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ABSTRACT
Federated learning achieves joint training of deepmodels by connecting decentralized data sources,
which can significantly mitigate the risk of privacy leakage. However, in a more general case,
the distributions of labels among clients are different, called “label distribution skew”. Directly
applying conventional federated learning without consideration of label distribution skew issue
significantly hurts the performance of the global model. To this end, we propose a novel feder-
ated learning method, named FedMGD, to alleviate the performance degradation caused by the
label distribution skew issue. It introduces a global Generative Adversarial Network to model
the global data distribution without access to local datasets, so the global model can be trained
using the global information of data distribution without privacy leakage. The experimental
results demonstrate that our proposed method significantly outperforms the state-of-the-art on
several public benchmarks. Code is available at https://github.com/Sheng-T/FedMGD.

1. Introduction
With the process of deep learning technology, massive training data play a vital role. However, due to some

security or privacy issues in some scenarios, access to data is under strict restriction. The data cannot flow out of
the corresponding institution, and the lack of data results in the ineffective training of machine learning models. The
above data dilemma significantly limits the performance of the trained model and even leads to serious consequences.
For example, Watson, a famous artificial intelligence in the medical field, may cause death once it mistakenly gives
a drug. To alleviate the above dilemma, a novel framework for machine learning, federated learning [1] is proposed,
which provides more data sources for model training through multi-party collaboration without sharing local private
data. However, there is generally a large difference in the distribution among clients, which leads to performance
degradation of conventional federated learning methods, named Non-Independent and Identically Distributed (Non-
IID). Non-IID is one of the important causes of training bias in federated learning, and it has different expressions in
different scenarios. Non-IID scenarios in federated learning are carefully delineated in [2], where data heterogeneity
caused by differences in the distribution of labels is called label distribution skew. This is the most common scenario
in distributed environments that manifests itself in a different distribution of labels among clients, for example, when
the client’s data is limited by factors such as geography, the distribution of labels appears significantly different —
pandas are only found in China or zoos.

To this end, several methods [3, 4, 5, 6] are proposed to restrict the differences between local and server models
in the parameter space, which have shown success in some applications. However, when the data or labels among
clients are highly heterogeneous, the above approaches can not take full use of the information in dispersed data, and
degrade the performance of the aggregated global model. Therefore, a potential way to address the label distribution
skew issue in federated learning is to model the global data distribution among clients. Most existing global data
distribution modeling federated learning methods require some auxiliary information such as proxy dataset [7, 8] or
pre-known knowledge [9, 10, 11]. Unfortunately, the requirement of these methods is to directly collect private data or
data information from clients, which violates the privacy preserving policy and is not applicable to federated learning.

In this paper, we propose a novel federated learning method, named FedMGD, which allows the global model to
obtain global information about data distribution across clients without incurring the privacy leakage issue from clients
and thus improves its performance. Specifically, we use the global distribution information obtained from modeling
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to refine the aggregation model, by which we can reduce the differences in distribution among clients and thereby
mitigate the hazards caused by label distribution skew. In addition, to ensure that the learned global information
generated is more similar to the real data, we constrain by both image authenticity and semantic authenticity, which
makes FedMGD still maintain high performance in some noisy datasets. To achieve our design goal, our federated
learning scheme follows a two-stage procedure. The advantage of this design is to avoid the inability of the model to
accurately describe the local label distribution information of the client after federated learning aggregation. In the
first stage, we adopt a federated Generative Adversarial Network (GAN) framework, where the generator in the server
generates samples as the ones from clients and the discriminator in the corresponding client distinguishes generated
samples from the local ones. After the training of federated GAN accomplishes, the generator can effectively capture
global information about data distribution across clients. However, directly aggregating the generator parameters used
by the federated GAN is also affected by the label distribution skew, which is not conducive to modeling the global
distribution. Therefore, we adapted the architecture of the federated GAN and introduced a Realistic Score to more
accurately describe the distribution information of the local data. In the second stage, we first aggregate the local trained
models from clients and then refine the aggregated model using the samples synthesized by the above generator. In
this way, the aggregated global model can significantly benefit from the global information captured by the generator.

In summary, our main contributions are listed as follows:
• We propose a novel federated learning method, FedMGD, which achieves the global modeling of decentralized

data distribution by Realistic Score, and effectively eliminates the performance degradation caused by label
distribution skew without privacy leakage.

• The experimental results demonstrate that the proposed FedMGD significantly outperforms the state-of-the-art
on several public benchmarks.

• A series of ablation experiments demonstrate that FedMGD can correctly model the global data distribution in
the scenario of label distribution skew, and provide an additional high-quality data source for downstream tasks.

2. Related Work
2.1. Federated Learning

Federated Learning (FL) is a distributed machine learning scheme that aims to address data collaboration and
protect privacy preserving. It allows multiple participants to train machine learning models collaboratively without
exposing local data. Federated learning was first proposed by Google [1] to address the problem of updating models
locally on Android phones for users. Since federated learning provides an effective solution to the current "Isolated
Data Island" problem [12], it has been gradually used in finance [13], security [14], healthcare [15, 16, 17, 18], rec-
ommendation systems [19, 20, 21], and other fields.

However, the collaborative multi-party approach in federated learning introduces new issues, mainly in terms of
data privacy security and Non-IID datasets. For data privacy security, it has been shown in [22] that federated learning
does not fully guarantee data security, and even only gradient exchange among the participants may cause data privacy
leakage. The current popular solutions mainly combine Secure Multi-Party Computation (MPC) and Differential
Privacy (DP) to ensure privacy security issues on the federated learning process and results [23, 24, 25]. On the other
hand, since most of the real world data are distributed in a Non-IID way, this distribution makes the training of models
in federated learning very difficult. [2] provides a detailed division of Non-IID scenarios in federated learning, in which
the Non-IID caused by the behaviors and habits of different participants is called Feature distribution skew [26, 27];
and the difference of label distribution among participants due to the limitation of geographical location and other
factors, this Non-IID is called Label distribution skew, which is also the problem focused on in this paper.
2.2. Label Distribution Skew in Federated Learning

The label distribution skew in federation learning refers to the differences in the distribution of data labels among the
clients participating in federated learning. FedAvg [1] is a classical algorithm for solving federated learning problems,
which has attracted wide attention because of its simplicity and low communication cost. It learns knowledge from the
decentralized data through the transfer and aggregation of model parameters. Unfortunately, in the scenario of label
distribution skew, the performance of FedAvg will drop significantly [7].
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Recently, many studies have developed different solutions to solve the problem caused by label distribution skew.
Some studies restrict the differences between local and server models in the parameter space. For example, Fed-
Prox [3] introduced dynamic regularization to ensure the stability of the model in a highly heterogeneous environment
by penalizing updates away from the server model. SCAFFOLD [4] corrects deviation in local updates by introducing
additional control variables. However, these approaches focus on reducing the differences between the local and global
models without taking full advantage of the information contained in the dispersed data.

