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Abstract

Missing scans are inevitable in longitudinal studies due to either subject dropouts

or failed scans. In this paper, we propose a deep learning framework to pre-

dict missing scans from acquired scans, catering to longitudinal infant studies.

Prediction of infant brain MRI is challenging owing to the rapid contrast and

structural changes particularly during the first year of life. We introduce a

trustworthy metamorphic generative adversarial network (MGAN) for translat-

ing infant brain MRI from one time-point to another. MGAN has three key

features: (i) Image translation leveraging spatial and frequency information for

detail-preserving mapping; (ii) Quality-guided learning strategy that focuses

attention on challenging regions. (iii) Multi-scale hybrid loss function that im-

proves translation of tissue contrast and structural details. Experimental results

indicate that MGAN outperforms existing GANs by accurately predicting both

contrast and anatomical details.
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1. Introduction

Brain MRI is commonly used to investigate normative and aberrant brain

evolution through infancy [1]. To precisely chart brain growth trajectories,

temporally dense longitudinal datasets are often required but are difficult to

acquire. Moreover, infant studies often involve incomplete longitudinal datasets,

given the unique challenges associated with infant MRI acquisition. The missing

data at different time points can be due to subject dropouts or failed scans owing

to excessive motion, insufficient coverage, or imaging artifacts [2].

Longitudinal prediction of infant brain scans is challenging as brain MRI

contrasts change rapidly through the first year of life. The brain volume doubles

to about 65% of the adult brain by the end of the first year [3]. The gray matter

(GM) follows a faster growth trajectory (108% − 149% increase) compared to

white matter (WM; 11% increase) [4]. The rapid brain evolution is characterized

by both structural and contrast variations [5, 6]. As shown in Figure 1, the

WM appears to be darker than the GM during the neonatal phase as the brain

is going through myelination, and by sixth month, WM and GM are almost

indistinguishable due to the poor tissue contrast.

1.1. Related Work

The longitudinal prediction of infant brain MRI can be formulated as an

image-to-image translation task — mapping images from a source time point to

a target time point [7]. Several studies in the field of computer vision [7, 8, 9, 10]

have shown that generative adversarial networks (GANs) [11] yield superior

performance in translating images from a domain to another. In the field

of medical image analysis, [12] introduced an auto-context GAN to progres-

sively refine MRI-to-CT synthesis. In their follow-up study, [13] incorporated

difficulty-aware attention mechanism to improve predictions in challenging re-

gions. Similarly, [14] introduced self-attention to encourage the transformation

of a foreground object while retaining the background. Medical image-to-image

translation network (MedGAN) [15] uses a pre-trained classification network as
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Figure 1: Appearance and structural changes at two time points during the first year of life.

Wavelet decomposition for capturing structural details.

feature extractor to match textures and structural details of synthetic and target

CT images. All the aforementioned methods for cross-modality synthesis focus

on appearance changes and neglect morphological changes. The longitudinal

prediction of infant MR brain images, however, requires dealing with fast-paced

structural and appearance changes.

To promote structural consistency in cross-modality synthesis, several recent

approaches incorporate segmentation similarity as a learning constraint [16, 17].

However, tissue segmentation of infant brain MRI is challenging due to the

overlap of GM and WM intensity distributions (Fig. 1). Several approaches

attempted to ensure structural consistency without relying on tissue maps. [18]

employed gradient differences in a loss function to improve the prediction of

boundaries. [19] incorporated gradient correlation differences in a structure-

consistency loss to improve edge alignment in MRI-to-CT synthesis. Although

successful, the gradient-based constraint introduces noise and fail to capture

sufficient boundary information in images with low contrast. [20] incorporated

a patch-based self-similarity loss by comparing each patch with all its neighbors
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in a pre-defined non-local region to ensure structural consistency. However, the

search for corresponding non-local regions is computationally expensive.

