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Abstract

Neural network quantization is a very promising solution in the field of model

compression, but its resulting accuracy highly depends on a training/fine-tuning

process and requires the original data. This not only brings heavy computation

and time costs but also is not conducive to privacy and sensitive information

protection. Therefore, a few recent works are starting to focus on data-free quan-

tization. However, data-free quantization does not perform well while dealing

with ultra-low precision quantization. Although researchers utilize generative

methods of synthetic data to address this problem partially, data synthesis needs

to take a lot of computation and time. In this paper, we propose a data-free

mixed-precision compensation (DF-MPC) method to recover the performance

of an ultra-low precision quantized model without any data and fine-tuning pro-

cess. By assuming the quantized error caused by a low-precision quantized layer

can be restored via the reconstruction of a high-precision quantized layer, we

mathematically formulate the reconstruction loss between the pre-trained full-

precision model and its layer-wise mixed-precision quantized model. Based on

our formulation, we theoretically deduce the closed-form solution by minimizing

the reconstruction loss of the feature maps. Since DF-MPC does not require
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any original/synthetic data, it is a more efficient method to approximate the

full-precision model. Experimentally, our DF-MPC is able to achieve higher

accuracy for an ultra-low precision quantized model compared to the recent

methods without any data and fine-tuning process.

Keywords: Neural Network Compression, Date-Free Quantization

1. Introduction

In order to realize the deployment of deep neural networks on resource-

constrained lightweight devices, a series of remarkable neural network compres-

sion techniques are gradually developing, including low-rank factorization [1],

parameter and filters pruning [2, 3, 4, 5], quantization [6, 7, 8, 9] and knowl-

edge distillation [10, 11, 12, 13]. Among these neural network compression

techniques, quantization is viewed as a more suitable scheme for hardware ac-

celeration [14, 15] than pruning and knowledge distillation. In this sense, this

paper will focus on quantization.

Quantization can be divided into data-driven quantization and data-free

quantization [16, 17, 18, 19] according to whether it depends on the data.

And data-driven quantization can be further subdivided into quantization-aware

training [14, 20, 7, 21] and post-training quantization [22, 23, 24] according to

whether it depends on training/fine-tuning. However, the original training data

is not always easily accessible, especially for privacy, security, and deployment

in the field. Therefore, data-free quantization is a vital research direction to

achieve a low-precision model without any original data and training.

The accuracy drop of data-free quantization is particularly dramatic when

focusing on the ultra-low precision model. Thus, researchers are starting to uti-

lize generative methods [25, 17, 26]to generate synthetic samples that resemble

the distribution of the original dataset and achieve high accuracy. However,

generative methods need to cost a lot of computation and time to synthesize

data, which conflicts with the concept of data-free.

In this paper, we abandon the idea of data synthesis and restore the quan-
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Figure 1: The overview of our DF-MPC method, where the filter in the l-th layer is quantized

to low-bitwidth and the filter in the (l+1)-th layer is quantized to high-bitwidth. The output of

(l+1)-th convolutional layer can be restored by multiplying the compensation coefficient with

respect to the input channel of the high-bitwidth filter, which is equivalent to multiplying the

compensation coefficient with respect to the output channel of the low-bitwidth filter. Note

that the reconstruction loss is the output difference of (l + 1)-th layer from the pre-trained

full-precision model and its layer-wise mixed-precision quantized model.

tized error caused by the ultra-low precision quantization from the perspective

of compensation. Inspired by a few works [27, 28, 29], we propose a data-free

mixed-precision compensation (DF-MPC) method to achieve higher accuracy

for an ultra-low precision quantization without any data and fine-tuning pro-

cess, as depicted in Figure 1. In summary, we make three main contributions,

as shown below:

• In two adjacent layers of a neural network, we assume that the quantized

error caused by a low-precision quantized layer can be restored via the
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reconstruction of a high-precision quantized layer. Specifically, we quan-

tize the weights in one layer into low precision values (e.g., 2-bit) and

then recover the performance by reconstructing relatively higher preci-

sion (e.g., 6-bit) weights in the next layer. The layer-wise mixed-precision

compensation assumption is described in Section 4.1.

• Based on the mixed-precision compensation assumption, we mathemati-

cally formulate the reconstruction loss between the pre-trained full-precision

model and its mixed-precision quantized model. Without any fine-tuning

process and original/synthetic data, we can achieve layer-wise mixed-

precision quantization (e.g., 2/6-bit) only relying on our compensation

method. The reconstruction loss is formulated in Section 4.2.