Other methods are based on knowledge distillation [9, 10, 11]. By using a small portion of the data collected from
the clients to guide global model training, the global model can integrate knowledge from the local and mitigate the
negative effects of aggregating different data distributions. In addition to the above methods, there are many studies
that also strive to reduce the hazards due to label distribution skew by changing the global target or data distribution.
Among them, several studies [5, 6] force the data to obey uniform distribution bymodeling the target distribution. Other
studies [7, 8, 28] suggest that collecting a small portion of data from clients to build a globally shared dataset can reduce
the differences in data distribution across clients and improve the performance of the model on label distribution skew
data. However, the prerequisites for collecting data from clients may make this approach infeasible in many scenarios
with strict privacy requirements. Therefore, we need a method to mitigate the label distribution skew problem in
federated learning by obtaining the same data as the client label distribution without violating user privacy.

To solve the privacy issues associated with data collection in federated distillationmethods, Zhu et al. [29] proposed
FedGen, a data-free knowledge distillation method. It integrates knowledge from the prediction results of the local
model by learning a lightweight generator at the server and then distributes the learned knowledge via broadcast and
as an inductive bias to regulate the local training. Although FedGen does not collect data from the client directly, the
client needs to count and upload the label information of this participating training during each round of communication
with the server. This way of obtaining the label distribution also causes the leakage of local distribution information.
2.3. GAN in Federated Learning

In order to better learn global information from the decentralized data distribution, we introduce a distributed GAN
to model the global data distribution, thus alleviating the performance degradation caused by label distribution skew
in federated learning.

In the traditional GAN [30], the generator and discriminator learn the data distribution through mutual confronta-
tion. Distributed GAN is another application of GAN in a distributed environment. In federated learning, distributed
GAN is mainly active in two aspects: one is how to use GAN to attack the client in order to obtain its private data. In
the studies of Hitaj et al. [22] and Wang et al. [31], they used GAN to perform recovery attacks on the client’s private
data from other clients and the server side, respectively. The other focuses on how to generate higher quality data
within the constraints of federated learning environments. For example, McMahan et al. [32] propose to train a gener-
ator with different privacy protection levels in federated learning, allowing the model to examine data without direct
access to real data. FedGAN [33] was proposed to train GAN by parameter exchange in a federated scenario. Hardy et
al. [34] proposed a new GAN structure for a distributed environment. On this basis, Chang et al. [35] supplemented
the missing modes of medical images through generation.

However, these methods default to data belonging to IID, which is not suitable for data modeling in label offset
scenarios. Recently, Yonetani et al. [36] proposed a strategy to solve the problem of label distribution skew in different
clients, called Forgiver-First Update (F2U). Although F2U can be used in learning the distribution of some rare classes,
the unsupervised approach used ignores the importance of labeling (semantic) information. In the unsupervised label
distribution skew scenario, the generated data is likely to be concentrated in only a few classes, which is not conducive
to modeling the global data distribution, and thus the use of labels to constrain the type of generated data is necessary.
In addition, unlabeled data bring new challenges for the subsequent training of downstream models.

To address the above issues we propose an update of Realistic Score and apply it to FedMGD. Realistic Score adds
a semantic truth restriction on the data under different distributions and can better model the data distribution under
label distribution skew.

3. Background and Motivation
3.1. Federated Learning Objective

A Federated learning framework typically include multiple participants who collaboratively train a global consen-
sus model by learning the model locally and periodically communicating with a central server. Suppose thatK clients
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Figure 1: The process of communication between the server and clients in the Generative Adversarial Stage of FedMGD.

are in the federated learning system, and the overall optimization objective is defined as:

min
!
F (!) =

K∑
i=1

Ni
N
Fi(!), (1)

where ! is the parameter of the global model. For client i ∈ [K], we define the dataset as �i = {(x(i)m , y
(i)
m )}Ni

m=1,where Ni is the number of data samples. As such, the global dataset across clients can be denoted as � = ∪Ki=1�i,and the total number of participating training data N =
∑
iNi. In each communication round, client i receives

model parameters ! from the central server and optimizes the local objective function using local data samples, i.e.,
Fi(!) =

1
Ni

∑Ni
m=1 (!; x(i)m , y(i)m ), where (⋅) is the local loss function in each client, e.g., cross-entropy. In this paper,

we consider that Fi(!(t)) is non-convex and use a local optimizer such as stochastic gradient descent to process the
local training update, which is widely used in existing federated learning works [1, 3]. In the communication round
t, client i samples B mini-batches from its dataset �i and performs E local epochs to minimize the objective function
Fi(!) as:

!(t+1)
i = !(t)

i −
E∑
e=1

�i▿Fi(!
(t)
i,e; b), (2)

where b ∈ B is one batch in the local epoch e, �i is the learning rate of local training, and ▿Fi(⋅) is the local model
gradient.
3.2. Design Motivation

In the traditional distributed IID assumption, the data samples �i are uniformly and randomly distributed among
different clients, when E�i [Fi(!)] = F (!). However, Non-IID data distribution is a more practical issue caused by
different user habits, geographic locations, and other factors, the client optimizes toward different local optimal target
Fi. As a result, it leads to a significant degradation or even failure to converge. For two different clients i and j, the
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Figure 2: The process of communication between the server and clients in the Federated Enhancement Stage of FedMGD.

input data x and its corresponding label y, (x, y) ∼ pi(x, y) denotes a sample data drawn randomly from the local data
distribution in the client i. In formal, for the different two clients i and j, the Non-IID represents pi(x, y) ≠ pj(x, y).
p(x, y) can be written in the form of p(x|y)p(y), and we pi(x|y) = pj(x|y) refer to the case of but pi(y) ≠ pj(y) as labeldistribution skew.

