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Abstract

Deep learning technology has made great progress in
multi-view 3D reconstruction tasks. At present, most main-
stream solutions establish the mapping between views and
shape of an object by assembling the networks of 2D en-
coder and 3D decoder as the basic structure while they
adopt different approaches to obtain aggregation of fea-
tures from several views. Among them, the methods using
attention-based fusion perform better and more stable than
the others, however, they still have an obvious shortcom-
ing — the strong independence of each view during predict-
ing the weights for merging leads to a lack of adaption of
the global state. In this paper, we propose a global-aware
attention-based fusion approach that builds the correlation
between each branch and the global to provide a compre-
hensive foundation for weights inference. In order to en-
hance the ability of the network, we introduce a novel loss
function to supervise the shape overall and propose a dy-
namic two-stage training strategy that can effectively adapt
to all reconstructors with attention-based fusion. Experi-
ments on ShapeNet verify that our method outperforms ex-
isting SOTA methods while the amount of parameters is far
less than the same type of algorithm, Pix2Vox++. Further-
more, we propose a view-reduction method based on maxi-
mizing diversity and discuss the cost-performance tradeoff
of our model to achieve a better performance when facing
heavy input amount and limited computational cost.

1. Introduction

3D reconstruction, a problem that involve the fields of
computer vision and computer graphics, is considered as the
core of many technologies such as computer-aided geomet-
ric design, computer animation, medical image processing,
digital media and robotics. As a generation task, comparing
to image restoration, lifting 2D images to 3D object is obvi-
ously an extremely difficult ill-posed inverse problem. Ac-
cording to the number of images as input, this task can be
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Figure 1. Our network consists of encoder, generator and refiner.
The data flow in generator reflects the concept of global-aware.

divided into single-view reconstruction [15, 16, 18, 22, 25]
and multi-view reconstruction [2–4, 6]. In this work, we
focus on the deep-learning-based algorithms which recon-
struct the shape of 3D objects with voxel representation
from multiple images.

At present, most mainstream solutions assemble 2D en-
coder and 3D decoder as a basic framework and reshape
the high-level features between them as a two-dimensional
connection to establish the mapping between an image and
a voxel. Nevertheless, there is still an important issue for
multi-view reconstruction — how to aggregate the features
from an arbitrary number of views.

In our investigation, there are four types of fusion strate-
gies identified. [1, 32] adapt a pooling-based method to
compress the feature map to a specific size using a pooling
layer after concatenating the feature maps from all views.
This dimensional collapse is too rough to avoid a massive
loss of content. To make the fusion module learnable, 3D-
R2N2 series [2, 9] utilize recurrent neural network (RNN)-
based methods. The features from all views are regarded
as a sequence and processed by a recurrent unit before the
decoder. However, it indicates inconsistent predictions for
different permutations. In addition, such methods are not
suitable for too many views as input because of the lim-
ited long-term memory. To address these shortcomings,
attention-based fusion approaches create a sub-network to
predict the confidence score map of each view and merge
features based on it. Both AttSets [3] and Pix2Vox se-
ries [4, 5] following this idea produce stable reconstructors.
The former merges the features while the latter merges the
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voxels restored from each view directly. Very recent, some
researches [6, 7] use transformer structure for multi-view
reconstruction. Utilizing the natural advantage, the fusion
process is integrated into the encoder stage. They perform
well for a large number of view inputs, but the restoration
quality is terrible when there are few input images.

We consider that the attention-based fusion performs
better and more stable than the others, however, it still
has an obvious shortcoming. During predicting the score
maps, the connection of branches only relies on a softmax
layer without any learnable parameters, so that it cannot be
adaptive to the global state and only trusts the memory of
the network. To address this issue, we propose a global-
aware multi-view 3D reconstruction network, named GAR-
Net, which not only follows the attention-based fusion but
also establishes the correlation between each branch and the
global. Figure 1 illustrates the composition of the network
and highlights the data flow in the generator, which reflects
the concept of global-aware fusion.