1.2. Contributions

In this paper, we employ CycleGAN [8], a cycle consistent generation frame-

work, to simultaneously learn structural and appearance changes between two

time points. Major contributions of our work are summarized below:

(i) We propose a trustworthy adversarial learning metamorphosis framework

that accounts for both the appearance and structural changes in infant

brain MRI.

(ii) We use a spatial-frequency transfer block equipped with wavelet decom-

position to transform features from multiple frequency bands to learn the

structural changes.

(iii) We employ a quality guidance strategy to incorporate a quality-driven loss

function to improve predictions in challenging regions.

(iv) We devise a multi-scale hybrid loss function to improve the matching of

both the textural details and the anatomical edges between the predicted

image and the desired target image. The discriminator network is evoked

at multiple resolutions via deep-supervision, thus allowing accurate pre-

diction of anatomical structures through adversarial learning.

The rest of the paper is organized as follows: Section 2 details the proposed

method. Section 3.2 describes the dataset used for evaluation and presents the

experimental results. Section 4 provides additional discussion and concludes the

paper.

2. Methods

In this work, we implement a framework for prediction of metamorphic

changes using a GAN. Details of our method are described next.
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2.1. Network Architecture

We propose a metamorphic GAN (MGAN) to predict the infant brain MR

image scanned at time point tb from a time point ta. Without loss of gen-

erality, we assume that tb > ta. Our network architecture, shown in Fig. 2,

is cycle-consistent and learns a reversible translation between the two time-

points. It consists of (i) a forward path for earlier-to-later time-point image

prediction and (ii) a backward path for later-to-earlier time-point image predic-

tion. The two generators Ga and Gb and their corresponding discriminators Da

and Db follow an encoder-decoder architecture. Both the generators incorporate

a spatial-frequency transfer (SFT) block to transform the appearance and struc-

tural features via multiple branches detailed in Fig. 3. The two discriminators

estimate voxel-level uncertainty maps, enabling the corresponding generators to

focus on challenging regions. We will describe the components of our network

in the subsequent sections.

2.1.1. Metamorphic Generator

The metamorphic generator (Fig. 3) takes a 3D patch of size 64 × 64 × 64

as input and predicts a 3D patch. The generator consists of an encoder, SFT

block, and a decoder.

Encoder. The encoding path consists of two convolution blocks, each with a

3× 3× 3 convolution layer, followed by 3D instance normalization (IN) [21] and

a rectified linear unit (ReLU) [22]. For downsampling, we use convolution with

a stride of 2 instead of pooling to avoid potential information loss. We keep a

1-stride convolution in the first stage of the encoder to retain details, and use a

2-stride convolution in the second stage. The resulting numbers of feature maps

in the two-stage encoder are 64 and 32.

Spatial-frequency transfer block. Longitudinal prediction requires translating

both contrast and structure between two time points. We propose to embed

a spatial-frequency transfer block in between enocder-decoder to extract the

spatial and frequency domain information of feature maps. The SFT block is
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Figure 2: Overview of the metamorphic GAN.

divided into two branches: (i) frequency transform branch, and (ii) spatial trans-

form branch. The frequency transform branch is equipped with discrete wavelet

transform (DWT) that takes into account the low frequency tissue contrast and

high frequency structural details. The DWT layer decomposes the feature map

into low frequency approximation and high frequency details along three dimen-

sions, resulting in eight subvolumes: LLL,LLH,LHL,LHH,HLL,HLH,HHL

andHHH. This decomposition allows more effective transfer of spatial-frequency

details.
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Figure 3: Network architecture of the metamorphic generator.