Some existing works have developed improved algorithms to address the label distribution skew problem, which
can be divided into two categories: (1) Designing new aggregation rule [3, 4, 9]. They have been shown the less
efficiency and also incur large performance degradation. (2) Modeling the global distribution [7, 8, 28]. They require
a gloally shared dataset to reduce the client-side label distribution differences. However, this approach relies on the
way data is collected from local clients, which makes this approach unusable in scenarios due to the strict privacy
policy in federated learning.

According to the above statements, how to model the global distribution without sharing any private data from local
clients should be seriously considered. To address this problem, we propose a new federated learning method, named
FedMGD, to model the global distribution by introducing a global generative adversarial network to obtain information
about the distribution of the global data, which is not required any private data in clients and only manipulate the
distribution. We build the generator  on the server side, which is trained to model the global data distribution across
a given client to refine the aggregation model and improve the compatibility of the model between clients.

In particular, in order to avoid the federated learning aggregated model returning wrong local label distribution
information and to obtain awell-initialized local model before the federated learning training starts, we divide FedMGD
into two stages: the adversarial generation stage and the federated enhancement stage. As shown in Figure 1, in the
generative adversarial stage, we adopt the Generative Adversarial Network framework, where generator  is set on
the server side and the discriminators {i}Ki=1 are set on the corresponding clients, respectively. Additionally, we
introduce local classifiers {i}Ki=1, one for each client. These classifiers are respectively trained using local data and
are aimed to discriminate the semantic consistency between the predictions of the classifier and the preset labels. In
the federated enhancement stage, the local classifiers are initialized by the ones trained in the generative adversarial
stage and then aggregated into a global model in the server. As shown in Figure 2, the global model is refined with
the samples synthesized by generator  and used to update the local model in the clients, which significantly reduces
weight divergence during the federated learning. The detailed training procedure of FedMGD will be introduced in
the next section.
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Algorithm 1 FedMGD: Generative Adversarial Stage.
Input: The number of clients K , local datasets �i.
Output: Generator , classifier {i}Ki=1 and discriminator {i}Ki=1.
1: Initialize the parameters of generator (0), classifier {(0)

i }Ki=1 and discriminator {(0)
i }Ki=1;2: for t = 1, ..., T do

3: Uniformly sample a set of clients (t) ∈ [K];
4: Set the preset labels by server sampling and synthesize dataset �(t)syn by the generator (t−1).
5: Send the synthesized dataset �(t)syn to a set of clients (t);
6: for each client i ∈ (t) in parallel do
7: Train discriminator (t)

i in client i using �i and �(t)syn by Eq. (7);
8: Train classifier (t)

i in client i using �i by cross entropy loss;
9: Compute Realistic Score S(i,t)

real for client i on �(t)syn by Eq. (5);
10: end for
11: Select client k according to {S(i,t)

real}i∈ by Eq. (6);
12: Update generator (t) using the loss computed by client k as Eq. (7).
13: end for

4. Method
In this section, we elaborate on our proposed method. We proposed the method which consists of two stages,

generative adversarial stage and federated enhancement stage. Thenwe describe the above stages in detail in Section 4.1
and Section 4.2, respectively.
4.1. Generative Adversarial Stage

To prevent the leakage of real data from clients, we split the conventional GAN into two parts: the generator  on
the server side and discriminators {i}Ki=1 on the client side. In this way, the server can access synthesized samples
from global data distribution by generator  but without the leakage of real data from clients. Let pi denote the datadistribution of the i-th client, where i ∈ [K], and pg denote the distribution learned by generator . The goal of
generator  is to learn the global data distribution pdata. In the conventional distributed GAN [34], the distribution of
different clients is assumed to follow the same distribution, that is, pi = pj for every pair of different clients, where
i ≠ j. Hence, generator  is trained to approximate the distribution of real data pdata by fitting 1

K
∑K
i=1 pi(x). However,due to the effect of label distribution skew, the distribution of local clients is significantly different from each other, that

is, pi ≠ pj . Therefore, conventional distributed GAN fails to model global data distribution in the federated learning
with label distribution skew.

To solve this problem, an approximate solution was proposed in F2U [36], which points out that pmax(x) as Eq. (3)can be regarded as the global optimum for pdata in distributed GAN.

pmax(x) =
1
Z
max
i
pi(x),

Z = ∫xmax
i
pi(x)dx,

(3)

where Z is the normalization constant, pmax(x) contains all classes across clients, including rare classes that are only
available on a few clients. Since it is infeasible to obtain the true distribution of each client pi(x), we can leverage an
alternative way to update the generator . That is, for the synthesized sample x̂, the generator  selects the discriminator
with the largest discriminant probability by Eq. (4) to be updated, which is given as follows:

max(x̂) = max
i
i(x̂) (4)

This training approach allows learning the rare classes and avoids the negative effect of poorly trained model on
the clients. However, the unsupervised approach used by F2U ignores the importance of labeling information. In the
Tao Sheng et al.: Preprint submitted to Elsevier Page 6 of 22
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unsupervised label distribution skew scenario, the generated data is likely to be concentrated in only a few classes,
which is not conducive to modeling the global data distribution, and thus the use of labels to constrain the type of
generated data is necessary. In addition, unlabeled data bring new challenges for the subsequent training of downstream
models.

To address the issues mentioned above, we propose a modeling method that can describe the global distribution
more comprehensively without compromising client privacy. In the proposed method to better guide the generator 
for global modeling, we set the discriminatori and the classifier i on the client side to constrain the generated data interms of both semantic truth and image truth, respectively. For the synthetic samples whose preset labels are consistent
with the local labels, i and i give scores in terms of both realism and semantics, which in turn guide the generator for the next update. The communication process between the server and the client in the FedMGD generative
adversarial stage is shown in Figure 1. Specifically, in the communication round t, the generator (t) synthesizes dataset
�(t)syn and feeds them to the randomly selected clients. The synthetic dataset �(t)syn is a batch of samples x̂ generated
according to the specified label ŷ. Discriminator (t)

i and classifier (t)
i in the selected client i output discriminant

probability(t)
i (x̂) and classification probability (t)

i (x̂), respectively. Then, we further measure the difference between
the given label ŷ and classification probability (t)

i (x̂) using cross entropy criterion. Combining discriminant score and
classification score, we introduce a novel Realistic Score S(i,t)

real for client i at training round t as follows:

S(i,t)
real = (t)

i (x̂) − xen
((t)

i (x̂) , ŷ
)
, (5)

wherexen(⋅) denotes cross entropymetric. The Realistic ScoreS(i,t)
real is used to measure both the realism and semantics

of generated images, which provides more comprehensive information for generator . We verified the validity of
Realistic Score in Section 5.3.1.