In practical problems, we provide a large number of view
images for better results, however, the model may not pro-
cess due to the constraints of time consumption and com-
putational complexity. To overcome this trouble, we pro-
pose a view-reduction method based on maximizing diver-
sity and discuss the cost-performance tradeoff of our model
to achieve a better performance when facing heavy input
amount and limited computational cost.

In detail, the contributions are as follows:

• Network architecture: We propose a global-aware
fusion approach that inherits the stability of the
attention-based mergers and establishes the correlation
between views to achieve better performance.

• Loss function: Precision and recall as quantitative in-
dicators participate in the novel supervision to allevi-
ate the weakness of expressing the difference between
shapes brought by cross-entropy loss.

• Training strategy: We propose a dynamic two-stage
training strategy that distinguishes the network pro-
cesses for single-view and multi-view input and alter-
nates training in these two situations randomly. This
strategy can effectively adapt to all reconstructors us-
ing attention-based fusion.

• Cost-performance tradeoff: Facing heavy input
amount, we provide a view-reduction method based on
maximizing diversity to make the model achieve better
performance under limited computational cost.

Furthermore, our models favorably against the SOTA
methods [5, 6] in performance with fewer parameters than
the same type of methods.

2. Related Works

• Single-view 3D reconstruction. In recent years,
estimating 3D shape from a single view image is
a hot topic. PointSetGeneration [15] generates 3D
shape based on the representation of point clouds.
Pixel2Mesh [16] represents the object by triangu-
lar mesh and process through a graph convolu-
tional network (GCN). Voxel-based methods are rather
widespread. [17] modifies voxel grids directly utiliz-
ing a 3DCNN. Using generative adversarial network
(GAN) [20], 3DGAN [18] and 3DIWGAN [19] are
proposed to solve the problem of 3D object genera-
tion, and the generator in these works can be con-
verted to the single-view reconstructor by combining
the variational auto-encoder (VAE) [21]. For the high-
resolution results, OGN [22] adapts the octree repre-
sentation to overcome the trouble of a huge memory
budget and designs a network to process it directly,
however, Matryoshka Networks [23] decompose a 3D
shape into nested shape layers in a recursive manner.
To bridge the gap between synthetic data and real-
world data, DAREC [31] and VPAN [24] introduce
the supervision on domain adaption during training.
To supplement the missing information in the image,
Mem3D [25] constructs a memory network to offer the
priors information accumulated from the training set.

• Multi-view 3D reconstruction. SFM [26] and SLAM
[27], the traditional reconstruction approaches, rely on
matching features to establish the relationship across
different views, but they have great restrictions on
usage scenarios. Recently, deep-learning-based ap-
proaches are popular in multi-view 3D reconstruc-
tion, frequently without viewpoint labels. [28] lever-
ages 2DCNN to predict dense point clouds represent-
ing the surface of 3D objects. In Pixel2Mesh++ [29], a
coarse mesh can be improved iteratively with a series
of deformations predicted by a GCN to form the final
results. Representing by voxel, the methods focus on
how to merge the features from several views. [1, 32]
compress the concatenating features from all views us-
ing a maximum pooling layer. 3D-R2N2 series [2, 9]
and LSM [30] receive the views one by one and ex-
tract the useful knowledge through a recurrent unit.
EVolT [6] and LegoFormer [7] exploit the advantage
of transformer structure to realize the blending of in-
formation between various views in the encoder stage.
As the most stable methods currently, AttSets [3] and
Pix2Vox series [4,5] apply the attention module on the
multi-branch tasks, however, lack the exchange of in-
formation between branches.
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Figure 2. (a) is an overview of the generator that merges the features from different branches to reconstruct a coarse volume. It consists
of two blocks of decoder, two fusion modules and some extra operations. Among them, the architecture of the pre-merger block, which
predicts the score map for initial fusion, is shown as (b).