Given the i-th channel feature map f i of size (sx× sy× sz), the decomposed

feature map f ij at frequency band j is obtained by convolving f i with wavelet

filter wj :

f ij = f i ~ wj . (1)

The wavelet filters for each frequency band are calculated by DWT decompo-

sition and are preset in the convolution layer. Correspondingly, the feature

maps are reconstructed in the decode path via inverse discrete wavelet trans-

form (IDWT) layer. We show the representative feature maps from the DWT

and IDWT layers in Fig. 4. The DWT layer is akin to pooling layer as the DWT

decomposition halves the size of the input feature maps. The IDWT layer cor-

responds to the deconvolution operation with the fixed weights obtained via

wavelet filters. There is also an intermediate transfer operation between the

DWT and IDWT layer. This transfer operation is realized through 9 residual

blocks [23]; the input of each block is processed by two 3 × 3 × 3 convolution

layers with 64 channels followed by IN and ReLU for activation. A shortcut con-

nection is added between the input and the output of every residual convolution

block. Residual transfer learning simplifies feature generation and transfer from

a source domain to a target domain.

The second branch in the SFT block — spatial transform branch — is in-

tegrated to compensate for the information truncated by the wavelets. It is
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Figure 4: Feature maps obtained from the DWT and IDWT layers.

implemented using a convolution layer with kernel size 3 × 3 × 3 and stride

of 2 to downsample the feature maps in spatial domain. These downsampled

feature maps undergo transfer operation and are later upsampled by strided

deconvolution layer with kernel size 3× 3× 3.

Each branch in the SFT block is trained independently without weight shar-

ing. The feature maps from both the frequency and spatial transform branches

are concatenated using a 3× 3× 3 convolution layer and stride of 1, followed by

IN and ReLU operation; capturing both the contrast and structural information

for translating from the source domain to the target domain.

Decoder. Deep supervision [24] is leveraged in the decoding path to strengthen

the gradient flow and encourage learning useful representations at multiple

scales. The feature maps are upsampled by a 2-stride deconvolution layer and

are then convolved with a 3× 3× 3 kernel to get the predicted output.

2.1.2. Uncertainty Quantization

The uncertainty associated with the prediction stems from two aspects: epis-

temic uncertainty (model uncertainty) and aleatoric uncertainty (data uncer-

tainty) [25, 26]. As shown in Fig. 3, two Monte-Carlo (MC) dropout layers

are incorporated in our generator to estimate the epistemic uncertainty. MC

dropout regularizes the network weights as Bernoulli distributions for varia-

tional Bayesian inference [27, 28]. Note, MC dropout is only enabled during

inference. A set of predictions {ŷ1, ŷ2, . . . , ŷN} are sampled from the distribu-

tion p(ŷ|I,wn) via N stochastic inferences using the metamorphic generator.
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The epistemic uncertainty is estimated as the variance over the predictions:

Ue =

√∑N
n=1(ŷn − y)2

N
, (2)

where ŷ denotes to the prediction by feeding the generator G an input image

I, wn represents the generator weights after the n-th dropout, N refers to the

number of prediction instances, and y is the mean of the predictions.

The aleatoric uncertainty is typically measured with the test-time augmenta-

tion technique [29, 30]. During inference, we perturb the input data with spatial

transformations (flip and rotation) and random noise. Similar to the estimation

of the epistemic uncertainty, we sample a set of predictions {ŷ1, ŷ2, . . . , ŷN} from

the distribution p(ŷ|I, S)) and estimate the aleatoric uncertainty as the variance

over the predictions:

Ua =

√∑N
n=1(S−1(ŷ(S(x+ rn))− y)2

N
, (3)

where S represents the spatial transformation, S−1 corresponds to the inverse

transformation, and rn corresponds to random noise.

2.1.3. Multi-scale discriminator

The discriminator in MGAN has a U-shaped architecture, as shown in Fig. 5,

to locally distinguish the predicted images from real images. It takes as input

a 64 × 64 × 64 image patch and outputs the quality probability map for the

given 3D patch. The continuous probability map quantifies the quality of the

predicted image patch. Inferior quality, associated with lower probability val-

ues, is commonly associated with complex structures, e.g., the cortical ribbon.

Superior quality, associated with higher probability values, corresponds to flat

regions with simple structures. In the encoding path of the discriminator, the

input is downsampled three times; in the decoding path, the feature maps are

upsampled three times. For downsampling/upsampling, we use a 4×4×4 convo-

lution/deconvolution layer, followed by IN and ReLU activation. The numbers

of feature channels are 64, 128, and 256 in the three stages of the discrimi-
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nator. Deep supervision strategy [24] is incorporated in the decoding path to

strengthen gradient back propagation.