To model the global distribution of data across clients with label distribution skew, we follow and improve the solu-
tion of F2U. Specifically, we select the discriminator according to Realistic Score S(i,t)

real, instead of simple discriminant
probability. The selected client k, which is trained with generator (t), can be denoted as:

k = arg max
i∈(t)

S(i,t)
real, (6)

where (t) denotes the set of clients selected by the server in the current training round.
Finally, the objective function of the proposed GAN can be presented as:

min(t) max(t)
k

V ((t)
k ,(t)) =Ex∼pdata(x)[log(t)

k (x)] +

Ez∼pg(z)[log(1 −(t)
k ((t)(z|ŷ))) + xen(ŷ,(t)

k ((t)(z|ŷ)))],
(7)

where z is random Gaussian noise. The overall algorithm for generative adversarial stage is shown in Algorithm 1.
In this way, we can obtain additional global data without violating client privacy for federated learning, which

can further improves the performance of the global model in the scenario of label distribution skew. In addition, we
adopt a conditional generator in our GAN, which synthesizes samples by the given labels in a controllable manner.
Specifically, the training process ensures that the data for each class is fully trained by preset labels for the generator. In this case, the preset labels are sampled using Server Sampling, i.e., uniform sampling among all classes at the
server side. We will discuss the proposed sampling method in Section 5.3.4. Finally, the classifier from the generative
adversarial stage can also be directly used in the subsequent federated enhancement stage.
4.2. Federated Enhancement Stage

In federated enhancement stage, we exploit the global generator  trained in generative adversarial stage to alleviate
the performance degradation caused by label distribution skew issue. By modeling the global distribution, the samples
synthesized by generator  can effectively reduce the differences in label distribution among clients. Specifically, the
training procedure of this stage can be introduced as follows:

1. We initialize the classifiers {i}Ki=1 of clients with the ones trained in generative adversarial stage.
Tao Sheng et al.: Preprint submitted to Elsevier Page 7 of 22
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2. In the communication round t, we uniformly sample a subset of clients (t) ⊆ [K] and train their classifiers
using local data.

3. We upload the parameters of classifiers {(t)
i }i∈(t) to server and further aggregate the uploaded parameters into

the global model ̃(t).
4. Generator  synthesizes samples, which follow the global distribution of data across clients, to refine the aggre-

gated global model ̃(t). Specifically, in this step, we only select generated samples, whose labels are consistent
with the predictions of global model ̃(t), to train global model ̃(t).

5. The trained global model ̃(t) is downloaded to the corresponding clients in (t) and the training in the next
round continues.

The overall algorithm is summarized into Algorithm 2. In this stage, we use the knowledge obtained from global
modeling to refine the aggregation model and mitigate the hazards caused by the label distribution skew problem. In
this way, we re-correct the problem that the aggregation model is inconsistent with the global optimization direction
due to local distribution differences. And because the generator provides additional globally distributed data to the
aggregation model, it further improves the performance and generalization of the aggregation model. We prove the
validity of the proposed method in Section 5.2.
Algorithm 2 FedMGD: Federated Enhancement Stage.
Input: The number of clients K , generator , local datasets ∪Ki=1�i, initial classifier parameters {!̂i}Ki=1.
Output: The global classifier ̃(t).
1: for i = 1 to K do
2: Initialize classifier parameters by !(0)

i ← !̂i;
3: end for
4: for t = 1 to T do
5: Uniformly sample a subset of clients (t) ⊆ [K];
6: for each client i ∈ (t) in parallel do
7: Train classifier (t)

i in client i for E epochs;
8: Send the parameters !(t)

i of classifier (t)
i to the server;

9: end for
10: Aggregate client model weights !(t)

i by:
!(t) =

K∑
i=1

Ni
N
!(t)
i

where N is the number of all data across clients, Ni is the number of data for client i, and K is the number of
clients;

11: Set the preset labels by server sampling and synthesize dataset �(t)syn by the generator .
12: Select the consistent synthesize samples �(t)syn to refine the global classifier ̃(t);
13: Download the parameters !(t) to update the ones in clients [K].
14: end for

5. Experiments
In this section, we experimentally verify the effectiveness of FedMGD, and summarize the implementation details

in Section 5.1. We compare FedMGD with several baseline algorithms in Section 5.2 and further analyze FedMGD
by ablation experiments in Section 5.3.
5.1. Experimental Setup
5.1.1. Dataset

We conduct experiments on the following image datasets: EMNIST [37], FashionMNIST [38], SVHN [39] and
CIFAR10 [40]. Among them, EMNIST includes 26 handwritten letters with different kinds of labels and FashionM-
NIST contains 10 different kinds of clothing images. SVHN is a dataset consisting of different house numbers in street
Tao Sheng et al.: Preprint submitted to Elsevier Page 8 of 22
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(a) The EMNIST dataset is divided under 5 clients according to the Dirichlet distribution.
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(b) The FashionMNIST dataset is divided under 5 clients according to the Dirichlet distribution.
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(c) The SVHN dataset is divided under 5 clients according to the Dirichlet distribution.

Figure 3: The specific distribution of client labels in different datasets with 5 clients and label distribution skewness (�).
Where, the circle represents that the client contains that class of data, and the circle size represents the proportion of that
class of labels in the total data of all clients. From left to right � is 0.01, 0.05, and 0.1.

view images. CIFAR10 is a dataset including 10 classes of color images from the real world, making the task more
difficult because it contains more noise. We divide 10% of the data as public test set and distribute the rest data over
the clients for locally training and testing. The whole process is controlled by random seeds. To ensure the consistency
of image resolution, we resize all images to 32 × 32.
5.1.2. Distribution of Labels among Clients

Following the existing works [41, 9, 29], we use Dirichlet distribution Dir(�) to simulate the data distribution
among clients in the scenario of label distribution skew, where the value of � controls the degree of label distribution
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(a) The EMNIST dataset is divided under 10 clients according to the Dirichlet distribution.
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(b) The FashionMNIST dataset is divided under 10 clients according to the Dirichlet distribution.
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(c) The SVHN dataset is divided under 10 clients according to the Dirichlet distribution.

Figure 4: The specific distribution of client labels in different datasets with 10 clients and label distribution skewness (�).
Where, the circle represents that the client contains that class of data, and the circle size represents the proportion of that
class of labels in the total data of all clients. From left to right � is 0.01, 0.05, and 0.1.

skew. The larger the value of � means the smaller the difference in label distribution among clients. Specifically, we
set � to 0.1, 0.05, and 0.01 to compare the effect of � on algorithms.