• Based on the reconstruction loss, we theoretically deduce the closed-form

solution by minimizing the reconstruction loss of the feature maps to re-

store the quantized error caused by the low precision weight. The global

minimum is solved in Section 4.3. Furthermore, we verify the effectiveness

of our compensation method through experiments on multiple datasets

(CIFAR10, CIFAR100, and ImageNet) with multiple network structures

(ResNet, DenseNet121, VGG16, and MobileNetV2).

2. Related Work

Quantization is a kind of model compression method, which accelerates the

forward inference phase by converting a full-precision model to a low-precision

model (with respect to weights or activations). Whether the low-precision model

needs any data or fine-tuning, quantization can continue to be subdivided into

the following three classes.

2.1. Quantization-Aware Training (QAT)

Since the low-precision representations of weights and activations will cause

an accuracy drop, quantization-aware training (QAT) aims to reduce the accu-

racy drop by retraining or fine-tuning the low-precision with training/validation
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data [14, 20]. Especially for the ultra-low precision (e.g., binary [7, 21] and

ternary [30, 31]), QAT can also obtain a satisfactory quantized model.

However, the training process for QAT is computationally expensive and

time-consuming. Specifically, the training time and memory of QAT far ex-

ceed full precision model training due to simulating quantization operators [32].

On the other hand, in some private or secure situations, the original train-

ing/validation data is not easy to access.

2.2. Post-Training Quantization (PTQ)

Post-training quantization (PTQ) aims to obtain an accurate low-precision

model without any fine-tuning process. Therefore, PTQ requires relatively less

computation and time consumption than QAT. Specifically, Banner et al. [22]

proposed the 4-bit post-training quantization method that introduces a per-

channel allocation and bias-correction, and approximates the optimal clipping

value analytically from the distribution of the tensor. Zhao et al. [23] pro-

posed outlier channel splitting that requires no additional training and works

on commodity hardware. Nagel et al. [24] found a good solution to the per-layer

weight-rounding mechanism via a continuous relaxation, but this method still

requires a small amount of unlabelled data.

Since QAT is fully trained on the entire training data, PTQ’s performance

tends to be inferior to QAT’s regardless of the bit width quantization, which

is also the bottleneck of PTQ. And compared to QAT, PTQ is also still not

completely free from the original data dependence.

2.3. Data-Free Quantization (DFQ)

Compared to QAT and PTQ, data-free quantization (DFQ) requires neither

training/validation data nor fine-tuning/training process. In particular, Nagel et

al. [16] could greatly recover the accuracy of low-precision models by applying

weight equalization and bias correction. However, it suffers a huge accuracy

drop while the bit width is less than 6-bit. Cai et al. [17] utilized synthetic data
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to achieve mixed-precision quantization, but it is also difficult to deal with the

accuracy drop below 4-bit.

Recently, researches on DFQ seem to turn to data sampling and generation.

Zhang et al. [18] proposed a sample generation method that enhances the diver-

sity of data by slacking the alignment of feature statistics in the BN layer and

designing a layerwise enhancement. Choi et al. [19] proposed a method that

uses superposed latent embeddings to generate synthetic boundary supporting

samples, and confirmed that samples near the boundary can improve the per-

formance of a low-precision model. Although DFQ based on data synthesis does

not use the original training/validation data, it costs a lot of computation and

time to synthesize the data.

3. Problem Formulation of Data-Free Quantization

In this section, we present the problem of data-free quantization with the

corresponding full-precision pre-trained model.

3.1. Background and Notations

Given a neural network model with L layers, we denote W l ∈ Ro×i×k×k and

Al−1 ∈ Ri×w×h as the weight in the l-th layer and activation in the (l − 1)-

th layer, where o represents the size of output channels, i represents the size of

input channels, k×k is the size of kernel filters and w×h is the size of activation

maps. Then we obtain the feature maps X l ∈ Ro×w×h

X l =W l ⊗Al−1, (1)

where ⊗ is the standard convolution operation. By introducing the activation

function f and a batch normalization BN, we can finally output the activation

map based on the feature map

Al = f
(
BN

(
X l
))

. (2)

Subsequently, we consider the ternary weight tensor in the l-th layer that

consists of three quantized values {−1, 0,+1} and a scaling factor αl
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Ŵ l =


+1, if W l > ∆l

0, if
∣∣W l

∣∣ ≤ ∆l

−1, if W l < −∆l

. (3)

Based on Ternary Weight Networks [30], we can obtain the optimized layer-wise

values of the threshold ∆l and the scaling factor αl

∆l = 0.7E
(∣∣W l

∣∣)
αl = E

j∈{j|Wl(j)|>∆l}

(∣∣W l(j)
∣∣) . (4)

Since the layer-wise scaling factor αl can be absorbed into a batch normalization,

we can omit αl and use Eq. (3) to represent the ternary weight tensor directly.