Figure 5: Network architecture of the multi-scale discriminator.

2.2. Loss Functions

We incorporated supervised learning with multi-scale information via deep

supervision strategy [24]. The loss function LMGAN is defined as:

LMGAN = Ls1 + Ls2 + Ls3 , (4)

where s1, s2, and s3 refer to the three scales employed [31, 32]. For each scale,

the objective function is composed of three loss functions to effectively learn the

prediction task. The loss functions are described next.

2.2.1. Adversarial Loss

We propose to use the standard adversarial loss function, which aims to

match the distribution of the predicted images with that of the real images. It

is given by

L(Ga, Gb, Da, Db) = EIta [log(Da(Ita)]

+ EItb [log(1−Da(Gb(Itb)))]

+ EItb [log(Db(Itb)]

+ EIta [log(1−Db(Ga(Ita)))],

(5)
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where Ita and Itb refer to the images at time-point ta and tb, respectively, Ga

and Gb are the mapping functions, and Da and Db are the discriminators.

2.2.2. Paired Loss

The generators Ga and Gb seek to minimize the difference between real and

predicted images. We propose to enhance the performance of the generators by

defining a paired loss function that constraints the difference at voxel-, feature-,

and frequency-level. Our paired loss function L(·)
gen consists of three loss terms:

(i) quality-driven loss, (ii) texture loss, and (iii) frequency loss.

LGa
gen = LGa

Q + LGa

T + LGa

F ,

LGb
gen = LGb

Q + LGb

T + LGb

F .
(6)

Quality-driven loss. The low tissue contrast and the dramatic brain growth

hinder translation of regions such as the convoluted cerebral cortex. Here, we

present a quality-guided learning strategy to strengthen the transformation of

the unfathomable regions. The discriminator outputs a quality map that de-

fines the voxel-wise probabilities for each predicted image. The heterogeneous

distribution of the probabilities in the quality map motivates us to treat voxels

differently. Voxels with lower probabilities correspond to poor prediction and

require more attention compared to those with higher probabilities. This en-

hances the image translation power of the generator at complex regions in the

infant brain MRI. The quality-driven loss L(·)
Q is defined as:

LGa

Q (Ga; θGa) = EIta ,Itb ,QDb [‖Itb −Ga(Ita)‖1 � (1−QDb)β ],

LGb

Q (Gb; θ
Gb) = EIta ,Itb ,QDa [‖Ita −Gb(Itb)‖1 � (1−QDa)β ],

(7)

where Q(·) is the quality map, θ(·) denotes the parameters of the network, �

defines the element-wise multiplication and β represents the parameter that

enables to focus on difficult-to-predict regions. If β is set to zero, then L(·)
Q will

be equivalent to L1 norm; losing the ability to define adaptive weights based on

quality map. In this study, we empirically set its value to 1.5.
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Texture loss. This loss ensures that the predicted image has a texture similar

to the target image, and it is defined as the mean square error (MSE) between

the Gram matrix of the target and the predicted image [33, 34]:

LGa

T = ‖M(Itb)−M(Ga(Ita))‖2,

LGb

T = ‖M(Ita)−M(Gb(Itb))‖2.
(8)

The gram matrix M(·) is the inner product of the generated images.

Frequency loss. The frequency loss L(·)
F is incorporated via wavelet decompo-

sition of the generators’ outputs, which steers the effective prediction of the

structural details. L(·)
F is defined as:

LGa

F =
∑
k∈K

‖DWT(Itb)k −DWT(Ga(Ita))k‖1,

LGb

F =
∑
k∈K

‖DWT(Ita)k −DWT(Gb(Itb))k‖1,
(9)

where K = {LLL,LLH,LHL,HLL,LHH,HLH,HHL,HHH}; LLL corre-

sponds to the approximation coefficients which encode the image contrast, and

the remaining terms correspond to the detail coefficients, encoding the high

frequency structural details. The wavelet coefficients are decomposed using

bior1.3 [35], which is compactly supported by a biorthogonal spline wavelet [36].