3. Methods

According to this task, the goal of our architecture
is to bridge an uncertain number of RGB images I =
{I1, I2, · · · , In} with a size of 224 × 224 × 3 to a binary
voxel V representing the shape with a size of 32× 32× 32.
Our network consists of three parts: encoder, generator and
refiner. To begin, the encoder extracts feature map fi in par-
allel from each view image Ii. Then, the generator, which
is formed by inserting two fusion blocks and a series of op-
erations into a decoder, reconstructs a volume Vc from these
features exploiting the global-aware attention-based fusion
that discusses in section 3.1. However, this volume still
has great potentials for making further progress. Inspired
by [5], a refiner is adopted to modify Vc to the final output
V . Mathematically, the complete network is defined as:

V = GARNet (I) = R (G (E (I1, I2, ..., In))) , (1)

whereE,G andR denote the encoder, generator and refiner
respectively. Referring to prior experience, encoder and de-
coder used in generator share the same structure as [5]. The
refiner is a novel network, named 3D-U-ResNet, that com-
bine the advantages of ResNet [12] and U-Net [13]. It is
a powerful structure with relatively lightweight and will be
shown in the supplementary material.

3.1. Global-Aware Fusion

In this section, we elaborate on the processing in gen-
erator that implements the global-aware fusion. As shown
in Figure 2a, the generator consists of four blocks, the two
of which are split by the decoder and the others are pre-
mergerMpre and post-mergerMpost. The decoder includes
four transposed convolutional layers with a kernel size of
43 and stride of 2 and one transposed convolutional layer
with a kernel size of 13 and stride of 1. The first layer is
regarded as the first block of decoder, referred to asD1, and
the others compose the second block of decoder, referred to
as D2.

The input of the generator is feature maps extracted from
view images. Considering to utilize the spatial information
of features, we prefer to process the initial fusion on 4D
tensors. However, these features derived from encoder lack
the spatial relationship. Therefore, the first block of decoder
happening before the initial fusion is reasonable.

f ′i = D1 (E (Ii)) = D1 (fi) , (2)

where f ′i is the output of D1 on the branch of Ii.
Figure 2b shows the process of inferring the score map

in pre-merger. Pre-merger employs two parallel attention
mechanisms, a structure similar to the bottleneck attention
module [10]. Both maximum pooling and average pool-
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ing are utilized to compress features on channel and spa-
tial to obtain a two-channel tensor and two vectors. The
tensor is handled by a 3D convolution. For the high-
dimensional vector, we replace the commonly fully con-
nected layers with a 1D convolutional layer to maintain the
structure lightweight inspired by [11]. After the parallel
module, the branch feature map for initial fusion is created
by extending and adding the channel perception feature map
and the spatial perception feature map. The features of all
views are combined and processed by a softmax layer to
predict the corresponding normalized score maps for each
branch and each grid in f ′. Finally, the initial fusion feature
map, referred to as f ′n+1, is the result of the addition of f ′

weighted by the score maps and becomes the beginning of
the (n+ 1) th branch that need enter to D2 like the other
branches.

f ′n+1 =

n∑
i

Mpre (f
′
i) · f ′i . (3)

The second block of decoder will reconstruct a voxel vi
for each view. In addition, because the post-merger block
needs to use the features of each branch to predict the score
maps, we regard the concatenation of the feature maps from
the last two layers of the decoder as the final features f ′′i of
the view image Ii.

(f ′′i , vi) = D2 (f
′
i) . (4)

According to the features of the (n + 1) branches, the
post-merger block predicts the score maps of the first n
branches corresponding to the restored volumes from the
n view images. Since the actual meaning of the score map
is the contribution rate of a branch to the entire, both the
view and the global state are related to fusion logically. The
input of post-merger for each branch is the concatenation
of two feature maps: the feature map of the view f ′′i and
the deviation between f ′′i and the global feature map f ′′n+1

from the (n+ 1)th branch. Due to only few channels of
feature input, the post-merger, which consists of five 3D
convolutional layers, has a more ordinary architecture than
the pre-merger. Finally, following the same principle as
pre-merger, the coarse volume is obtained after predicting
the score maps with a softmax layer and fusing the recon-
structed voxels from all view images weighted by the score
maps.

VC =

n∑
i

Mpost

(
f ′′i , f

′′
n+1 − f ′′i

)
· vi. (5)

Summarizing the entire generator, we construct two
attention-based fusion modules to implement global-aware.
The first one merges all features to generate initial global
features and then the second one makes full use of the global
features to predict more reliable fusion weights for volumes.