The new feature map X̂ l will deviate from the original feature map X l when

we consider the quantization of the weight tensor, resulting in a rapid accuracy

drop of the neural network without fine-tuning, i.e.,

X̂ l = Ŵ l ⊗Al−1 ̸= X l. (5)

3.2. Problem Statement

Therefore, we consider reconstructing the weight tensor in the next layer

to compensate the feature map in the next layer such that we can recover the

accuracy of the low-precision model. Note that we choose a relatively high-

precision quantization for the weight tensor of the next layer W̃ l+1 because it is

required to compensate the quantized error caused by Ŵ l as much as possible.

And we can apply the uniform quantization with k-bit based on DoReFa-Net [20]

kQ(·) = 2

2k − 1
round

[
(2k − 1)

(
·

2max | · |
+

1

2

)]
− 1. (6)

Similarly, we omit the layer-wise scaling factor max |·| as it can be absorbed into

a batch normalization. And we need to make the reconstruction loss between

the new feature map and the original feature map as small as possible.

By introducing the coefficient vector c = [c1, c2, · · · , ci]T ≥ 0 whose each

component corresponds each input channel of the weight tensor in the (l+1)-th
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Figure 2: The layer-wise mixed-precision structures of some main deep neural networks. (a):

a building block for ResNet18/ResNet34. (b): a bottleneck block for ResNet50/ResNet101.

(c): a dense block for DenseNet. (d): a building block for deep neural networks.

layer, we give the j-th channel of reconstructed weight tensor as follows:

W̃ l+1
j = cj · kQ

(
W l+1

j

)
. (7)

We hope to find an optimal c such that the reconstructed feature map X̃ l+1
t is

close to the original feature map X l+1
t , i.e.,

X̃ l+1
t = W̃ l+1

t,j ⊗ Â
l
j +

i∑
m=1,m ̸=j

W l+1
t,m ⊗Al

m

≈X l+1
t =

i∑
m=1

W l+1
t,m ⊗Al

m.

(8)

where the shapes of the weight and activation tensors are o × i × k × k and

i × w × h, respectively. As a result, X̃ l+1
t and X l+1

t indicate the t-th output

channel of the feature map. Note that when we use the same notation j or m to

indicate the channel of the weight and activation, it means that their dimensions

are the same and correspond to each other in the computation.

Consequently, our problem aims to find a coefficient vector c to minimize

8



the reconstruction loss based on a full-precision pre-trained model W without

any training process and data, i.e.,

min
c

o∑
t=1

∥X̃ l+1
t −X l+1

t ∥22, (9)

Note that we apply the mixed-precision quantization, i.e., one layer low-bitwidth

(ternary) and one layer high-bitwidth that is used for compensation. The mixed-

precision structures of some main deep neural networks are shown in Figure 2.

Although we consider restoring the quantized error for the ternary values,

our method is not limited to the ternary case, but is also applicable to higher

precision case (even the same as the precision of the quantized filter). For

example, we have different mixed-precisions, such as 2/6-bit, 3/6-bit, 6/6-bit

etc. Note that in this paper, we use the ternary filter just to distinguish it from

the quantized filter.

4. Proposed Method of Mixed-Precision Compensation

In this section, we theoretically give the layer-wise mixed-precision compen-

sation assumption for the reconstruction loss of Eq. (9). According to this

assumption, we present our data-free mixed-precision compensation method to

recover the accuracy of the low-precision neural network.

4.1. Compensation Assumption

In order to minimize Eq. (9) without any data and fine-tuning process, we

assume that the quantized error of each filter with low-bitwidth can be partly

compensated by reconstructing filters with high-bitwidth in the next layer. Then

we further assume that the reconstructed filter consists of a linear combination

of the high-bitwidth filters and the coefficient value, which is defined as Eq. (7).

Assumption 1. In order to minimize Eq. (9) with a data-free version, we

propose a one-to-one channel-wise compensation assumption that the quantized

error caused by the low-bitwidth quantization of each channel of the filter can be

compensated by the high-bitwidth quantization of the corresponding channel of

the filter in the next layer.
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Without loss of generality, let the filter of the l-th layer be quantized to

low-bitwidth (ternary) such that the t-th channel of the reconstruction loss in

the (l + 1)-th layer can be represented as

X̃ l+1
t −X l+1

t = W̃ l+1
t,j ⊗ Â

l
j −W l+1

t,j ⊗A
l
j

=cj · kQ
(
W l+1

t,j

)
⊗ Âl

j −W l+1
t,j ⊗A

l
j

=cj ·
(
kQ
(
W l+1

t,j

)
−W l+1

t,j

)
⊗ Âl

j + cj · W l+1
t,j ⊗ Â

l
j −W l+1

t,j ⊗A
l
j

=cj ·
(
kQ
(
W l+1

t,j

)
−W l+1

t,j

)
⊗ Âl

j +W l+1
t,j ⊗ (cj · Âl

j −Al
j).