2.2.3. Cycle Consistency Loss

The cycle consistency loss function Lcyc ensures that the image prediction

cycle brings the predicted image back to the original image, i.e., Gb(Ga(Ita)) ≈

Ita and it is given by:

Lcyc(Ga, Gb) = EIta [‖Ita −Gb(Ga(Ita))‖1],

+ EItb [‖Itb −Ga(Gb(Itb))‖1].
(10)

This loss function constraints both the forward and backward image prediction

cycles, causing Ga and Gb to be consistent with each other.
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3. Experimental Results

3.1. Data Acquisition and Preprocessing

The dataset consists of longitudinal T1-weighted (T1w) and T2-weighted

(T2w) MR images of healthy infant subjects enrolled in the Multi-visit Advanced

Pediatric Brain Imaging (MAP) study. Informed written consent was obtained

from the parents of all the participants and all study protocols were approved

by the University of North Carolina at Chapel Hill Institutional Review Board.

Each subject was scanned every three months in the first postnatal year. The

imaging parameters for T1w MRI data were: TR = 1900 ms, TE = 4.38 ms,

flip angle = 7◦. All the images had 144 sagittal slices and 1 mm isotropic voxel

resolution. The imaging parameters for T2w MR images were TR = 7380 ms,

TE = 119 ms, flip angle = 150◦, 64 sagittal slices, and 1.25× 1.25× 1.95 mm3

voxel size.

The dataset was preprocessed using our infant-dedicated preprocessing pipeline [37,

38]. Then, all the postnatal images of each subject were linearly aligned to their

corresponding 12-months-old images and resampled to the size of 256×256×256

with 1× 1× 1 mm3 voxel resolution. We randomly split the MRI data from 30

healthy infants into 20 and 10 for training and testing, respectively. Five-fold

cross-validation was performed to tune the hyper-parameters.

3.2. Implementation Details

The proposed metamorphic GAN was implemented using TensorFlow li-

brary [39] on a single Nvidia TitanX (Pascal) GPU. Adam optimizer [40] was

adopted with an initial learning rate of 1× 10−4 and batch size of 1. Training,

validation, and testing were performed separately for T1w and T2w images.

During training, we uniformly sampled 3D patches from each image encom-

passing the brain region with a dense stride of 10, providing sufficient samples

for training. The generator was first trained with 5 epochs before the adversarial

training. The adversarial training was stopped at 50 epochs.

During inference, the N = 20 inferences were performed for the estimation

of epistemic and aleatoric uncertainty. The keep rate of the dropout layers was
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set to 0.8. Test-time data augmentation was carried out using a combination

of random flip, rotation along each of the three axes, and random noise, which

were modeled respectively with discrete Bernoulli distribution B(0.5), uniform

distribution U(0, 2π), and normal distribution N (0, 0.05).

3.3. Evaluation Criteria

We employed two commonly used metrics to evaluate the quality of the

predicted images: (i) peak signal-to-noise ratio (PSNR), and (ii) structural sim-

ilarity (SSIM) [41]. Higher PSNR and SSIM correspond to accurate image

prediction.

3.4. Comparison with Existing Techniques

We compared MGAN with three widely used GANs: CycleGAN [16], Pix2Pix [7],

and WGAN [42]. All the compared models were used to predict the 12-month-

old brain MRI from the 2-week-old brain MRI. The prediction task is challeng-

ing due to the extent of changes between the two time points (Fig. 1). For fair

comparison, we re-trained the GANs for optimal parameters.

