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Abstract

We present a new table structure recognition (TSR) approach, called TSRFormer, to robustly recognize the structures
of complex tables with geometrical distortions from various table images. Unlike previous methods, we formulate
table separation line prediction as a line regression problem instead of an image segmentation problem and propose
a new two-stage dynamic queries enhanced DETR based separation line regression approach, named DQ-DETR, to
predict separation lines from table images directly. Compared to Vallina DETR, we propose three improvements in
DQ-DETR to make the two-stage DETR framework work efficiently and effectively for the separation line prediction
task: 1) A new query design, named Dynamic Query, to decouple single line query into separable point queries which
could intuitively improve the localization accuracy for regression tasks; 2) A dynamic queries based progressive line
regression approach to progressively regressing points on the line which further enhances localization accuracy for
distorted tables; 3) A prior-enhanced matching strategy to solve the slow convergence issue of DETR. After separation
line prediction, a simple relation network based cell merging module is used to recover spanning cells. With these new
techniques, our TSRFormer achieves state-of-the-art performance on several benchmark datasets, including SciTSR,
PubTabNet, WTW, FinTabNet, and cTDaR TrackB2-Modern. Furthermore, we have validated the robustness and high
localization accuracy of our approach to tables with complex structures, borderless cells, large blank spaces, empty or
spanning cells as well as distorted or even curved shapes on a more challenging real-world in-house dataset.
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1. Introduction

Tables offer a means to efficiently represent and communicate structured data in many scenarios like scientific
publications, financial statements, invoices, web pages, etc. Due to the trend of digital transformation, automatic
table structure recognition (TSR) has become an important research topic in document understanding and attracted
the attention of many researchers. TSR aims to reconstruct the cellular structures of tables from table images by
extracting the coordinates and row/column spanning information of cell boxes. This task is very challenging since
tables may have complex structures, diverse styles, and contents, and become geometrically distorted or even curved
during the image-capturing process.

In recent years, deep learning based TSR methods, e.g., [1–12], have made impressive progress towards recog-
nizing the structures of tables detected in scanned documents or PDF files. However, how to robustly recognize the
structures of geometrically distorted or even curved tables, which appear often in camera-captured images, is still
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an under-researched problem. Only several very recent works made some attempts to overcome this challenge. For
instance, Cycle-CenterNet [10] proposed an effective approach to parsing the structures of distorted bordered tables
in wild complex scenes and achieved promising results on their WTW [10] dataset, but this method cannot perform
well for borderless tables. NCGM [13] found that previous graph based TSR methods cannot process distorted tables
reliably and proposed a new method called Neural Collaborative Graph Machines (NCGM) to leverage inter-intra
modality collaboration to enhance the embeddings of text segments in each table, based on which the row/column/cell
grouping relationships between text segments in distorted tables can be predicted more robustly. Nevertheless, this
method relies on using an OCR engine to extract text segment bounding boxes and contents from table images first,
so it is not robust to tables with a number of undetected text segments or empty cells. Unlike NCGM, the latest split-
and-merge based TSR method, namely RobusTabNet[14], does not depend on OCR results. This approach proposed
to leverage spatial CNN modules to enhance the feature representation of each pixel on convolutional feature maps
by propagating contextual information across the whole feature map in horizontal or vertical directions, which can
significantly improve the robustness of semantic segmentation based separation line prediction models to distorted
(even curved) tables. Although having achieved promising results on a real-world dataset containing both distorted
and undistorted tables, RobusTabNet still struggles with some challenging cases, e.g., distorted tables with many
empty cells, which are shown in Fig. 1. This is because, even if enhanced by spatial CNN modules, the separation
line segmentation model still cannot produce high-quality segmentation masks for these challenging cases.