3.2. Loss Function

The loss function is used to supervise both the coarse
volume and the final volume. The binary cross-entropy
(BCE) loss, which is commonly employed in previous
works, is used to compare them to the ground truth respec-
tively. Furthermore, we introduce precision and recall as
new quantitative indicators to supervise the shape of the fi-
nal volume. BCE only focuses on the classification of the
cells but does not monitor overall shape. However, the pre-
cision and recall of occupied grids reflect the difference in
shape. As a result, the combination can achieve the supervi-
sion to take both the local and the global into account. The
complete loss function is defined as:

L = αLBCE Vc︸ ︷︷ ︸
for coarse volume

+βLBCE V + γLRecall + µLPrecision︸ ︷︷ ︸
for fine volume

,

(6)
where α, β, γ, µ indicate the weights of each part. LBCE Vc

and LBCE V represent the BCE loss function of the two
reconstruction results and the following two items are the
recall loss function and the precision loss function defined
as:

LRecall = 1−
∑323

i=1 pigti∑323

i=1 gti
, (7)

LPrecision = 1−
∑323

i=1 pigti∑323

i=1 pi
, (8)

where p and gt denote the grids on the predicted result and
ground truth.

4. Dynamic Two-Stage Training Strategy
At present, there are two strategies for training a recon-

struction model using attention-based fusion. [3] proposes
a feature-attention separate training (FASet) algorithm to
spilt the training of the fusion module and the other parts
into two stages. The first stage train all the parts except
the fusion module using single-view input and the second
stage only optimizes the fusion module using multi-view
input. Pix2Vox series [4,5] offer another two-stage training
strategy with a similar first stage to FASet while the second
stage fed with random numbers of input to train the com-
plete network, in which the random number is updated for
each epoch. However, when the random number is 1, the
fusion modules cannot get an useful backpropagation gra-
dient limited by the softmax layer, which is proved in [3].
So, the second stage in Pix2Vox training is not reasonable
enough. In addition, we consider that training the model
sufficiently using single image input firstly just like the two
mentioned strategies may easily lead to overfitting for the
single-view reconstruction task and limit the performance
for multi-view.
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To improve the performance of the attention-based fu-
sion reconstructor, especially for multi-view input, we pro-
pose a general training strategy. First of all, the situations
of single-view and multi-view as input are distinguished ex-
plicitly to perform different network processes. The propa-
gation process does not go through the fusion module when
the input is a single image, while for multi-view input, the
parameters of the whole network participate. For each iter-
ation, an integer less than or equal to the predefined value
nmax will be randomly chosen as the number of view in-
puts. As a result, the two modes, single-view reconstruction
and multi-view reconstruction, alternate training at a certain
vague frequency. It not only utilizes the stability brought by
the former to assist the train of the latter but also avoids
model overfitting trending to the former task. The method
to integrate the two training modes in this way is named
dynamic two-stage training strategy and its effectiveness is
verified in Section 6.2.2.

5. Cost-Performance Tradeoff via View-
Reduction

We have established a robust and stable multi-view 3D
reconstruction network so far. In practice, users can employ
more view images as input to achieve better reconstruction
results. However, increasing input images means greater
computational complexity and more time consumption. In
some cases, the acceptable time for inference is strictly lim-
ited. It is necessary to provide a cost-performance tradeoff
analysis for generating relatively high-quality results with
limited computational cost. Considering the multi-view re-
construction accuracy relies on the diverse viewpoints in-
formation, we propose a view-reduction approach based on
maximizing diversity to remove some branches and control
the computational cost while preserving performance. Intu-
itively, a combination of views with a considerable dispar-
ity in viewpoints taking place of similar views can provide
more diverse information for restoring a reliable volume.
As a result, we attempt to find a combination of images with
roughly complementary information from all view input to
reduce the branches. The approach is based on isometric
mapping training and maximizing diversity selection.

5.1. Isometric Mapping

To extract the diverse viewpoint information via reduc-
ing the redundant features, we assume a low-dimensional
manifold space in which each point represents observation
position information matching to a view image of the ob-
ject, and the Euclidean distance between two points is con-
sistent with the difference of the viewpoints. Derived from
the space, it is convenient to pick a subset of points with a
widely scattered distribution that corresponds to an image
combination with relatively complementary information.