(10)

Note that the l-th output channel size of A and W is equal to the (l + 1)-th

input channel size ofW. For brevity, we first omit the activation function f and

a batch normalization BN. Then the equations Âl
j = X̂ l

j and Al
j = X l

j hold. By

introducing the two formulas

Âl
j = X̂ l

j =

i∑
m=1

Ŵ l
j,m ⊗Al−1

m

Al
j = X l

j =

i∑
m=1

W l
j,m ⊗Al−1

m .

(11)

Theorem 1. If there is no batch normalization and activation function between

a feature map and its activation map based on Eq. (10) and Eq. (11), the

reconstruction loss in the t-th channel can be formulated as follows:

X̃ l+1
t −X l+1

t = cj ·
(
kQ
(
W l+1

t,j

)
−W l+1

t,j

)
⊗

(
i∑

m=1

Ŵ l
j,m ⊗Al−1

m

)

+W l+1
t,j ⊗

[
i∑

m=1

(
cj · Ŵ l

j,m −W l
j,m

)
⊗Al−1

m

]
.

(12)

Proof. See Appendix 4.4. □

For the term
(
kQ
(
W l+1

t,j

)
−W l+1

t,j

)
of the above equation, its value is deter-

mined. Since kQ
(
W l+1

t,j

)
has a relatively high-bitwidth, the value of this item is

actually very small. When considering minimizing ∥X̃ l+1
t −X l+1

t ∥, for the first

row, we have a small constraint on cj , i.e., a regularization term ∥c∥.
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On the other hand, for the second row of the above equation, we can minimize

the term ∥
∑i

m=1

(
cj · Ŵ l

j,m −W l
j,m

)
⊗ Al−1

m ∥ because the term W l+1
t,j comes

from the full-precision pre-trained model that is invariable.

In summary, we prioritize minimizing the equation

∥
i∑

m=1

(
cj · Ŵ l

j,m −W l
j,m

)
⊗Al−1

m ∥22, (13)

since ∥cj∥ is less restrictive than the above equation.

4.2. Data-Free Compensation

We now introduce a batch normalization BN with two statistics (scale γ and

shift β) and two trainable quantities (mean µ and variance σ2) [33]. By omitting

the activation function f , we have the following two equations:

Âl
j = BN(X̂ l

j ) = γ̂j
X̂ l

j − µ̂j

σ̂j
+ β̂j

Al
j = BN(X l

j ) = γj
X l

j − µj

σj
+ βj .

(14)

Lemma 1. If there is only batch normalization between a feature map and its

activation map based on Eq. (10) and Eq. (14), the reconstruction loss in the

t-th channel can be formulated as follows:

X̃ l+1
t −X l+1

t

=cj ·
(
kQ
(
W l+1

t,j

)
−W l+1

t,j

)
⊗ Âl

j +W l+1
t,j ⊗ (cj · Âl

j −Al
j),

(15)

where

cj · Âl
j −Al

j

=

i∑
m=1

(
cj γ̂j · Ŵ l

j,m

σ̂j
−

γj · W l
j,m

σj

)
⊗Al−1

m +

(
γj
σj

µj −
cj γ̂j
σ̂j

µ̂j

)
+ (cj β̂j − βj).

(16)

Proof. See Appendix 4.4. □

In order to minimize the reconstruction loss
∑o

t=1∥X̃
l+1
t −X l+1

t ∥22, we analyse

that most of this loss actually come from the term ∥cj · Âl
j − Al

j∥22 based on
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Eq. (10). For the expansion of this term, it is actually the above equation.

And the summation term occupies a large proportion of Eq. (16), which can be

represented as:

min
cj
∥

(
cj γ̂j · Ŵ l

j

σ̂j
−

γj · W l
j

σj

)
⊗Al−1∥22. (17)

Since Al−1 cannot be accessed without data, we can only minimize the other

part of the above equation, i.e.,

min
cj
∥

(
cj γ̂j · Ŵ l

j

σ̂j
−

γj · W l
j

σj

)
∥22. (18)

Furthermore, we also introduce the activation function to consider the com-

plete compensation process, i.e., Âl
j = f(BN(X̂ l

j )) and Al
j = f(BN(X l

j )). Note

that the activation function is generally ReLU.