In this paper, we propose a new split-and-merge based TSR approach, called TSRFormer, to recognize the struc-
tures of various tables from table images robustly. TSRFormer contains two effective components: 1) A two-stage
DETR based separator regression module to directly predict linear and curvilinear row/column separation lines from
input table images; 2) A relation network based cell merging module to recover spanning cells by merging adjacent
cells generated by intersecting row and column separators. Unlike previous split-and-merge based approaches like
RobusTabNet, we formulate table separation line prediction as a line regression problem instead of an image seg-
mentation problem. To this end, we have introduced a new two-stage DETR [15] based separation line prediction
approach in our conference paper [16], dubbed Separator REgression TRansformer (SepRETR), to detect separation
lines from table images directly. Specifically, SepRETR tries to detect a reference point for each separation line first.
Then, a DETR decoder takes the embeddings of these reference points as input queries and leverages cross-attention
and self-attention operators in each decoder layer to enhance the embedding of each query. Finally, each enhanced
query embedding is input into a classifier to predict whether this query is a false alarm or not, and each remaining
query embedding is further fed into a regressor to regress the positions of other points on its corresponding separation
line directly. Compared with RobusTabNet, SepRETR has two advantages: 1) SepRETR doesn’t rely on using heuris-
tic post-processing algorithms to convert separation line segmentation masks into separation lines; 2) SepRETR can
predict separation lines more robustly especially when dealing with distorted tables. However, we find that SepRETR
cannot regress the positions of points distant from reference points as precisely as that of points near reference points
in some challenging cases shown in Fig. 1. The reason is that the cross-attention operators in the decoder tend to
assign lower attention scores to pixels distant from reference points so that the enhanced embedding of each refer-
ence point doesn’t contain enough information to predict the positions of distant points in these challenging cases
precisely. Based on this observation, we propose a new progressive separation line regression algorithm to achieve
higher line regression accuracy. As illustrated in Fig. 2, instead of regressing the positions of other points on each
separation line all at once, we propose a new DETR based separation line prediction model, dubbed Dynamic Queries
enhanced DETR (DQ-DETR), to regress the positions of points on each separation line progressively. Unlike previous
DETR models, the number of queries in each DQ-DETR decoder layer is not fixed. Specifically, given an initial set
of reference points detected from the input table image, the first decoder layer takes them as input queries and gen-
erates an enhanced embedding for each query, followed by refining the positions of their corresponding points using
a regressor. Then, one additional point is appended on the left and right sides of its corresponding reference point
respectively, serving as additional queries for the second decoder layer to detect new points. At the subsequent layers
of the decoder, two more points are appended on both sides of the detected separation lines based on the positions
of the existing points after each layer. These new points are also taken as new queries for the next decoder layer to
refine their positions. This regression algorithm is done iteratively to obtain all the points on each separation line.
In each decoder layer, the regressor only needs to refine the positions of new points near the reference points, so the
regression accuracy can be improved significantly. As illustrated in Fig. 1, DQ-DETR is much more robust to dis-
torted tables than SepRETR. Moreover, we propose two effective techniques to improve the efficiency of DQ-DETR

2



in both training and inference: 1) A prior-enhanced matching strategy to accelerate the convergence speed of DQ-
DETR; 2) Leveraging the factorized self-attention [17] and deformable attention [15] modules to replace the original
self-attention and cross-attention modules in DETR decoder layers to significantly reduce the computation cost of
DQ-DETR in inference. With the help of DQ-DETR, our TSRFormer has achieved state-of-the-art performance on
several public TSR benchmarks, including SciTSR [18], PubTabNet [19], WTW [10], FinTabNet [20], and cTDaR
TrackB2-Modern [21]. Furthermore, we have demonstrated the robustness of our approach to tables with complex
structures, borderless cells, large blank spaces, empty or spanning cells as well as distorted or even curved shapes on
a more challenging real-world in-house dataset.

(a) RobusTabNet[14] (b) TSRFormer with SepRETR[16] (c) TSRFormer with DQ-DETR

Figure 1: Comparison of the results of RobusTabNet, SepRETR based TSRFormer, and DQ-DETR based TSRFormer on two challenging distorted
tables.

The main contributions of this paper are as follows:

• To the best of our knowledge, we are the first to formulate separation line prediction as a line regression prob-
lem. To demonstrate the effectiveness of this new formulation, we propose a new DETR based separation line
prediction model, dubbed DQ-DETR, to predict the positions of points on separation lines from both distorted
and undistorted table images with high localization accuracy.

• We introduce the concept of dynamic queries into the DETR framework, thanks to which our new progressive
separation line regression algorithm can be implemented in the DETR framework efficiently. Moreover, we
propose a new prior-enhanced matching strategy to accelerate the convergence speed of DQ-DETR in training
and leverage the factorized self-attention [17] and deformable attention [15] modules to significantly reduce the
computation cost of DQ-DETR in inference further.

• With the help of DQ-DETR, our TSRFormer has achieved state-of-the-art performance on several public TSR
benchmarks, including SciTSR [18], PubTabNet [19], WTW [10], FinTabNet [20], and cTDaR TrackB2-
Modern [21].

Although a preliminary study of TSRFormer has been presented in our conference paper [16], this paper extends
it significantly in the following aspects: (1) A new DETR based separation line regression model, named DQ-DETR,
is proposed to predict the positions of points on each separation line progressively, which leads to higher separation
line prediction accuracy; (2) More ablation studies are conducted to demonstrate the effectiveness of DQ-DETR;
(3) Experimental results on a new public benchmark dataset, namely FinTabNet [20], are presented to compare our
approach with other approaches more comprehensively.
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(a) Direct line regression [16] (b) Progressive line regression

Figure 2: Comparison of direct line regression in SepRETR [16] and progressive line regression in DQ-DETR.

2. Related work

2.1. Table structure recognition

Early TSR methods were mainly based on handcrafted features and heuristic rules (e.g., [22–26]), so they could
only deal with simple table structures or specific data formats, such as PDF files. Later, some statistical machine
learning based methods (e.g, [27, 28]) were proposed to reduce the dependence on heuristic rules. However, these
methods still made strong assumptions about table layouts and relied on handcrafted features, which limited their
generalization ability. In recent years, many deep learning based approaches have emerged and outperformed these
traditional methods significantly in terms of both accuracy and capability. These approaches can be roughly divided
into three categories: row/column extraction based methods, image-to-markup generation based methods and bottom-
up methods.