In Figure 3, we show the specific distribution of client labels under 5 clients and label distribution skewness (�).
The circle represents that the client contains that category of data, and the circle size represents the proportion of that
class of labels in the total data of all clients. In addition, we present in Figure 4 the division of the different datasets
according to the Dirichlet distribution for 10 clients.
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Table 1
Accuracy comparison on the global test set. FedMGD and state-of-the-art methods train the same model on scenarios
with different data sets and data distributions and test the accuracy of the model using a global test set (%).

Dataset
Client
Num

� Local FedAvg FedProx FedDF FedGen SCAFFOLD FedMGD

EMNIST

5
0.01 24.36±0.23 86.56±0.95 85.43±0.61 88.06±0.37 82.41±2.34 85.30±0.37 89.00±0.93 (↑2.44)
0.05 33.20±0.29 89.33±0.16 87.97±0.40 89.27±0.27 86.86±0.89 89.22±0.21 91.15±0.35 (↑1.82)
0.1 36.86±0.26 90.85±0.31 89.36±0.55 90.32±0.26 90.12±0.63 91.65±0.33 91.52±0.17 (↓0.13)

10
0.01 13.38±0.08 65.98±3.95 77.09±1.49 65.72±1.33 66.74±8.45 69.23±1.47 85.04±0.81 (↑15.82)
0.05 19.03±0.03 82.32±0.35 83.23±0.71 83.19±1.27 81.05±1.69 84.06±1.24 84.87±0.29 (↑0.81)
0.1 32.22±0.02 88.69±0.47 87.68±0.47 88.97±0.32 88.28±0.49 87.88±0.81 87.83±0.33 (↓1.14)

Fashion
MNIST

5
0.01 25.71±0.85 68.38±6.69 69.64±2.14 71.02±0.72 55.67±7.13 55.58±1.90 84.04±0.58 (↑13.02)
0.05 39.54±1.04 83.37±1.84 81.25±1.13 83.67±0.80 79.61±2.59 77.27±0.68 87.57±0.40 (↑3.90)
0.1 49.15±0.19 88.28±0.89 86.68±0.89 87.53±0.95 84.15±2.21 86.10±1.20 89.29±1.33 (↑1.01)

10
0.01 20.65±0.85 53.24±3.20 73.03±2.24 57.48±1.91 56.74±3.61 45.42±8.53 74.37±4.44 (↑1.34)
0.05 31.23±0.21 80.32±3.25 84.30±1.12 79.65±4.39 80.95±1.23 81.70±0.49 85.71±0.45 (↑3.90)
0.1 41.61±0.73 85.94±1.51 86.76±0.17 83.97±3.62 85.23±2.44 86.50±0.45 86.79±0.90 (↑0.29)

SVHN

5
0.01 18.11±0.09 73.07±0.25 76.70±0.92 72.67±0.79 57.57±1.47 83.05±0.87 84.14±0.91 (↑1.09)
0.05 26.80±0.38 84.98±0.92 85.60±0.68 84.99±0.69 67.34±0.84 87.66±0.69 88.62±0.39 (↑0.96)
0.1 29.23±0.44 88.43±0.91 87.91±0.18 88.65±0.22 68.45±4.17 89.83±0.47 90.47±0.37 (↑0.64)

10
0.01 14.26±0.18 46.39±1.90 61.71±1.58 47.47±2.56 24.41±1.23 53.39±0.99 76.00±0.79 (↑14.29)
0.05 13.17±0.06 70.62±0.93 75.09±0.52 72.63±2.20 52.02±2.94 76.04±1.27 76.87±1.26 (↑0.83)
0.1 14.12±0.95 80.09±0.51 78.11±0.17 80.17±0.52 55.55±5.75 79.77±0.44 79.85±0.10 (↓0.32)

CIFAR10

5
0.01 16.69±0.39 46.73±0.90 51.71±1.21 47.25±1.40 26.73±1.19 54.46±0.99 62.61±1.54 (↑8.15)
0.05 28.72±0.39 61.61±1.36 60.08±3.19 60.27±0.39 41.86±0.47 64.28±1.43 66.52±0.49 (↑2.24)
0.1 33.00±1.16 65.77±1.77 65.07±0.40 64.58±0.95 46.61±2.88 67.37±1.02 69.31±0.33 (↑1.94)

10
0.01 15.76±0.04 38.79±4.97 45.98±0.58 37.06±1.26 26.67±1.10 46.09±2.50 55.13±0.72 (↑9.04)
0.05 24.95±0.87 52.96±0.24 51.68±0.32 52.07±1.97 27.51±1.76 53.01±0.74 58.26±1.31 (↑5.25)
0.1 35.04±1.54 58.15±0.94 56.36±0.26 57.89±1.00 43.08±0.55 60.04±1.08 60.60±0.62 (↑0.56)

5.1.3. Baselines
We compare FedMGD with the following baselines to evaluate the effectiveness of FedMGD from different per-

spectives. First, we compare FedMGD with several state-of-the-art federated learning benchmarks: FedAvg [1], Fed-
Prox [3], SCAFFOLD [4], FedDF [9], and FedGen [29]. In addition, to clearly demonstrate the performance of our
proposed method for global distribution modeling, we also compare a series of existing distributed generative adver-
sarial network methods: F2U [36], MD-GAN [34], and FedGAN [33].
5.1.4. Implementation Details

We implement all the code of FedMGD in PyTorch, where the structure of the generator andmultiple discriminators
is based on PatchGAN [42] and implement with the 9-blocks of ResNet [43]. For FedGen’s generator, we use the
structure in the original paper [29] to output the feature representation of samples after the input has passed through a
hidden layer. Furthermore, the classifier in all experiments is a standard Convolutional Neural Network (CNN), which
consists of two convolutional layers and one fully connected (FC) layer.

For all methods, we set the number of local training epochs E = 10, the size of training batch = 32, and are
optimized by Adam optimizer with an initial learning rate of 0.0002. For FedMGD, in the generative adversarial stage
the server sends generated data of size 64 to the clients for GAN training at each round of communication. In the
federated enhancement stage, the generator synthesizes samples of size 2048 per round to refine the global model. In
the classification task, we conduct several experiments and choose the accuracy after the last round of averaging as the
final result. In addition, some of the curves are smoothed for better presentation of the results. Finally, to ensure the
effectiveness of our method on different number of clients, we have verified it on 5 and 10 clients respectively.
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Table 2
Fairness comparison of FedMGD and state-of-the-art methods on local test sets. This is measured by the standard
deviation of the performance of the different algorithms on the local test set.