Lemma 2. If there are both batch normalization and a ReLU function between

a feature map and its activation map, the reconstruction loss is the same as in

Lemma 1 where the upper bound of cj · Âl
j −Al

j is given by Eq. (16), i.e.,

|cj · Âl
j −Al

j | ≤ |cj · BN(X̂ l
j )− BN(X l

j )| (19)

Proof. See Appendix 4.4. □

For brevity, let us use some variable substitution based on Eq. (16): Γ =
cj γ̂j ·Ŵl

j

σ̂j
− γj ·Wl

j

σj

Θ =
(

γj

σj
µj − cj γ̂j

σ̂j
µ̂j

)
+ (cj β̂j − βj)

. (20)

Consequently, the reconstruction loss of Eq. (19), we need to minimize is

∥cj · Âl
j −Al

j∥22 = ∥Γ⊗Al−1 +Θ∥22. (21)

Recall that the final reconstruction loss ∥X̃ l+1
t − X l+1

t ∥22 also requires min-

imizing the term ∥cj ·
(
kQ
(
W l+1

t,j

)
−W l+1

t,j

)
∥22 in addition to minimizing ∥cj ·

Âl
j − Al

j∥22. Therefore, we introduce a regularization term ∥c∥22 for the pur-

pose of restricting the term ∥cj ·
(
kQ
(
W l+1

t,j

)
−W l+1

t,j

)
∥22. And we can give the
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data-free compensation loss function to minimize the final reconstruction loss

L = ∥Γ∥22 + λ1∥Θ∥22 + λ2∥c∥22, (22)

where λ1 and λ2 are the regularization coefficients.

4.3. Method Implementation

First of all, we need to make some clarifications about our proposed method.

On the one hand, the coefficient vector c is defined every two layers, whose size

is equal to the output channel of the l-th layer and the input channel of the

(l + 1)-th layer. Note that the two channel sizes are matched. On the other

hand, for the high-bitwidth compensation, we can achieve parallel computation

of each input channel of W̃ l+1
j , and different channels will not affect each other.

In other words, we can get W̃ l+1 directly.

Based on the above analysis, we define w and ŵ as the matrices with respect

to the input channel of W l
j and Ŵ l

j , respectively. Following Eq. (22), then the

data-free compensation loss function can be rewritten as

L(c) =
(
c · γ̂ · ŵ

σ̂
− γ ·w

σ

)⊤(
c · γ̂ · ŵ

σ̂
− γ ·w

σ

)
+ λ2c

⊤c

+λ1

[
c ·
(
β̂ − γ̂ · µ̂

σ̂

)
−
(
β − γ · µ

σ

)]⊤ [
c ·
(
β̂ − γ̂ · µ̂

σ̂

)
−
(
β − γ · µ

σ

)]
.

(23)

By taking the derivative of the loss function with respect to c, we have

∂L(c)
∂c

= −2
(
γ̂ · ŵ
σ̂

)⊤ (γ ·w
σ

)
+ 2

(
γ̂ · ŵ
σ̂

)⊤(
γ̂ · ŵ
σ̂

)
· c+ 2λ2c

−2λ1

(
β̂ − γ̂ · µ̂

σ̂

)⊤ (
β − γ · µ

σ

)
+ 2λ1

(
β̂ − γ̂ · µ̂

σ̂

)⊤(
β̂ − γ̂ · µ̂

σ̂

)
· c.

(24)

Furthermore, we have the second derivative of the loss function

∂2L(c)
∂c∂c⊤

= 2

(
γ̂ · ŵ
σ̂

)⊤(
γ̂ · ŵ
σ̂

)
+ 2

(
λ1

(
β̂ − γ̂ · µ̂

σ̂

)2

+ λ2

)
I. (25)

Consequently, the loss function is a convex function because ∂2L(c)
∂c∂c⊤ is positive
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Algorithm 1 Data-Free Mixed-Precision Compensation Method

Input: Pre-trained full-precision model [W1, · · · ,WL].

Output: Mixed low-precision model [· · · , W̃ l−1, Ŵ l, W̃ l+1, Ŵ l+2, · · · ].