Row/column extraction based methods. These approaches leverage object detection or semantic segmentation
methods to detect entire rows and columns first, then intersect them to form a grid of cells. DeepDeSRT [1] first
applied an FCN-based semantic segmentation method [29] to table structure extraction. TableNet [2] proposed an
end-to-end FCN-based model to simultaneously detect tables and recognize table structures. However, these vanilla
FCN-based TSR methods are not robust to tables containing large blank spaces due to limited receptive fields. To
alleviate this problem, methods like [4, 6, 30] tried different context enhancement techniques, e.g., pooling features
along rows and columns of pixels on some intermediate feature maps of FCN models or using sequential models like
bi-directional gated recurrent unit networks (GRU), to improve row/column segmentation accuracy. Another group
of approaches [3, 31, 32] treated TSR as an object detection problem and used some object detection methods to
directly detect the bounding boxes of rows and columns. Among these methods, SPLERGE [6] was the first to deal
with spanning cells, which proposed to add a simple cell merging module after a row/column extraction module to
recover spanning cells by merging adjacent cells. Later, several works were proposed to further improve the cell
merging module. TGRNet [9] designed a network to jointly predict the spatial locations and spanning information
of table cells. SEM [33] fused the features of each cell from both vision and text modalities. Raja et al. [34]
improved this ”split-and-merge” paradigm by targeting row, column, and cell detection as object detection tasks and
forming rectilinear associations through a graph-based formulation for generating row/column spanning information.
Different from this two-stage paradigm, Zou et al. [35] proposed a one-stage approach to predicting the real row and
column separators to handle spanning cells. Although these methods have achieved impressive performance on some
previous benchmarks, e.g., [18, 19, 36], they are not able to handle distorted or curved tables because they rely on an
assumption that tables are axis-aligned. For tables with rotation and linear perspective transformation, Zeng et al. [37]
proposed an end-to-end transformer-based method to predict the start points and rotation angles of separation lines
and merge basic grids. However, this method cannot deal with curved tables because it assumes that the separation
lines of tables are straight. To make split-and-merge based TSR methods robust to distorted tables, RobusTabNet [14]
proposed to incorporate spatial CNN modules into semantic segmentation based separation line prediction models to
enhance the representation ability of their convolutional feature maps by propagating contextual information across
the whole feature map in horizontal or vertical directions. Although having achieved promising results on a real-world
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dataset containing both distorted and undistorted tables, RobusTabNet still struggles with some challenging cases like
distorted tables with many empty cells.

Image-to-markup generation based methods. This type of method treats TSR as a problem of generating
markup from images and adopts existing image-to-markup models to directly convert each source table image into a
target presentational markup that fully describes its structure and cell contents. Deng et al. [38] constructed a new
dataset TABLE2LATEX-450K and proposed to make use of an attentional encoder-decoder model to convert tables
into LaTeX source codes. Li et al. [39] defined a set of HTML tags to describe table structures only and presented
a new table benchmark dataset known as TableBank. Zhong et al. [19] introduced another large-scale table bench-
mark dataset PubTabNet, which contains 568k table images with corresponding structured HTML representations,
and introduced an attention-based encoder-dual-decoder architecture to recognize table structures and cell contents
simultaneously. One common limitation of these methods is that they cannot provide the bounding box of each table
cell in the original image. To solve this problem, some later work [40, 41] designed models with different decoder
branches to predict not only a sequence of tags representing the structure of each table but also the bounding boxes
of table cells. All these methods rely on a large amount of data to train their models to achieve high performance.
As camera-captured table images in existing datasets are scarce, the effectiveness of these methods for recognizing
tables in camera-captured images has not been verified yet. To alleviate this data insufficiency issue, Chen et al. [42]
proposed a new table structure representation, called Identity Matrix, and a new data augmentation method, named
TabSplitter, to enhance the diversity of the training data for their encoder-decoder based table structure recognition
model. Although this method has achieved promising results for complex tables in the wild, it is still difficult to deal
with very large and complex tables due to the limit of the maximum length of the output sequence.