Encoder Generator
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e 
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Figure 3. The distribution of computational complexity in encoder
and generator.

Therefore, we build an isometric mapping block (IMB)
with a simple structure composed of two paralleled pooling
layers and three MLPs (multilayer perceptron) for dimen-
sionality reduction of encoded features, and then insert it
into the reconstruction model to obtain a more compact rep-
resentation preserving information of viewpoints. Such that
we can use fewer view branches to reconstruct the volume
based on maximizing diversity of viewpoints information.
Figure 3 records the distribution of computational complex-
ity before the refiner when facing a heavy input amount (24
views). We expect to assign fewer operations before IMB
since the quantity of calculation can only be reduced after
that by eliminating branches. As a result, it is reasonable to
use the output of the first residual block in the encoder as
the input of IMB. Training IMB still adopts the data with-
out location and direction information of views. As men-
tioned by [4], the score maps for volumes predicted by the
fusion module can be thought of as a representation of the
visible parts from a viewpoint learned by the network adap-
tively. The weights allocated to the visible parts will pre-
sumably be higher. Consequently, the difference between
the score maps predicted by the post-merger block in our
model can be used to distinguish the difference between the
visible parts, i.e. the relationship of viewpoints.

To train IMB, a manifold learning algorithm similar
to [14] is established for isometric mapping the low-
dimensional points in Euclidean space to the score maps
for different views of one object in L1 space. The L1 loss
utilized to supervise is defined as:

LIMB =

∥∥∥∥∥∥
n∑
i

n∑
j

(
‖Pi − Pj‖L2 − ‖Qi −Qj‖L1

)∥∥∥∥∥∥
L1

,

(9)
where P represents the points in low-dimensional manifold
space corresponding to view images of an object and Q de-
notes their matching score maps.
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1 view 2 views 3 views 4 views 5 views 8 views 12 views 16 views 20 views
3D-R2N2 [2] 0.560 / 0.351 0.603 / 0.368 0.617 / 0.372 0.625 / 0.378 0.634 / 0.382 0.635 / 0.383 0.636 / 0.382 0.636 / 0.382 0.636 / 0.383
AttSets [3] 0.642 / 0.395 0.662 / 0.418 0.670 / 0.426 0.675 / 0.430 0.677 / 0.432 0.685 / 0.444 0.688 / 0.445 0.692 / 0.447 0.693 / 0.448

Pix2Vox++ [5] 0.670 / 0.436 0.695 / 0.452 0.704 / 0.455 0.708 / 0.457 0.711 / 0.458 0.715 / 0.459 0.717 / 0.460 0.718 / 0.461 0.719 / 0.462
EVolT [6] - / - - / - - / - 0.609 / 0.358 - / - 0.698 / 0.448 0.720 / 0.475 0.729 / 0.486 0.735 / 0.492

Legoformer [7] 0.519 / 0.282 0.644 / 0.392 0.679 / 0.428 0.694 / 0.444 0.703 / 0.453 0.713 / 0.464 0.717 / 0.470 0.719 / 0.472 0.721 / 0.472
GARNet 0.673 / 0.418 0.705 / 0.455 0.716 / 0.468 0.722 / 0.475 0.726 / 0.479 0.731 / 0.486 0.734 / 0.489 0.736 / 0.491 0.737 / 0.492

GARNet+ 0.655 / 0.399 0.696 / 0.446 0.712 / 0.465 0.719 / 0.475 0.725 / 0.481 0.733 / 0.491 0.737 / 0.498 0.740 / 0.501 0.742 / 0.504

Table 1. Evaluation and comparison of the performance on ShapeNet using IoU / F-Score@1%. The best results are highlighted in bold.