Dataset � FedAvg FedProx FedDF FedGen SCAFFOLD FedMGD

EMNIST
0.01 5.26 7.15 2.96 13.16 7.30 2.78 (↓0.81)
0.05 3.81 4.53 4.11 5.53 6.50 2.20 (↓1.61)
0.1 1.69 2.39 1.94 2.05 1.56 2.61 (↑1.05)

Fashion
MNIST

0.01 35.36 23.91 35.87 32.93 39.19 11.35 (↓12.56)
0.05 19.04 18.82 18.11 24.87 28.09 6.18 (↓11.93)
0.1 9.01 10.75 9.00 10.46 12.00 5.98 (↓3.02)

SVHN
0.01 39.31 21.90 39.12 33.21 13.83 10.01 (↓3.82)
0.05 8.79 3.21 9.54 8.31 2.41 3.93 (↑1.52)
0.1 4.55 3.38 3.98 17.43 1.81 1.56 (↓0.25)

CIFAR10
0.01 27.77 23.31 27.48 18.92 18.57 7.54 (↓11.03)
0.05 22.74 20.35 21.72 20.62 10.95 10.20 (↓0.75)
0.1 13.71 14.58 14.26 22.31 15.22 7.21 (↓6.50)

5.2. Comparison with State-of-the-art Methods
In this section, we compare the performance of FedMGD and state-of-the-art methods from two main perspectives:

global and local. First, from a global perspective, we use accuracy as a metric to verify the performance of FedMGD
and SOAT algorithms in the global test set. Then, from a local perspective, we compare the difference in performance
performance between FedMGD and state-of-the-art algorithms in terms of the fairness of the model among clients.
5.2.1. Accuracy on The Global Test Set.

We compare the accuracy of all algorithms in the global test set under different degrees of label distribution skew,
and the results are shown in Table 1. We observe that FedMGD outperforms other state-of-the-art methods in most
cases, especially in highly heterogeneous scenario. Figure 5 visualizes the performance of all algorithms under dif-
ferent degrees of label distribution skew. The figure shows that FedMGD exhibits more stable performance when
the heterogeneity of the data changes. Compared with other methods, FedGen’s accuracy decreases when there is
more noise in training data. This may be because the lightweight generator in FedGen is vulnerable to noise in the
sample, resulting in less information about the features captured from the sample. In contrast, FedMGD uses a more
sophisticated approach to data generation, thus ensuring the validity of the generated data.

To increase the degree of label distribution skew among the clients, we distribute the labels among 10 clients. Each
client has fewer label classes compared to the case with 5 clients. The results are shown in Table 1, where FedMGD
can still maintain higher performance compared to other algorithms in the 10 clients scenario. Figure 6 shows how the
performance of the different algorithms changes when the data is divided into scenarios with 10 clients. Compared
to the scenario with 5 clients, FedMGD has a greater performance improvement compared to the baseline algorithm
in the case of a more extreme label distribution. In other words, in scenarios with a more skewed label distribution,
the harm caused by the skewed label distribution to the model is reduced because FedMGD uses a global modeling
approach to correct the model.
5.2.2. Local Fairness of Different Models.

In the label distribution skew scenario, the same model may have different performance in different clients, and we
call this difference in performance between clients the local fairness of the model. We compare the performance of
models trained by FedMGD with state-of-the-art Methods on the client test set and demonstrate that the fairness of the
models on the client is effectively improved by learning the knowledge of the global distribution. We use the standard
deviation of the accuracy of the algorithms on the local test sets of different clients as a measure, and the results are
shown in Table 2. We have observed that FedMGD maintains a small difference in performance across clients in all
scenarios. This is due to the fact that FedMGD improves the compatibility of the global model under heterogeneous
data distribution by using global information to refine the aggregated model, thus allowing the model to perform more
fairly (with less performance difference) across clients.
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Figure 5: Visualization of algorithm performance at different degrees of label distribution skew. The case where the
number of clients is 5 is shown here.

5.3. Ablation Experiment
In this section, we mainly demonstrate the rationality of the proposed FedMGD through several ablation experi-

ments. First, we verify that the proposed Realistic Score is more suitable for the case of label distribution skewing by
comparing it with the collected data and F2U. Then, to demonstrate the quality of the data generated by FedMGD in
the case of skewed label distribution, we compare it with several distributed generation models. Finally, we validate
the rationality of FedMGD’s preset label sampling approach.
5.3.1. Realistic Score in FedMGD

In this subsection, we demonstrate from different perspectives that the proposed Realistic Score (Eq. (5)) is ben-
eficial for modeling the global data distribution. Before that, we need a downstream task that can use different data
sources and use the model accuracy of the downstream task as a measure. We choose to experiment on a federated
distillation algorithm (FedDF [18]) that requires an additional sources, and we can choose different data sources for
the additional distillation dataset.
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Figure 6: Visualization of algorithm performance at different degrees of label distribution skew. The case where the
number of clients is 10 is shown here.

(1) The effect of Realistic Score. We verify the impact of label information of data on model performance when
using real data sources as additional data sources. We use 5% real data collected from customers as an additional data
source and compare it under different label bias scenarios using unlabeled and labeled methods. As shown in Table 3,
the model has better performance when the labeled real data is used as an additional data source, but using the way the
data is collected may leak more users’ privacy. As shown in Figure 7, FedDF(labeled real data) and FedDF(unlabeled
real data) are the accuracies of training models using 5% of real data with and without labels, respectively. The figure
demonstrates that the accuracy of the trainedmodel using real labeled data is significantly higher than that of the trained
model using unlabeled real data. This proves that labels play an important role in model training and the necessity of
introducing semantic truth in the Realistic Score.

(2) The effect of generated data. In this experiment, we use the generator of FedMGD trained by Realistic Score as
the data source of FedDF and compare it with the collected real data with labels. The experimental results are shown in
Table 5. The generated data using the generator trained by Realistic Score as an additional data source can approximate
the effect of real data. We show the accuracy variation of the two approaches in Figure 7, where FedDF(labeled real
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Figure 7: Visualization of the federated distillation performance of different data sources in the label distribution skew
scenarios.

data) is the accuracy of training the model using 5% of the real data with labels, and FedMGD+FedDF(w/o real data)
is the accuracy of training the model using the generated data after modeling with FedMGD. The figure shows that
FedMGD can approximate an accuracy similar to that of using real labeled data by global modeling.