Bottom-up methods. Bottom-up methods can be further categorized into two groups. The first group [5, 11,
18, 43–45] treats primitive regions like words or cell contents as nodes in a graph and uses graph neural networks to
predict whether each sampled node pair is in a same cell, row or column. NCGM [13] found that these previous graph
based TSR methods cannot process distorted tables reliably and proposed a new method called Neural Collaborative
Graph Machines (NCGM) to leverage inter-intra modality collaboration to enhance the embeddings of text segments
in each table, based on which the row/column/cell grouping relationships between text segments in distorted tables can
be predicted more robustly. However, this method still relies on using an OCR engine to extract text segment bounding
boxes and contents from table images, so it is not robust to tables with a number of undetected text segments or empty
cells. To bypass this problem, the second group of methods [7, 8, 12, 46, 47] detects the bounding boxes of table
cells directly and uses different methods to group them into rows and columns. After cell detection, methods like
[8, 12, 47] used heuristic rules to cluster detected cells into rows and columns. CascadeTabNet [46] recovered cell
relations based on some rules for borderless tables and intersected detected separation lines to extract the grid of
bordered tables. TabStruct-Net [7] proposed an end-to-end network to detect cells and predict cell relations jointly.
However, these approaches fail to handle tables containing a large number of empty cells or distorted/curved tables.
Cycle-CenterNet [10] proposed to detect the vertices and center points of cells first and then group the cells into
tabular objects by learning the common vertices. This method can parse the structures of distorted bordered tables in
wild complex scenes effectively, but it cannot perform well for borderless tables.

2.2. DETR and its variants
DETR [48] is a novel Transformer-based [49] object detection algorithm, which introduced the concept of object

query and set prediction loss to object detection. These novel attributes make DETR get rid of many manually
designed components in previous CNN-based object detectors like anchor design and non-maximum suppression
(NMS). However, DETR has its own issues: 1) Slow training convergence; 2) Unclear physical meaning of object
queries; 3) Hard to leverage high-resolution feature maps due to high computational complexity. Deformable DETR
[15] proposed several effective techniques to address these issues: 1) Formulating queries as 2D anchor points; 2)
Designing a deformable attention module that only attends to certain sampling points around a reference point to
efficiently leverage multi-scale feature maps; 3) Proposing a two-stage DETR framework and an iterative bounding
box refinement algorithm to further improve accuracy. Inspired by the concept of reference point in Deformable
DETR, some follow-up works attempted to address the slow convergence issue by giving spatial priors to the object
query. For instance, Conditional DETR [50] divided the cross-attention weights into two parts, i.e., content attention
weights and spatial attention weights, and proposed a conditional spatial query to make each cross-attention head in
each decoder layer focus on a different part of an object. Anchor DETR [51] generated object queries from 2D anchor

5



Figure 3: An overview of the proposed TSRFormer.

points directly. DAB-DETR [52] proposed to use 4D anchor box coordinates to represent queries and dynamically
update boxes in each decoder layer. SMCA [53] first predicted a reference 4D box for each query and then directly
generated its related spatial cross-attention weights with a Gaussian prior in the transformer decoder. Inspired by
two-stage Deformable DETR, Efficient DETR [54] took top-K scored proposals output from the first dense prediction
stage and their encoder features as the reference boxes and object queries, respectively. Different from the above
works, TSP [55] discarded the whole DETR decoder and proposed an encoder-only DETR. DN-DETR [56] pointed
out that the bipartite matching algorithm used in Hungarian loss is another reason for slow convergence and proposed a
denoising based training method to speed up DETR convergence. DINO [57] improved the performance and efficiency
of DN-DETR further by using a contrastive way for denoising training, a mixed query selection method for anchor
initialization, and a look-forward-twice scheme for box prediction.

3. Methodology

3.1. Overview

As depicted in Fig. 3, the improved TSRFormer model contains two key components: 1) A DQ-DETR based split
module to predict all row and column separation lines from each input table image; 2) A relation network based cell
merging module [14] to recover spanning cells. These two modules are attached to a shared convolutional feature map
P2 generated by a ResNet18-FPN backbone [58, 59]. Details of these two components will be described in Section
3.2 and Section 3.3, respectively.

3.2. DQ-DETR based split module

In the split module, two parallel branches are attached to the shared feature map P2 to predict row and column
separators, respectively. Each branch comprises two modules: (1) A spatial CNN based feature enhancement module
[14] to generate a context-enhanced feature map; (2) A DQ-DETR decoder to predict the positions of all separation
lines. In subsequent sections, we will take the row separation line prediction branch as an example to introduce the
details of these two modules.
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3.2.1. Spatial CNN based feature enhancement
Following RobusTabNet [14], a spatial CNN based feature enhancement module is used to enhance the feature

representation of each pixel on P2 first. As shown in Fig. 3, we add a 3 × 3 convolutional layer and three repeated
down-sampling blocks, each composed of a sequence of a 1 × 2 max-pooling layer, a 3 × 3 convolutional layer, and
a ReLU activation function, after P2 sequentially to generate a down-sampled feature map P′2 ∈ R

H
4 ×

W
32×C first. Then,

two cascaded spatial CNN (SCNN) [60] modules are attached to P′2 to enhance its feature representation ability further
by propagating contextual information across the whole feature map in rightward and leftward directions. Take the
rightward direction as an example, the SCNN module splits P′2 into W

32 slices along the width direction and propagates
the information from the leftmost slice to the rightmost slice sequentially with convolution operators. Specifically,
each slice is convolved by a convolutional layer with the kernel size of 9 × 1 (9 and 1 represent kernel height and
width respectively) and the output feature map is fused with its right slice by element-wise addition. The output
context-enhanced feature map Erow is taken as the input of the following DQ-DETR decoder.