1: for each two layers n ∈ [1, L/2] do

2: At odd layer l = 2n− 1, ternary weight filter Ŵ2n−1 based on Eq. (3);

3: for each input channel j ∈ [1, i] do

4: Compute the coefficient cj ← argmin ∥Γ∥22+λ1∥Θ∥22+λ2∥cj∥22 based

on Eq. (20) and Eq. (22);

5: At even layer l = 2n, quantized weight filter W̃2n
j = cj · kQ

(
W2n

j

)
based on Eq. (6) and Eq. (7);

6: end for

7: end for

definite. For brevity, let us use some variable substitution: X̂ =
(

γ̂·ŵ
σ̂

)
, X =

(
γ·w
σ

)
,

ŷ =
(
β̂ − γ̂·µ̂

σ̂

)
, y =

(
β − γ·µ

σ

)
,

(26)

and we can deduce the global minimum when ∂L(c)
∂c = 0, i.e.,

c =
[
X̂⊤X̂ + λ1ŷ

2I+ λ2I
]−1 [

X̂⊤X + λ1ŷ
⊤yI

]
. (27)

In general, we keep the two trainable parameters constant, i.e., γ̂ = γ and β̂ = β,

which is consistent with the pre-trained full-precision model [17]. And we can

complete the solution by re-calibrating the two statistics µ̂ and σ̂.

For the forward inference, the solved c can be combined into γ and β such

that Eq. (7) can be fully quantized. In conclusion, we present the whole proce-

dure of our data-free mixed-precision compensation method in Algorithm 1.
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4.4. Appendix and Proof

Proof. of Theorem 1

X̃ l+1
t −X l+1

t

=cj ·
(
kQ
(
W l+1

t,j

)
−W l+1

t,j

)
⊗ Âl

j +W l+1
t,j ⊗ (cj · Âl

j −Al
j)

=cj ·
(
kQ
(
W l+1

t,j

)
−W l+1

t,j

)
⊗

(
i∑

m=1

Ŵ l
j,m ⊗Al−1

m

)

+W l+1
t,j ⊗

[
cj ·

i∑
m=1

Ŵ l
j,m ⊗Al−1

m −
i∑

m=1

W l
j,m ⊗Al−1

m

]

=cj ·
(
kQ
(
W l+1

t,j

)
−W l+1

t,j

)
⊗

(
i∑

m=1

Ŵ l
j,m ⊗Al−1

m

)

+W l+1
t,j ⊗

[
i∑

m=1

(
cj · Ŵ l

j,m −W l
j,m

)
⊗Al−1

m

]
.

□

Proof. of Lemma 1

Since the proposed method does not depend on a fine-tuning process, we

substitute Eq. (14) into Eq. (10)

X̃ l+1
t −X l+1

t

=cj ·
(
kQ
(
W l+1

t,j

)
−W l+1

t,j

)
⊗ Âl

j +W l+1
t,j ⊗ (cj · Âl

j −Al
j)

=cj ·
(
kQ
(
W l+1

t,j

)
−W l+1

t,j

)
⊗ Âl

j

+W l+1
t,j ⊗

[
cj ·

(
γ̂j
X̂ l

j − µ̂j

σ̂j
+ β̂j

)
− γj

X l
j − µj

σj
+ βj

]
=cj ·

(
kQ
(
W l+1

t,j

)
−W l+1

t,j

)
⊗ Âl

j

+W l+1
t,j ⊗

[(
cj γ̂j
σ̂j
X̂ l

j −
γj
σj
X l

j

)
−
(
cj γ̂j
σ̂j

µ̂j −
γj
σj

µj

)
+ (cj β̂j − βj)

]
.

Considering the second term of the above equation, we combine with Eq. (11)
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to give

cj · Âl
j −Al

j

=

(
cj γ̂j
σ̂j
X̂ l

j −
γj
σj
X l

j

)
−
(
cj γ̂j
σ̂j

µ̂j −
γj
σj

µj

)
+ (cj β̂j − βj)

=

(
cj γ̂j
σ̂j

i∑
m=1

Ŵ l
j,m ⊗Al−1

m − γj
σj

i∑
m=1

W l
j,m ⊗Al−1

m

)

−
(
cj γ̂j
σ̂j

µ̂j −
γj
σj

µj

)
+ (cj β̂j − βj)

=

i∑
m=1

(
cj γ̂j · Ŵ l

j,m

σ̂j
−

γj · W l
j,m

σj

)
⊗Al−1

m +

(
γj
σj

µj −
cj γ̂j
σ̂j

µ̂j

)
+ (cj β̂j − βj).

