si (the “uncertainty region” at this
time). Define Ei ⊆ R as the points where hi’s classification is incorrect. Notice that this region
is an interval that is either “to the left” or “to the right” of v∗ (depending whether the threshold
used in hi is to the left or to the right of v∗). Also notice that Ei is contained in Ii: since we
are in a realizable instance, the rightmost sample in Si to the left of v∗ (which is the starting
point of the open interval Ii) forces the ERM Learner to classify all points before it correctly
as −1, and similarly to the points after the end of the open interval Ii.

We define the “left weight” Lw(I) of the interval I to be the amount of µx-mass in the
part of the interval that is to the left of v∗, i.e., Lw(I) = µx(I ∩ (−∞, v∗]). Similarly, define
the “right weight” Rw(I) = µx(I ∩ [v∗,∞)). The following claim is the basis of the “automatic
binary search” idea and says that with good probability in each round we significantly reduce
the left/right-weight of the uncertainty region.

Claim 1. For each realization of the samples drawn before round i where the error region Ei is
to the left of v∗, with probability at least 1− e−23i/4 (with respect to the samples drawn at round
i) we have

Lw(Ii+1) ≤
Lw(Ii)

α2i/4
.

Similarly, if the error region Ei is to the right of v∗, with probability at least 1− e−23i/4 we have

Rw(Ii+1) ≤
Rw(Ii)

α2i/4
.

Proof. We only prove the first statement, the second being analogous. Fix a realization of
the samples up to the beginning of round i where Ei is to the left of v∗. By construction,
at round i the algorithm takes α2i samples from the distribution µx conditioned to being
in the set Ei, call them X1, . . . , Xα2i . Let v̄ be the point such that the interval [v̄, v∗] has
µx-measure 1

α2i/4
· µx(Ei). The probability that none of the samples Xi lands in this interval is(

1− 1
α2i/4

)α2i ≤ e−23i/4 , so with probability at least 1− e−23i/4 one of these samples lands in
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[v̄, v∗]. When this happens, the next uncertainty Ii+1 set starts at/after the point v̄, and so its
left weight satisfies

Lw(Ii+1) ≤ µx([v̄, v∗]) =
1

α2i/4
µx(Ei) ≤

1

α2i/4
Lw(Ii),

where the last inequality is because Ei ⊆ Ii and thus (since Ei is to the left of v∗) µx(Ei) ≤
µx(Ii ∩ (−∞, v∗]) = Lw(Ii). This gives the desired result.

Let R := cst · (log 1
α +

√
log 1

ε + 1) + log log 1
δ , for a sufficiently large constant cst. Using

the above claim, we show that with probability at least 1− δ the error set ER+1 at round R+ 1
has µx-measure at most ε, i.e. hR+1 has error at most ε. Let Bi be the indicator of the bad
event that the weight reduction prescribed by the previous claim did not happened at round
i. Then E[Bi | B1, . . . , Bi−1] ≤ e−2

3i/4
. Moreover, using Freedman’s Inequality we have the

following tail bound.

Claim 2.

Pr

( R∑
i=2R/3

Bi ≥
R

6

)
≤ e−2R/2 ≤ δ,

Proof. Define B̃i := Bi−E[Bi | B1, . . . , Bi−1], so that the sequence B̃2R/3, . . . , B̃R is a martingale

difference sequence. Moreover, since Bi only takes value 0 or 1, we have |B̃i| ≤ 1, and so

(B̃i)
2 ≤ |B̃i| ≤ Bi + E[Bi | B1, . . . , Bi−1].

From Claim 1, for i ≥ 2R
3 we have

E[Bi | B1, . . . , Bi−1] ≤ e−2
3i/4 ≤ e−2R/2

and so E
[
B̃2
i | B̃2R/3, . . . , B̃i−1] ≤ 2e−2

R/2
.

Then v := 2 · 2R3 · e
−2R/2 is an upper bound for both the shifts introduced in B̃i and the

predictable quadratic variation with probability 1:∑R
i=2R/3 E[Bi | B1, . . . , Bi−1] ≤ v

and
∑R

i=2R/3 E
[
B̃2
i | B̃2R/3, . . . , B̃i−1] ≤ v.

Then Freedman’s Inequality gives

Pr

( R∑
i=2R/3

Bi ≥
R

6

)
≤ Pr

( R∑
i=2R/3

B̃i ≥
R

6
− v
)
≤
(

v

R/6

)R/6
eR/6 ≤ (8e · e−2R/2)R/6

≤ e−2R/2 ,

where the last inequality uses the fact that R ≥ 10 (by setting cst large enough). Since

R ≥ log log 1
δ +
√

log 1
ε and by assumption ε ≤ δ, we have e−2

R/2 ≤ e−2log log 1/δ ≤ δ. This proves

the claim.
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It then suffice to show that whenever
∑R

i=2R/3Bi <
R
6 , we have µx(ER) ≤ ε. So fix a

scenario satisfying the former and assume by contradiction that µx(ER) > ε. Define the subsets
G,L,R of the rounds {1, . . . , R} as follows: G is the set of “good” indices i such that Bi = 0,
L the set of indices where Ei is to the left of v∗, and R the set of indices where Ei is to the
right of v∗.

Then L∩G are the rounds where the reduction prescribed by Claim 1 happened on the left
weight of Ii and R ∩G where it happened on its right weight. Moreover, the sets I1, I2, . . . are
monotonically decreasing, so even for the rounds outside of the good set G the left and right
weights of Ii only decrease over time. Then

Lw(IR+1) ≤ Lw(R) ·
∏

i∈L∩G

1

α2i/4
≤
(

1

α

)R
· 1

2
∑
i∈L∩G i/4

.

Combining with the fact Lw(IR+1) ≥ Lw(ER+1) ≥ µx(ER+1) > ε and laking logs, this implies∑
i∈L∩G

i ≤ 4R log
1

α
+ 4 log

1

ε
.

The same inequality holds with L replaced by R, and adding these inequalities gives∑
i∈(L∪R)∩G

i ≤ 8R log
1

α
+ 8 log

1

ε
. (4)

By the assumption of the scenario, we know that at least R
3 −

R
6 = R

6 of the rounds in the
interval {2R3 , . . . , R} are in the good set G, that is, |G| ≥ R

6 . Then

∑
i∈(L∪R)∩G

i =
∑
i∈G

i ≥
|G|∑
i=1

i ≥
R/6∑
i=1

i ≥ R2

72
.

But since R ≥ cst · (log 1
α +

√
log 1

ε ) for a sufficiently large constant cst, this contradicts

inequality (4) (cst = 8 · 72 suffices, but the constants throughout have not been optimized).
So with probability at least 1− δ, by round R the algorithm obtains a classifies with error

at most ε. Due to the assumptions (ii) and (iv), the same development as in inequality (2)
shows that this round finishes by time

R∑
i=1

(
(2i)k · f(2i)

)
≤ 2f(2R)2Rk ≤ 2R(k+1)+1.

Using the value of R, this time is at most(
2O(
√

log 1/ε) · log 1
δ ·
(
1
α

)O(1)
)k+1

,

which then concludes the proof.
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