1 view 2 views 3 views 4 views 5 views
Setup 1 0.670 0.695 0.704 0.708 0.711
Setup 2 0.6693 0.6990 0.7090 0.7138 0.7172
Setup 3 0.6707 0.7026 0.7136 0.7187 0.7223
Setup 4 0.6697 0.7023 0.7137 0.7195 0.7235
Setup 5 0.6725 0.7047 0.7160 0.7217 0.7255
Setup 6 0.6551 0.6958 0.7117 0.7193 0.7246

8 views 12 views 16 views 20 views
Setup 1 0.715 0.717 0.718 0.719
Setup 2 0.7217 0.7245 0.7262 0.7269
Setup 3 0.7280 0.7308 0.7324 0.7332
Setup 4 0.7289 0.7319 0.7336 0.7345
Setup 5 0.7312 0.7340 0.7357 0.7368
Setup 6 0.7331 0.7373 0.7400 0.7415

Table 2. The ablation experiments on ShapeNet about dynamic
two-stage training strategy, 3D-U-ResNet as the refiner network,
global-aware fusion, precision-recall loss function and 8-view in-
put.

5.2. Diversity Maximization

The problem is now formulated as reducing N branches
of views to n. We obtain N low-dimensional points via
IMB. Using farthest point sampling (FPS), n points can be
selected and only their corresponding branches are retained
to continue to finish the rest of the reconstruction network.

FPS is a sampling method with uniform and wide cov-
erage so that the selected points maximize the diversity of
the entire point set in a limited capacity. These points corre-
spond to a view combination with a great variation in view-
points. Meanwhile, the score maps, which indicate the con-
tribution of views to different voxel grids, are directly tied to
the meaning of these points. Either retaining branches with
widely varying viewpoints or larger differences of contribu-
tion weights distribution imply maximizing diversity.

Thus, the view-reduction method for cost-performance
tradeoff by retaining the view combination with more di-
verse information for reconstruction is realized and the ef-
fectiveness will be verified in Section 6.3.

6. Experiments
• Dataset. We evaluate our reconstruction network on

the ShapeNet [8] dataset using both Intersection of
Union (IoU) and F-Score@1% [5, 33] as the metric.

Following [2], only a subset of ShapeNet including 13
categories and 43,783 3D objects with 24 randomly
view images for each are used in our experiments.

• Implementation Details. We adopt an Adam opti-
mizer [34] with β1 = 0.9 and β2 = 0.999 to train our
multi-view reconstruction network with a batch size of
32 for 200 epochs, with 140 epochs using only BCE
loss function and then 60 epochs using the complete
loss function as mentioned previously. The weights in
Equation 6 are set as α = β = 10 and γ = θ = 0.5.
The learning rate is 1e-3 initially and reduce to half af-
ter [40, 60, 80, 100, 140, 180] epochs sequentially. For
the property of dynamic two-stage training strategy,
the parameters in the fusion module are optimized less
frequently than the others. Thus, setting a slightly
higher learning rate for the fusion module part can
archive a better performance. Eventually, we provide
two models respectively setting the maximum number
of input views to 3 and 8 during training, named GAR-
Net and GARNet+. The fixed threshold for binarizing
the probabilities is set as 0.3. It takes about 2 days to
train GARNet on 1 Tesla V100 and about 3 days to
train GARNet+ on 2 Tesla V100. The IMB for view-
reduction is extra trained for 15 epochs relied on a con-
verged and frozen reconstruction network, and uses 40
objects with 24 views for each iteration. The learning
rate is set to 2e-3 and decreased by 0.1 every 5 epochs.

6.1. Multi-View Reconstruction Results

The performance of our models for multi-view recon-
struction is evaluated and compared with existing SOTA
methods. As shown in Table 1, our proposed GARNet al-
ready dominates in almost all metrics. Not only does it
performs consistently well when few views as input just
like the other reconstructors using attention-based fusion,
but also it breaks the advantage of the transformer method
EvolT [6] when a large number of views as input. Further-
more, we also provide GARNet+, which performs better in
multi-view reconstruction tasks while sacrificing acceptable
performance for single-view. The two models are identi-
cal in structure and both of them outperform existing SOTA
methods while only using about 69% of parameters of the
same type of algorithm, Pix2Vox++ [5].
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Figure 4. Multi-view reconstruction results on the test set of ShapeNet when facing 5 views, 10 views and 15 views as input.