X = 𝑥2

Figure 4: An example of ground truth row separation lines.

Figure 5: The architecture of our DQ-DETR based row separation line prediction model.
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3.2.2. DQ-DETR based separation line prediction
As illustrated in Figure 4, we adopt three parallel curvilinear lines to denote the top boundary, center line, and

bottom boundary of each row separator, respectively. Each curvilinear line is represented by K = 15 points, with
the x-coordinate of the k-th point set to xk = W ∗ k

K+1 (k = 1, 2, ...,K). The DQ-DETR decoder predicts the y-
coordinates of 3K points for each row separator. As depicted in Figure 5, the proposed approach begins by predicting
a reference point for the center line of each row separator. These reference points serve as the initial queries of
the DQ-DETR decoder, which progressively predicts the positions of other points on the center line for each row
separator. Specifically, each decoder layer enhances the embeddings of the queries output by the preceding decoder
layer, followed by refining the positions of their corresponding points using a regressor. Based on the refined points,
one or two additional points are appended on both sides of the detected center line, serving as additional queries for
the next decoder layer to detect new points of the center line for each row separator. To improve the precision of top
and bottom boundary line predictions, an auxiliary task is introduced that leverages the query embeddings generated
by each decoder layer to estimate the relative positions of points on these lines relative to their respective reference
points on the detected center line. The resulting predicted y-coordinates of the 3K points for each row separator
generated by the final decoder layer are deemed as the definitive outcome. Based on the features Erow output by the
spatial CNN based feature enhancement module, the reference point detection module and the DQ-DETR decoder are
attached to two different high-resolution feature maps E′row ∈ RH×W

8 ×C′ and E′′row ∈ RH×W
8 ×C′ respectively, which are

both generated by adding a 1 × 1 convolutional layer and an up-sampling layer sequentially to Erow.

Reference point detection. The reference point for the center line of each row separator will be detected at a fixed
position xτ along the width direction of the raw image. Specifically, the xth

τ column of E′row will be fed into a 1 × 1
convolutional layer followed by a sigmoid activation function to predict a reference point score map with the shape
of H × 1. Then, we apply non-maximal suppression by using a 7 × 1 max-pooling layer on the score map to suppress
redundant activations for a single row separator. After that, top-100 scored row reference points are selected and
further filtered by a score threshold of 0.05. The remaining Nq row reference points will be used to construct the
initial queries of the following DQ-DETR decoder. Here, we set the hyper-parameter xτ as ⌊W

2 ⌋ for row separation
line prediction and yτ as ⌊H

2 ⌋ for column separation line prediction in all experiments.

Query initialization. The first decoder layer in DQ-DETR takes all selected reference points as queries. Let q0
j,mid

denote the initial embedding of the reference point for the j-th row separator. q0
j,mid is initialized as follows:

q0
j,mid = ce j,mid + pe j,mid, (1)

where ce j,mid is a learnable content embedding and pe j,mid is a positional embedding, which is calculated by using
the sinusoidal positional encoding function with the normalized coordinates of the corresponding reference point as
input. In this way, we can initialize Nq queries from the Nq reference points.

Query embedding enhancement. As depicted in Fig. 6, the queries input to a decoder layer form a tensor Q with the
shape of Nq × Np × D, where Np is the number of already detected points on the center line of each separator before
the current decoder layer and D is the dimension of each query embedding. Here, each decoder layer is composed
of a factorized self-attention (SA) module [17], a deformable cross-attention module [15] (CA), and an FFN. In the
factorized self-attention module, instead of conducting self-attention among all queries, it first conducts intra-line
self-attention and then inter-line self-attention. Specifically, all the queries belonging to the same separator will attend
to each other in the intra-line self-attention and all the queries from different separators whose x-coordinates are the
same will attend to each other in the inter-line self-attention. Denote the center line of the j-th row separator input to
the l-th decoder layer as an ordered point set {pl−1

j,k |k = start, ...,mid, ..., end}, where start = mid − Np−1
2 , mid = K+1

2 ,

end = mid + Np−1
2 , and denote the input embedding of the k-th point on the center line of the j-th row separator, i.e.,

pl−1
j,k , as ql−1

j,k . Then, the intra-line self-attention operator fintra and inter-line self-attention operator finter are formulated
as follows:
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fintra(ql−1
j,∗ ) =

[
q̄l−1

j,start, ..., q̄
l−1
j,mid, ..., q̄

l−1
j,end

]
= S A(ql−1

j,start, ...,q
l−1
j,mid, ...,q

l−1
j,end),

finter(q̄l−1
∗,k ) =

[
q̂l−1

1,k , q̂
l−1
2,k , ..., q̂

l−1
Nq,k

]
= S A(q̄l−1

1,k , q̄
l−1
2,k , ..., q̄

l−1
Nq,k),

j ∈ {1, 2, ...,Nq}, k ∈ {start, ...,mid, ..., end}, (2)

where q̂ is the enhanced embedding of each query output by the factorized self-attention module. Compared with val-
lina self-attention, factorized self-attention can reduce the computational complexity from O(N2

q N2
pD) to O(NqN2

pD +
N2

q NpD). The updated queries are further sent into the deformable cross-attention module [15] to aggregate high-
resolution image features E

′′

row to leverage context information.