The image prediction results shown for the compared models in Fig. 6 indi-

cate that MGAN yields T1w and T2w image predictions that are closer to the

ground truth with richer details than the other models. The error maps indicate

that MGAN achieves the lowest error among all methods, especially around the

ventricles and cerebral cortex. Summary statistics for PSNR and SSIM are re-

ported in Table 1. MGAN achieves significant improvement (p < 0.05, paired

t-test) for PSNR and SSIM over other methods.

3.5. Ablation Study

Here, we investigate the effectiveness of three components of MGAN — the

SFT block, quality-guided learning, and the hybrid loss function. The influence

of frequency transform on longitudinal prediction was verified using two vari-

ants of the metamorphic generator: (i) incorporating the SFT block equipped

with both the frequency and spatial transform branches, and (ii) replacing the
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(a) T1w image predictions

(b) T2w image predictions

Figure 6: Longitudinal image prediction with various GANs.
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Table 1: Summary statistics of PSNR and SSIM for different GANs.

T1w T2w

Method PSNR SSIM (%) PSNR SSIM (%)

CycleGAN 22.6±1.1 74.2±2.8 21.8±1.0 75.3±2.2

Pix2Pix 23.0±1.3 76.2±3.4 22.9±0.9 77.2±2.8

WGAN 24.1±1.2 79.4±2.4 23.4±0.9 79.5±2.0

MGAN 26.4±0.9 84.0±2.2 25.5±0.7 84.8±1.8

SFT block with a conventional spatial transform branch. We also investigated

the efficacy of quality-guided learning by conducting experiments with/without

quality maps generated by the discriminators. The configurations are summa-

rized as follows:

• Backbone: SFT with only spatial transform branch and without quality

guidance.

• SFT-NCG: SFT without quality guidance.

• ST-CG: Conventional spatial transform and quality guidance.

• MGAN: SFT and quality guidance.

Table 2 indicates that MGAN achieves the highest PSNR and SSIM with

a significant improvement (p < 0.05, paired t-test). SFT-NCG and ST-CG

perform better than Backbone, validating that wavelet-based feature mapping

and quality-guidance improve prediction accuracy.

Fig. 7 shows that Backbone and ST-CG predict the 12-month scan poorly

due to the spatial complexity of the cortical ribbon. SFT-NCG generated un-

satisfactory results at difficult-to-predict regions as indicated by the high values

in the error map. MGAN yields the most accurate prediction, which matches

the ground truth both in terms of tissue contrast and anatomical structure.

We investigated the contribution of the uncertainty-aware loss LQ, tex-

ture loss LT, and frequency loss LF. Table 3 indicates that including all loss
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(a) T1w image predictions

(b) T2w image predictions

Figure 7: Longitudinal image prediction results obtained with different MGAN configurations.
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Table 2: Ablation study with different MGAN configurations.

T1w T2w

Model PSNR SSIM (%) PSNR SSIM (%)

Backbone 24.9±0.5 80.3±1.3 24.2±0.4 81.1±1.2

SFT-NCG 25.2±1.0 83.7±2.0 25.1±0.9 83.0±1.6

ST-CG 25.9±1.2 82.5±2.0 24.8±1.0 82.2±1.5

MGAN 26.4±0.9 84.0±2.2 25.5±0.7 84.8±1.8

terms (Eq. 6) yields the highest PSNR and SSIM. In contrast, using only the

uncertainty-aware loss yields the lowest PSNR and SSIM. This implies that both

the texture and frequency losses improve the predictive power of the generator.

Table 3: Ablation study with different combinations of losses.

T1w T2w

LQ LT LF PSNR SSIM (%) PSNR SSIM (%)

X 26.0±1.3 83.3±1.4 25.1±0.8 83.1±1.4

X X 26.2±1.0 83.5±2.0 25.3±0.9 83.7±1.9

X X 26.1±1.0 83.7±1.8 25.2±0.8 84.3±1.7

X X X 26.4±0.9 84.0±2.2 25.5±0.7 84.8±1.8

3.6. Longitudinal Prediction

We demonstrate the effectiveness MGAN in predicting a 12-month-old image

from any earlier time-point, i.e., 2 weeks, 3 months, 6 months, and 9 months.