CA layer 1 view 2 views 3 views 4 views 5 views
FC 0.6652 0.6991 0.7111 0.7167 0.7203

1D Conv 0.6697 0.7023 0.7137 0.7195 0.7235
CA layer 8 views 12 views 16 views 20 views

FC 0.7259 0.7295 0.7313 0.7322
1D Conv 0.7289 0.7319 0.7336 0.7345

Table 3. Comparison of performance evaluated by IoU when us-
ing fully connection (FC) layers and a 1D convolutional layer in
channel attention (CA) module of pre-merger. Experiments on
ShapeNet using only BCE loss function and setting the upper limit
of input views to 3 during training.

As examples, Figure 4 shows several reconstruction re-
sults. Comparing to the other methods, for table restora-
tion, our models present a smoother plane and depict the
links between the legs more accurately. In addition, our
results for the sofa are also stable and reasonable, however,
Pix2Vox++ produces a part of incorrect and confusing voxel
girds. Without the global-aware, mistakes in a branch will
seriously affect the final result. We exploit the fusion at the
feature level, which is relatively insensitive to local percep-
tion, as the global information to bring the network a certain
ability for self-correction.

6.2. Ablation Experiments

We use Pix2Vox++ [5] as the baseline. To design abla-
tion experiments, our proposed approaches, which include
dynamic two-stage training strategy, 3D-U-ResNet as the
refiner network, global-aware fusion, and precision-recall

loss function, are applied one by one based on it to convert
the model to GARNet. Table 2 shows the results. Specifi-
cally, the setups of these experiments are as follows:

• Setup 1: Baseline (Pix2Vox++)

• Setup 2: Baseline + Dynamic two-stage training

• Setup 3: Baseline + Dynamic two-stage training+3D-
U-Resnet

• Setup 4: Baseline + Dynamic two-stage training + 3D-
U-Resnet + Globel-aware fusion

• Setup 5: Baseline + Dynamic two-stage training + 3D-
U-Resnet + Globel-aware fusion + P-R loss (GARNet)

• Setup 6: Baseline + Dynamic two-stage training + 3D-
U-Resnet + Globel-aware fusion + P-R loss + 8 views
(GARNet+)

It verifies that these methods have a positive impact on
the reconstruction algorithm. In addition, GARNet+ train-
ing with 8 views input performs well when facing a large
number of views input. In this section, we will discuss the
relevant verification works about pre-merger structure and
training strategy in detail.

6.2.1 Pre-Merger Block

We replace the fully connection layers with a 1D convolu-
tional layer in the channel attention module of pre-merger
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Training Strategy 1 view 2 views 3 views 4 views 5 views
FASet [3] 0.6733 0.6994 0.7082 0.7126 0.7154

Pix2Vox [4] 0.6708 0.7019 0.7122 0.7173 0.7203
Ours 0.6697 0.7023 0.7137 0.7195 0.7235

Training Strategy 8 views 12 views 16 views 20 views
FASet 0.7195 0.7215 0.7228 0.7232

Pix2Vox 0.7250 0.7276 0.7290 0.7297
Ours 0.7289 0.7319 0.7336 0.7345

Table 4. Experiments on our architecture using only BCE loss
function and setting the upper limit of input views to 3 during
training to compare our proposed dynamic two-stage training strat-
egy with the two existing strategies on ShapeNet using IoU.

block. Heavy parameters are not expected for a branch of
weights calculation, because their lack of direct supervision
will make training more difficult. In addition, channels of a
vector are not strongly related to each other in the channel
attention module. As a result, a simpler and lighter structure
bring better performance, as shown in Table 3.

The pre-merger block plays a critical role with only hun-
dreds of parameters. It improves the performance of the
model effectively by allowing data to flow across branches.
To establish this connection is the most important respon-
sibility of it, which increases countless potential network
branches to promote the learning ability of the network for
merging. For the feature representation, the decoder with
a large number of parameters also assists it to generate a
better global representation, so the network never lacks pa-
rameters but connections.