□

Proof. of Lemma 2

In this case, the reconstruction loss of |cj · Âl
j − Al

j | can be formulated as

follow

|cj · Âl
j −Al

j |

=|cj ·max(BN(X̂ l
j ), 0)−max(BN(X l

j ), 0)|

=|cj
BN(X̂ l

j ) + |BN(X̂ l
j )|

2
−

BN(X l
j ) + |BN(X l

j )|
2

|

=|
cj · BN(X̂ l

j )− BN(X l
j )

2
+

cj · |BN(X̂ l
j )| − |BN(X l

j )|
2

|

=|
cj · BN(X̂ l

j )− BN(X l
j )

2
+
|cj · BN(X̂ l

j )| − |BN(X l
j )|

2
|

≤1

2
|cj · BN(X̂ l

j )− BN(X l
j )|+

1

2
||cj · BN(X̂ l

j )| − |BN(X l
j )||

≤|cj · BN(X̂ l
j )− BN(X l

j )|,

where we have cj · |BN(X̂ l
j )| = |cj · BN(X̂ l

j )| as cj ≥ 0. □

5. Experiments

In this section, we evaluate our method on CIFAR10/CIFAR100 [34] and

ImageNet [35] datasets, which are well-known datasets for evaluating the per-

formance on the image classification.
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𝜆1
𝜆2

Figure 3: The accuracy comparison of different λ1 and λ2 values in Eq. (27). On CIFAR10

with ResNet56, λ1 and λ2 vary from 0.1 to 0.6 and from 0 to 0.01, respectively.

Dataset. CIFAR10/CIFAR100 datasets consist of 50k training sets and 10k

validation sets, which are natural color images with 32×32 for small-scale exper-

iments. CIFAR10 dataset is organized into 10 classes and CIFAR100 dataset

into 100 classes, respectively. ImageNet dataset consists of 1.2 million train-

ing sets and 50k validation sets, which are high-resolution natural images for

large-scale experiments. These images are organized into 1000 categories.
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Table 1: Top-1 classification accuracy results on CIFAR10 dataset with ResNet18, ResNet56,

and VGG16. FP32 denotes the full-precision weights. MP2/6 denotes the layer-wise 2 bit and

6 bit mixed-precision weights.

Model Method FP32 (%) MP2/6 (%)

ResNet18
Original 92.61 10.78

DF-MPC 92.61 89.12

ResNet56
Original 93.88 38.03

DF-MPC 93.88 91.05

VGG16
Original 93.70 10.00

DF-MPC 93.70 90.48

Table 2: Top-1 classification accuracy results on CIFAR100 dataset with ResNet18 and

VGG16. FP32 denotes the full-precision weights. MP2/6 denotes the layer-wise 2 bit and

6 bit mixed-precision weights.

Model Method FP32 (%) MP2/6 (%)

ResNet18
Original 73.62 1.05

DF-MPC 73.62 64.90

VGG16
Original 70.09 3.80

DF-MPC 70.09 64.95

Model. We choose ResNet [36] (including ResNet18, ResNet50, ResNet56,

ResNet101), DenseNet121 [37], VGG16 [38] and MobileNetV2 [39] for evalua-

tion. All the model and pre-trained full-precision weights are from pytorchcv

library https://pypi.org/project/pytorchcv/.

Setting. We implement our method using PyTorch [40] and run the exper-

iments using GTX 1080Ti.
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Table 3: Top-1 classification accuracy results on ImageNet dataset with ResNet.

Model Method W-bit Size (MB) Top-1 Acc (%)

ResNet18

Full-precision 32 44.59 71.47

OMSE [41] 4 5.58 64.03

GZNQ [42] 4 5.58 64.50

DFQ [16] 6 8.36 66.30

DF-MPC 2/6 5.48 66.46

ResNet50

Full-precision 32 97.49 76.12

OCS [23] 4 12.28 69.30

OMSE [41] 4 12.28 70.06

DF-MPC 2/6 10.55 71.20

ResNet101

Full-precision 32 170.41 77.31

OMSE [41] 4 21.30 71.49

DF-MPC 2/6 18.36 72.59

5.1. Ablation Study on CIFAR

We first conduct a series of ablation studies on CIFAR datasets to investigate

the effect of components of the proposed DF-MPC scheme. We evaluate our

method on MP2/6 weights and FP32 activations.

Based on Eq. (27), our method has two regularization coefficients λ1 and λ2

that affect the effect of compensation directly. Specifically, we adjust these two

hyper-parameters to find the optimal solution, as shown in Figure 3. On the

one hand, as λ1 varies from 0.1 to 0.5, the final accuracy of the quantized model

increase steadily. But it suffers a significant drop when λ1 is set to 0.6. On the

other hand, the final performance is mainly on the decline when λ2 varies from

0 to 0.01. In summary, the compensation combination of λ1 = 0.5 and λ2 = 0

is the optimal solution for ResNet56 on CIFAR10 dataset.

For λ2 = 0, we also verify from this ablation study that the constraint ∥c∥22
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in Eq. (22) does not work, which is consistent with our theoretical analysis,

i.e., the term
(
kQ
(
W l+1

t,j

)
−W l+1

t,j

)
has very little effect. For λ1 = 0.5, we know

that in order of importance, ∥Γ∥22 is greater than ∥Θ∥22.