Predictions from the forward and backward prediction paths are evaluated. The

predicted images along with the error maps and uncertainty maps are shown in

Fig. 8. The quantitative results are presented in Table 4. Despite the significant

18



(a) T1w image predictions

(b) T2w image predictions

Figure 8: Longitudinal prediction results for different time points. (Left) The forward path

predicts a 12-month-old image from images at earlier time points. (Right) The backward path

predicts images of earlier time points from a 12-month-old image.

differences in appearance and structure, MGAN is able to predict the images

with great resemblance to the ground-truth images in both tissue contrast and

anatomical structure. This is validated by the high PSNR and SSIM values.

The corresponding epistemic and aleatoric uncertainty maps of the predictions

are also shown in Fig. 8. The epistemic and aleatoric uncertainty is positively
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Figure 9: Quality visualization for the 0-to-12-month-old prediction.

correlated with prediction errors.

Table 4: Statistical summary of evaluation metrics for longitudinal prediction.

T1w T2w

PSNR SSIM(%) PSNR SSIM(%)

fo
rw

ar
d

p
re

d
ic

ti
on 0m→12m 26.4±0.9 84.0±2.2 25.5±0.7 84.8±1.8

3m→12m 26.1±1.3 84.7±4.0 25.7±0.9 83.8±2.2

6m→12m 27.7±2.2 89.1±3.6 26.8±1.8 87.5±2.8

9m→12m 29.0±2.9 89.9±4.6 28.5±1.9 88.3±2.8

b
ac

k
w

ar
d

p
re

d
ic

ti
on 12m→0m 27.1±0.9 86.7±0.2 26.5±1.1 86.7±1.2

12m→3m 26.9±1.7 86.9±3.1 26.4±1.2 86.4±2.2

12m→6m 27.8±1.7 89.7±2.7 27.1±1.8 89.4±3.2

12m→9m 28.4±2.5 90.5±3.1 27.6±2.2 90.1±3.4
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4. Discussion

In this paper, we presented a metamorphic GAN that can be trained to

predict infant brain MRI from one time point to another. Longitudinal predic-

tion of infant brain MRI is challenging owing to rapid contrast and structural

changes in the first year of life. To capture these changes, our MGAN incor-

porates a SFT block and integrates quality-guided learning via a hybrid loss

function.

We compared our method with existing generative adversarial networks, such

as CycleGAN, Pix2Pix, and WGAN. We found that these networks are effective

in prediction structures at a global scale but are less effective in predicting

fine-scale structural details, especially in the cortex (Fig. 6). In contrast, our

prediction network capture spatially heterogeneous changes by employing both

spatial and frequency transforms to generate feature maps. Particularly, DWT-

based frequency transform decomposes the image into low and high frequency

components to help the translation of image contrast and subtle details (Fig. 7).

The quality-guided learning strategy involves using an estimation map for

characterizing voxel-wise prediction quality. Fig. 9 shows that regions with

complex structures, e.g., the cerebral cortex, are associated with higher bias

values. In contrast, regions with simple structure, e.g., lateral ventricles, are

associated with lower bias values. As shown in Fig. 7, employing the quality-

driven LQ loss results in more accurate predictions at challenging regions with

complex patterns. Additionally, the wavelet decomposition and gram matrix

enhance the similarity between predictions and ground truths both in terms of

content and style (Table 3).

5. Conclusion

We have proposed a trustworthy learning-based framework for longitudinal

postnatal brain MRI prediction. The key feature our method is the utilization

of wavelet transform to enable image prediction at multiple frequencies. We

utilize quality guidance to strengthen the learning of prediction of challenging
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regions. We employ a hybrid loss function and a multi-scale discriminator to

capture differences in global intensity, style, and structure. Experimental results

demonstrate that our method achieves superior performance over several state-

of-the-art image-to-image translation networks. Despite the effectiveness of our

method, it is currently trained with paired data. In future, it can be extended

to be trainable with unpaired data.
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