Figure 6: The architecture of DQ-DETR decoder layer for row separation line prediction.

Dynamic query generation. The updated query embeddings from each decoder layer will first be fed into a regressor
to refine the positions of current reference points. Given a query embedding ql

j,k output from the l-th decoder layer,
we denote its current position in the input image as pl−1

j,k and its refined position as pl
j,k, respectively. Since the

x-coordinates of the points that need to be predicted on the center line of row separators are pre-set, only the y-
coordinate pyl

j,k needs to be predicted, and the x-coordinates pxl
j,k can be directly obtained according to the previous

definition. pl
j,k is calculated as follows:

pl
j,k =

(
pxl

j,k, pyl
j,k

)
=

(
W ∗

k
K + 1

, H ∗ σ
(
∆pyl

j,k + σ
−1(pyl−1

j,k )
))
, (3)

where pyl−1
j,k is the normalized y-coordinates of pl−1

j,k , σ(·) is the sigmoid function and ∆pyl
j,k is the predicted y-offset by

the regressor. After refining the position of each point, we add one additional point at each end of the detected center

9



line at the first decoder layer, and two additional points at subsequent decoder layers as shown in Fig. 5. Specifically,
denote a refined center-line proposal as an ordered point set {pl

j,k |k = start, ...,mid, ..., end}, we will insert a new point
pl

j,start−1 before the first point and append a new point pl
j,end+1 after the last point at the first layer and insert two more

points pl
j,start−2 and pl

j,end+2 at the subsequent layers. For the first layer, the locations of the newly added points will
be simply initialized as pl

j,start−1 = pl
j,start and pl

j,end+1 = pl
j,end. It is worth noting that for the first layer, start, end,

and mid are all equal. For the subsequent layers, the x-coordinates of the four newly added points pl
j,start−1, pl

j,start−2,
pl

j,end+1 and pl
j,end+2 are pre-set and the corresponding y-coordinates will be initialized as follows:

δly,start = pyl
j,start − pyl

j,start+1, (4)

pyl
j,start−2 = pyl

j,start−1 = pyl
j,start + t ∗ δly,start, (5)

δly,end = pyl
j,end − pyl

j,end−1, (6)

pyl
j,end+2 = pyl

j,end+1 = pyl
j,end + t ∗ δly,end, (7)

where t is a learnable parameter initialized as 0.5 to adjust the extension ratio. As illustrated in Fig. 7, we take the
generation of pl

j,end+1 and pl
j,end+2 as an example. With these extended points, we can dynamically generate 2Nq or

4Nq new queries following Eq. 1 and concatenate them with the existing query tensor. In this way, the center line of
each row separator can be extended progressively and refined iteratively by the following decoder layers to achieve
higher localization accuracy.

Figure 7: Illustration of the heuristic strategy utilized for generating new reference points at DQ-DETR decoder layers, with the exception of the
first decoder layer.

Separation line regression. The output query embeddings Q ∈ RNq×Np×D from each decoder layer will be fed into
two feed-forward networks for classification and separation line regression, respectively. Specifically, the classifier
is implemented by a fully-connected (FC) layer followed by a sigmoid activation function to determine whether
the corresponding reference point belongs to a separation line. If so, a regressor is used to predict the offsets of y-
coordinates from the reference point of each query to the corresponding points on the center line, top boundary, and
bottom boundary of the row separator, respectively. Here, the regressor is implemented by an MLP with 2 hidden
layers and an output layer whose output channel dimension is 3. We consider the predicted y-coordinates of the 3K
points for each row separator, which are produced by the last decoder layer, as the final result.
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3.2.3. Prior-enhanced bipartite matching
Given a set of predictions and their corresponding ground-truth objects from an input image, DETR used Hungar-

ian algorithm to assign ground-truth labels to the system predictions. However, it is found that the original bipartite
matching algorithm in DETR is unstable in the training stage [56], i.e., a query could be matched with different objects
in a same image in different training epochs, which slows down model convergence significantly. We find that most
of the reference points detected in the first stage locate between the top and bottom boundaries of their corresponding
row separators consistently in different training epochs, so we leverage this prior information to match each reference
point with its closest ground-truth (GT) separator directly. In this way, the matching results will become stable during
training. Specifically, we generate a cost matrix by measuring the distance between each reference point and each
GT separator. If a reference point is located between the top and bottom boundaries of a GT separator, the cost is
set to the distance from this reference point to the GT reference point of this separator. Otherwise, the cost is set to
INF. Based on this cost matrix, we use the Hungarian algorithm to produce an optimal bipartite matching between
reference points and ground truth separators. After getting the optimal matching result, we further remove the pair
with cost INF to bypass unreasonable label assignments. The experiments in Table 11 show that the convergence of
our DQ-DETR becomes much faster with our prior-enhanced bipartite matching strategy.