Table 1 and Table 2 show the performance before and after compensation

on CIFAR10 and CIFAR100 datasets, respectively. If the full-precision model

is quantized to a mixed-precision of 2-bit and 6-bit directly, its accuracy will

become no different from random initialization. However, after our compensa-

tion method, the same quantization mode will result in a fully usable quantized

model with great accuracy improvement. Experimentally, this also proves the

effectiveness of our DF-MPC.

5.2. Experiments on ImageNet

Table 4: Top-1 classification accuracy results on ImageNet dataset with DenseNet121 and

MobileNetV2.

Model Method W-bit Size (MB) Top-1 Acc (%)

DenseNet121

Full-precision 32 31.92 74.36

OCS [23] 4 4.09 63.00

OMSE [41] 4 4.09 64.40

DF-MPC 3/6 3.39 70.02

MobileNetV2

Full-precision 32 13.37 73.03

GDFQ [25] 6 2.50 70.98

GZNQ [42] 6 2.50 71.12

DFQ [16] 8 3.34 71.20

DF-MPC 6 2.50 71.29

We evaluate our method on ImageNet dataset for the large-scale image clas-

sification task, and compare the performance with other data-free quantization

methods over various models. Here, GDFQ [25] and GZNQ [42] are the genera-

tive methods and they still utilize synthetic data to complete the quantization.
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Figure 4: The 6-bit quantized weight distribution before and after compensation on CIFAR10

dataset. The mean of the compensated weight distribution is closer to zero.

Table 3 and Table 4 compare the performance with previous methods, such

as OCS [23], DFQ [16], and OMSE [41]. For 2-bit, our DF-MPC uses the

ternary representation based on Eq. (3). For 3-bit and 6-bit, our DF-MPC

uses the quantized representation based on Eq. (6). Based on layer-wise mixed-

precision compensation, we achieve higher accuracy at the smaller model size.

In particular, our method with 3/6-bit outperforms DFQ [16] with 6-bit by

0.16% on ResNet18. And our method with 6-bit outperforms DFQ [16] with

8-bit by 0.09% on MobileNetV2. Note that our 6-bit scheme actually implies

6/6-bit mixed-precision quantization.

DF-MPC vs. ZeroQ. The generative methods need to cost a lot of com-
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Figure 5: The loss surfaces of the mixed-precision ResNet56 before and after compensation

on CIFAR10 dataset, which reflects the sharpness/flatness of different quantized weights.

putation and time due to data synthesis. For example, ZeroQ [17] of ResNet18

takes 12 seconds on an 8-V100 system. In contrast, DF-MPC of ResNet18 takes

only 2 seconds on a single GTX 1080 Ti, or can even run on CPU only, which

makes the deployment of quantized models convenient and fast.

DF-MPC vs. DFQ. DFQ [16] and DF-MPC have some common ideas.

DFQ also considers the relation between the output channel in the l-th layer

and the input channel in the (l+1)-th layer. Specifically, DFQ scales the cross-

layer factor to equalize the weight tensor channel ranges. However, DF-MPC

scales the cross-layer factor to minimize the output difference of feature maps

in the (l+1)-th layer between the pre-trained full-precision model and its layer-

wise mixed-precision quantized model. Theoretically, our method guarantees

the minimal quantized error of the layer-wise mixed-precision model.

5.3. Visualization

Figure 4 shows the quantized weight distribution before and after compensa-

tion in two different layers of ResNet18. After our DF-MPC method, the mean

of the 6-bit quantized weight distribution approaches zero. Moreover, based on

the previous work [43], we show the loss surfaces before and after compensa-

tion. By analyzing Figure 5, we find that the loss landscape of the quantized
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model before compensation is sharp, which shows no noticeable convexity. On

the contrary, the loss landscape of the quantized model after compensation is

smooth and flat, and shows noticeable convexity, which is consistent with the

pre-trained full-precision model.

6. Conclusion

This paper proposed the problem of recovering the accuracy of an ultra-

low precision model without any data and fine-tuning, which only relies on the

pre-trained full-precision model. By assuming the quantized error caused by a

low-precision quantized layer can be restored via the reconstruction of a high-

precision quantized layer, we mathematically formulated the reconstruction loss

of the feature maps between the pre-trained full-precision model and its mixed-

precision quantized model. Based on our formulation, we designed a data-free

mixed-precision compensation method along with its closed-form solution.

Since no original/synthetic data is used, we can not access the feature maps,

which leads to our method being slightly worse than generative methods with

synthetic data. Our future work would extend an expert neural network to

estimate the feature maps in the reconstruction loss, which further recovers the

performance of the quantized model.
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