6.2.2 Training Strategy

As aforementioned, the dynamic two-stage training strat-
egy is more reasonable than the previous methods for the
models using attention-based fusion. As shown in Table 4,
we employ these three strategies to train our network. As a
result, our method has a distinct advantage in multi-view re-
construction tasks. For single-view reconstruction, our per-
formance is slightly lower than theirs, but it is roughly the
same. However, their models are overfitting for single-view
reconstruction since training with single-view inputs suffi-
ciently in the first stage, which is detrimental to the gener-
alization ability of the model.

In addition, we explore the influence of the maximum
number of input views during training for our strategy.
Comparing GARNet and GARNet+, setting a higher up-
per limit with more memory consumption results in better
performance on multi-view reconstruction, while losing the
performance of single-view reconstruction due to the lower
frequency of single-view input during training.

6.3. Cost-Performance Tradeoff

First of all, it is necessary to verify that our view-
reduction method can retain the view combination includ-

Figure 5. The distribution of the points in the 2D manifold space
mapped from the view images of an object by a trained IMB.

View-Reduction 24 → 3 24 → 4 24 → 5
Random 0.7163 0.7221 0.7254

FPS directly 0.7166 0.7223 0.7256GARNet PCA + FPS 0.7180 0.7243 0.7279
IMB + FPS (ours) 0.7225 0.7269 0.7295

Random 0.7120 0.7201 0.7246
FPS directly 0.7125 0.7205 0.7258GARNet+ PCA + FPS 0.7138 0.7223 0.7281

IMB + FPS (ours) 0.7200 0.7263 0.7305

Table 5. Comparison of the reconstruction performance based on
the specified quantity of images reduced from 24 views by ran-
dom sampling, FPS directly, PCA + FPS and our method, which
is evaluated on test set of ShapeNet using IoU.

ing more diverse information. The different views of an ob-
ject are mapped to a 2D manifold space by IMB and shown
in Figure 5. There is a certain correlation between the ob-
servation position of the chair and the location of the corre-
sponding points in the space. It means that IMB extracts the
features about viewpoints from the images. In addition, the
5 objects marked with red frames are selected by FPS and
their viewpoints are obviously different from each other.
Thus, view-reduction based on isometric mapping and di-
versity maximization is reliable. Note that, the displayed
distribution is not ideally perfect, because the 2D vector
cannot adequately capture the difference across viewpoints.
It is merely for visualization clarity and we set a higher di-
mension (empirically set 5) for experiments.

In the experiments, we train IMB for GARNet and GAR-
Net+ respectively. Table 5 illustrates that using our method
can produce better results comparing to random sampling,
using FPS directly or using FPS after PCA when recon-
structing a volume using a specified number of images se-
lected from 24 views. According to the statistics, using our
view-reduction approach to retain 5 branches can achieve
about 98% precision of the results created based on all 24
views while saving about 70% of computational cost.
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Figure 6. The cost-performance tradeoff that uses the maximizing
diversity method and random sampling for view-reduction. The
left one is the curve for GARNet and the right is for GARNet+.

For the cost-performance tradeoff, we have to analyze
the relationship between specific computational cost and
performance. When achieving the maximizing diversity se-
lection, each view input must be processed by the network
before the IMB. It is not required for view-reduction ran-
domly. As a result, our method is not suitable for situa-
tions where the complexity is limited to a extremely low
level. However, our view-reduction method still has appli-
cable scenarios. Figure 6 presents the comparison of max-
imizing diversity and random sampling for view-reduction
on GARNet and GARNet+. When the computational com-
plexity greater than 80 GMac (multiply and accumulate) is
allowed, our method takes advantage. In practical prob-
lems, such chart can help us determine a better course of
action. Furthermore, the size of reconstructed volume is
only 323 with a low resolution because of the limitation of
the dataset. If the model includes more decoder layers for a
higher resolution result, view-reduction by maximizing di-
versity will obviously lead to a greater benefit.

7. Conclusion
In this paper, we propose a multi-view 3D reconstruction

network using global-aware fusion, an advanced attention-
based method, to favorably against the SOTA methods in
performance. Furthermore, the cost-performance tradeoff
is discussed for facing practical problems. In future work,
we expect that these methods designed for the multi-branch
network can be used to solve the multi-view reconstruction
problem based on the other 3D representations and achieve
high-resolution results.
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