Figure 8: Examples of shrunk cells, which are the input of cell merging module.

3.3. Relation network based cell merging
For a fair comparison with RobusTabNet [14], we also use a lightweight relation network [61] to recover spanning

cells. After separation line prediction, we intersect the center lines of all row and column separators to generate a
grid of cells and intersect the top and bottom boundaries of all row separators with the left and right boundaries of all
column separators to generate a shrunk cell box for each cell (each blue box in Fig. 8 represents a shrunk cell box).
As shown in Fig. 3, to calculate the feature representation of each cell, we use the RoI Align algorithm [62] to extract
a 7×7×C feature map from P2 based on the bounding box of its shrunk cell box and feed this feature map into a two-
layer MLP with 512 nodes at each layer to generate a 512-d feature vector first. These feature vectors can be arranged
in a grid with N rows and M columns to form a feature map Fcell ∈ RN×M×512, which is then enhanced by three
repeated feature enhancement blocks to generate an enhanced feature map. Each feature enhancement block contains
three parallel branches with a row-wise max-pooling layer, a column-wise max-pooling layer, and a 3×3 convolutional
layer, respectively. The output feature maps of these three branches are concatenated together and convoluted by a
1×1 convolutional layer for dimension reduction. Finally, for each pair of adjacent cells, we concatenate their feature
vectors extracted from the enhanced feature map and an 18-d spatial compatibility feature vector introduced in [61] to
generate a new feature vector, which is fed into a binary classifier to predict whether these two cells should be merged
or not. The binary classifier is implemented with a 2-hidden-layer MLP with 512 nodes at each hidden layer and a
sigmoid activation function.

4. Loss function

The loss functions for training the split module and the cell merging module in TSRFormer are defined in this
section. For the split module, we take row separator prediction as an example and denote the corresponding loss items
as Lrow

∗ . Likewise, we can also calculate the losses for column separator prediction, denoted as Lcol
∗ .
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Reference point detection. We adopt a variant of focal loss [63] to train the row reference point detection module:

Lrow
re f = −

1
Nr

H∑
i=1

{
(1 − pi)αlog(pi), p∗i = 1
(1 − p∗i )βpαi log(1 − pi), otherwise (8)

where Nr is the number of row separation lines, α and β are two hyper-parameters set to 2 and 4 respectively as in
[64], pi and p∗i are the predicted and ground-truth labels for the ith pixel in the xth

τ column of E′row. Here, p∗i has been
augmented with unnormalized Gaussians, which are truncated at the boundary of separators, to reduce the penalty
around the ground-truth reference point locations. Specifically, let (yk, xτ) denote the ground-truth reference point for
the kth row separator, which is the intersection point of the center line of this row separator and the vertical line x = xτ.
The vertical distance between the top and bottom boundaries of the kth row separator is taken as its thickness, denoted
as wk. Then, p∗i can be defined as follows:

p∗i =

 exp(− (i−yk)2

2σ2
k

), i f i ∈ (yk −
wk
2 , yk +

wk
2 )

0, otherwise
(9)

where σk =

√
w2

k
2ln(10) is adaptive to the thickness of the separator to make sure that p∗i within this row separator is no

less than 0.1.
Separation line regression. Let y = {(ci, li)|i = 1, ...,M} denote the set of ground-truth row separators, where

ci and li indicate the target class and row separator position respectively, y∗ = {(c∗q, l
∗
q)|q = 1, ...,Q} denote the set of

predictions. After getting the optimal bipartite matching result σ̂, the loss of row separation line regression can be
calculated as:

Lrow
line =

Q∑
i=1

[Lcls(ci, c∗σ̂(i)) + 111{ci,∅}Lreg(li, l∗σ̂(i))] (10)

where Lcls is focal loss and Lreg is L1 loss. For each decoder layer, the loss of regression Lrow
line is added to assist training.

Due to the dynamic change in the number of predicted points at different decoder layers, the set of ground-truth row
separators y needs to extract the corresponding number of points for each separator, and the same loss function is
performed. The overall loss of row separation line regression is as follows:

Lrow,all
line =

L∑
l=1

Lrow,l
line =

L∑
l=1

Q∑
i=1

[Lcls(cl
i, c
∗,l
σ̂(i)) + 111{cl

i,∅}Lreg(lli, l
∗,l
σ̂(i))] (11)

where L means the number of the decoder layers, (cl, ll) and (c∗,l, l∗,l) represent the corresponding part of ground-truth
row separators and prediction at the l-th layer, respectively.