(3) Comparison with F2U. In this experiment, we compare the proposed Realistic Score with the generator trained
by the Largest Score proposed in F2U. As shown in Table 4, the generator of FedMGD trained by Realistic Score can
reach better results as the data source of FedDF. Because only the data realness is concerned in F2U and ignore
the label realness information, the Realistic Score approach is more suitable for global modeling of data under label
distribution skew. As shown in Figure 7, F2U+FedDF(unlabeled w/o real data) and FedMGD+FedDF(w/o real data)
are the accuracy curves of the trained models using F2U and FedMGD as the data source of FedDF, respectively. Since
FedMGD learns more information about the label distribution using Realistic Score, the accuracy of the training model
is higher than that of the F2U method.
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Table 3
Verify the importance of label information. We used 5% of the real data collected from the client as an additional data
source and compared it under different label distribution skew scenarios using both unlabeled and labeled methods.

Dataset Method �=0.01 �=0.05 �=0.1

EMNIST
FedDF(unlabeled real data) 87.63±0.30 89.27±0.27 90.32±0.26
FedDF(labeled real data) 89.69±0.49 (↑2.06) 90.91±0.17 (↑1.64) 90.97±0.30 (↑0.65)

Fashion
MNIST

FedDF(unlabeled real data) 71.02±0.72 83.67±0.80 87.53±0.95
FedDF(labeled real data) 74.03±1.14 (↑3.01) 85.19±1.78 (↑1.52) 88.61±0.44 (↑1.08)

SVHN
FedDF(unlabeled real data) 72.67±0.79 84.99±0.69 88.65±0.22
FedDF(labeled real data) 73.74±0.84 (↑1.07) 85.23±0.51 (↑0.24) 88.88±0.19 (↑0.23)

CIFAR10
FedDF(unlabeled real data) 47.25±1.40 60.27±0.39 64.58±0.95
FedDF(labeled real data) 52.86±1.98 (↑5.61) 62.50±0.19 (↑2.23) 66.78±0.23 (↑2.20)

Table 4
Verify the effect of the generated data. The generator(FedMGD) trained by Realistic Score is used as the data source
for FedDF and compared with the collected real data with labels (gray areas).

Dataset Method �=0.01 �=0.05 �=0.1

EMNIST
FedDF(labeled real data) 89.69±0.49 90.91±0.17 90.97±0.30

FedMGD+FedDF(w/o real data) 89.19±0.10 89.89±0.41 91.09±0.25 (↑0.12)
Fashion
MNIST

FedDF(labeled real data) 74.03±1.14 85.19±1.78 88.61±0.44
FedMGD+FedDF(w/o real data) 73.22±1.21 85.90±0.49 (↑0.71) 88.17±0.39

SVHN
FedDF(labeled real data) 73.74±0.84 85.23±0.51 88.88±0.19

FedMGD+FedDF(w/o real data) 75.16±1.28 (↑1.42) 86.98±0.80 (↑1.72) 89.09±0.34 (↑0.21)

CIFAR10
FedDF(labeled real data) 52.86±1.98 62.50±0.19 66.78±0.23

FedMGD+FedDF(w/o real data) 51.12±1.01 61.83±0.98 65.74±0.52

Table 5
Comparison of FedMGD with F2U. The generator obtained after FedMGD and F2U training is used as an additional
data source for FedDF, to compare the performance(%) achieved by the two modeling methods on downstream tasks,
respectively.

Dataset Method �=0.01 �=0.05 �=0.1

EMNIST
F2U+FedDF(unlabeled w/o real data) 87.88±1.04 89.45±0.34 90.71±0.21

FedMGD+FedDF(w/o real data) 89.19±0.10 (↑1.22) 89.89±0.41 (↑0.44) 91.09±0.25 (↑0.38)
Fashion
MNIST

F2U+FedDF(unlabeled w/o real data) 71.76±0.53 81.47±0.82 87.61±0.37
FedMGD+FedDF(w/o real data) 73.22±1.21 (↑1.46) 85.90±0.49 (↑4.43) 88.17±0.39 (↑0.56)

SVHN
F2U+FedDF(unlabeled w/o real data) 73.40±0.72 84.30±0.53 88.63±0.25

FedMGD+FedDF(w/o real data) 75.16±1.28 (↑1.76) 86.98±0.80 (↑2.68) 89.09±0.34 (↑0.46)

CIFAR10
F2U+FedDF(unlabeled w/o real data) 45.99±0.32 61.61±0.40 65.74±0.47

FedMGD+FedDF(w/o real data) 51.12±1.01 (↑5.13) 61.83±0.98 (↑0.22) 65.74±0.52 (↑0.05)

5.3.2. Compare with Other Distributed GANs.
In this subsection, we validate the image quality generated by FedMGD using the Realistic Score approach in

scenarios with label distribution skew and the training effect in downstream tasks by comparing with other distributed
GANs.

(1) Quality evaluation of images generated by FedMGD.We use F2U [36], MD-GAN [34], and FedGAN [33] as
baseline algorithms, and use the distance (FID) between the generated data and the real data distribution as a measure
of image quality. In Table 6, we compare the FID of images generated by the FedMGD method and the other three
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Table 6
Quality evaluation of images generated by FedMGD. Comparison of the FID of the images generated by FedMGD and
other distributed GANs under different data distributions.

Dataset � FedGAN MD-GAN F2U FedMGD

EMNIST
0.01 198.37 129.59 39.79 22.86 (↓16.93)
0.05 121.08 128.59 33.63 19.99 (↓13.64)
0.1 136.83 95.27 33.35 18.69 (↓14.66)

Fashion
MNIST

0.01 230.96 152.29 41.53 39.71 (↓1.82)
0.05 196.19 158.26 47.35 36.49 (↓10.86)
0.1 215.98 141.51 46.18 40.21 (↓5.97)

SVHN
0.01 245.91 209.26 140.53 126.04 (↓14.94)
0.05 199.41 206.34 145.69 139.47 (↓6.22)
0.1 226.36 208.28 145.37 121.01 (↓24.36)

CIFAR10
0.01 264.69 306.03 218.26 206.17 (↓12.09)
0.05 255.31 281.67 206.02 201.67 (↓4.35)
0.1 296.09 315.36 206.09 202.17 (↓3.92)

methods. It can be found that FedMGD has obvious advantages in the label distribution skew scenario.
(2) Verify the effectiveness of the generator for downstream tasks. To further verify that the trained generator

can be used alone for downstream tasks, we train a separate classifier using the trained generator as the data source
(F2U is not involved in this comparison since it can only generate unlabeled data). As shown in Figure 8, compared
with other methods, classification model training using the data generated by the FedMGD generator can achieve good
performance, which proves that the generator trained using FedMGD can be used for downstream tasks.
5.3.3. Two-Stage vs. One-Stage FedMGD

In this subsection, we experimentally validate the rationality of using two-stage of learning for FedMGD. In order to
set up comparison experiments, we propose FedMGD using one-stage for training by fusing the federated enhancement
stage and the generative adversarial stage of the two-stage. Specifically, we perform the aggregation of the local
classifier {i}Ki=1 at the same time as  is updated by Realistic Score in Algorithm 1. Then, we refine the aggregated
model ̃ by the global information currently learned by the generator.

We conducted experiments on two datasets, FashionMNIST and SVHN, and the results are shown in Table 7. We
can observe that the accuracy of FedMGD using two-stage for updating is significantly higher on different datasets
than the approach that takes one stage for updating. This is due to the fact that in the original generative adversarial
stage, the local classifier only uses the client-side local dataset for learning and describes the local label distribution
information to the server through Realistic Score. However, in the process of using a stage update, as the classification
model is aggregated in the global modeling process, the local model using aggregation cannot accurately describe the
local label distribution information of the client. The generator  biases the modeling of the global label distribution
by the Realistic Score returned locally, which eventually exhibits a degradation of the model performance.

Therefore, in FedMGD we adopt a two-stage update method to improve the performance of the federated learning
model on the basis of ensuring the accuracy of the global modeling. We show the variation in accuracy for two different
procedures for training the model in Figure 9. It is shown from the figure that the accuracy of the model trained using
the two-stage procedure is significantly higher than that using the one-stage procedure. Moreover, the difference in
the accuracy of the trained models of the two different procedures gradually increases with the increase of the label
distribution skew between clients.
5.3.4. Sampling Methods in FedMGD.

In this section we compare the effects of modeling the global data distribution using different generator preset label
sampling methods and validate the rationality of using server-side sampling in FedMGD. Based on the characteristics
of data distribution in a distributed environment, we propose two different sampling methods, Client Sampling and
Server Sampling. Client sampling refers to collecting the distribution of each label in the client, so that the preset
labels of the generator are sampled according to the label distribution in the client. Server Sampling means that the
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Figure 8: Performance visualization of a separate classifier trained using the generator as data source. At this point � is
0.01.

Table 7
Two-Stage vs. One-Stage FedMGD. FedMGD trains the model in one and two stages to compare the performance of the
model under the two procedures (%).

Dataset Procedure �=0.01 �=0.05 �=0.1

FashionMNIST
One-stage 51.14±2.26 80.10±1.52 85.97±2.10
Two-stage 84.04±0.58 (↑32.90) 87.57±0.40 (↑7.47) 89.29±1.33 (↑3.32)

SVHN
One-stage 70.53±1.41 83.40±1.56 87.56±0.25
Two-stage 84.14±0.91 (↑13.61) 88.62±0.39 (↑5.22) 90.47±0.37 (↑2.91)

generator’s preset tags are sampled on the server side using a uniform distribution.
In this experiment, the CIFAR10 data set is used, and the data is divided into 4 clients according to the Dirichlet

distribution to ensure that the label distribution and the total amount of data of each client are different. The experi-
mental results are shown in Table 8. In different label distribution skew scenarios, the accuracy of the resulting model
is higher when the generator preset label uses the server method to sample the result. This is because the use of uniform
sampling in the generative adversarial stage in FedMGD can better learn the data information of each category, which
is more conducive to refine the overall label distribution skew. We show the accuracy variation of the two methods
in Figure 10. The accuracy of the model trained using server sampling in the figure is significantly higher than client
sampling, which demonstrates the validity of our method.
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Figure 9: Visualization of two-stage vs. single-stage FedMGD training model performance. The results are obtained when
number of clients is 5.
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Figure 10: Visualization of algorithm performance under different generator sampling methods. The results are obtained
when number of clients is 4.

6. Conclusion
In this work, we mainly investigate how to mitigate the impact of label distribution skew on the performance

of federated learning models. We propose a method FedMGD to mitigate the degraded model performance when
aggregating heterogeneous data distributions by modeling the global data distribution. It improves the compatibility
of the global model under heterogeneous data distribution by using global information to refine the aggregated model.
In our experiments, FedMGD has better performance in the scenarios of label distribution skew compared to baseline
methods. In addition, we demonstrate through a series of ablation experiments that FedMGD can indeed better model
the global data distribution in a label distribution skew scenario and it provides a novel solution for data source of
downstream tasks. In future research, we will explore a method for global modeling that is based on any federated
learning approach to reduce the performance degradation caused by label distribution skew.
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Table 8
Compare the sampling method of FedMGD. Compare the effect of the preset labels obtained by the generator using
different sampling methods on the accuracy of the model.

Client Sample Server Sample
�=0.01 39.46±0.80 40.35±0.87 (↑0.89)
�=0.05 60.72±1.58 63.23±0.39 (↑2.51)
�=0.1 65.63±0.47 66.91±0.87 (↑1.28)
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(c) CIFAR10

Figure 1: Visualization of statistical heterogeneity between users on different datasets when the number of clients is 5.
Where the x-axis represents the different clients, the y-axis indicates the class labels, and the size of the scattered points
indicates the number of training samples with available labels for that user. From left to right � is 0.01, 0.05, and 0.1.
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Figure 2: Visualization of statistical heterogeneity between users on different datasets when the number of clients is 10.
Where the x-axis represents the different clients, the y-axis indicates the class labels, and the size of the scattered points
indicates the number of training samples with available labels for that user. From left to right � is 0.01, 0.05, and 0.1.
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Figure 3: The classifiers and discriminators are trained in two clients with different data classes. To verify that the
classifiers and discriminators perform worse on data categories that have never been seen before, we take each other’s data
as input. From left to right, the discriminator score, the classifier score (distance from the true label), and the FedMGD
(merged) realistic score are shown.
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