Cell merging. The loss Lmerge of the cell merging module is a binary cross-entropy loss:

Lmerge =
1
|S rel|

∑
i∈S rel

BCE(Pi, P∗i ) (12)

where S rel denotes the set of sampled cell pairs, Pi and P∗i denote the predicted and ground-truth labels for the ith cell
pair, respectively.

Overall loss. All the modules in TSRFormer can be trained jointly. The overall loss function is as follows:

L = λ(Lrow
re f + Lcol

re f ) + Lrow,all
line + Lcol,all

line + Lmerge (13)

where λ is a control parameter set to 0.2 in our experiments.
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5. Experiments

5.1. Datasets and evaluation protocols

We conduct experiments on four popular public benchmarks, including SciTSR [18], PubTabNet [19], FinTab-
Net [20] and WTW [10], to verify the effectiveness of the proposed method. Moreover, we also collected a more
challenging in-house dataset, which includes many challenging tables with complex structures, borderless cells, large
blank spaces, empty or spanning cells as well as distorted or even curved shapes, to demonstrate the superiority of our
TSRFormer.

SciTSR [18] contains 12,000 training samples and 3,000 testing samples of axis-aligned tables cropped from
scientific literatures. There are also 716 complicated tables selected by authors from the testing set to create a more
challenging test subset, called SciTSR-COMP. In this dataset, the cell adjacency relationship metric [36] is used as the
evaluation metric. Instead of comparing the IoU of bounding boxes of detected cells (or contents) and the ground-truth
cells (or contents), whether the text contents in the detected cell and the ground-truth cell match exactly is used in
the evaluation tool. We assign each candidate text content from the PDF files of SciTSR, whose bounding boxes is
denoted as btext, into a detected cell box bdet if the following condition is satisfied, i.e.,

Area(btext ∩ bdet)
Area(btext)

> 0.5 (14)

where Area(btext) and Area(btext ∩ bdet) denote the area of btext and the area of the overlap between btext and bdet,
respectively. Additionally, we take empty cells into account when evaluating.

PubTabNet [19] contains 500,777 training, 9,115 validation, and 9,138 testing images generated by matching the
XML and PDF representations of scientific articles. All the tables are axis-aligned. Since the annotations of the testing
set are not released, we only report results on the validation set. This work proposed a new Tree-Edit-Distance-based
Similarity (TEDS) metric for table recognition task, which can identify both table structure recognition and OCR
errors. However, taking OCR errors into account may cause an unfair comparison because of the different OCR
models used by different TSR methods. Some recent works [7, 8, 12] have proposed a modified TEDS metric named
TEDS-Struct to evaluate table structure recognition accuracy only by ignoring OCR errors. We also use this modified
metric to evaluate our approach on this dataset.

FinTabNet [20] is a large dataset containing more than 70K pages with full table bounding boxes and struc-
ture annotations (train/val/test= 61801/7191/7085) and more than 110k axis-aligned tables with cell bounding boxes
(train/val/test=91596/10635/10656) from the annual reports of the S&P 500 companies. We use the 110k cropped
table images to evaluate our approach. Following the original FinTabNet paper [20], the TEDS-Struct metric is used
as the evaluation metric.

WTW [10] contains 10,970 training images and 3,611 testing images collected from wild complex scenes. This
dataset focuses on bordered tabular objects only and contains the annotated information of table id, tabular cell coor-
dinates, and row/column information. We crop table regions from original images for both training and testing and
follow [10] to use the cell adjacency relationship (IoU=0.6) [65] as the evaluation metric of this dataset.

cTDaR TrackB2-Modern [21] contains no images for training, but 100 images with annotations are provided
as testing data. RobusTabNet [14] manually labelled the structures of tables in the cTDaR TrackA modern subset,
which contains 600 training images. It has been checked that there is no overlap between the 600 training images and
the 100 testing images. To evaluate our approach on this dataset, we follow RobusTabNet [14] to train our model on
that dataset. The cTDaR TrackB metric [21] is used as the evaluation metric of this dataset. During the evaluation,
the convex hull of the content is used to represent a cell. Note that both table region detection and table structure
recognition have to be done on this dataset. To validate the effectiveness of our table structure recognition module,
we use the same table detector as RobusTabNet [14]. Following previous works [35, 46], the experimental results
reported by us are based on the average of IoU=0.6, 0.7, 0.8, 0.9.

In-House dataset contains 40,590 training images and 1,053 testing images, cropped from heterogeneous doc-
ument images including scientific publications, financial statements, invoices, etc. Most images in this dataset are
captured by cameras so tables in these images may be skewed or even curved. Some examples can be found in Fig. 1,
Fig. 9, Fig. 10 and Fig. 11. The same adjacency relation-based metric as cTDaR TrackB is used for evaluation. We
use ground-truth text boxes as table contents and report results based on IoU=0.9.
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It is worth noting that the definitions of Cell Adjacency Relationship used in the respective evaluation metrics of
SciTSR, WTW, cTDaR TrackB2-Modern, and in-house dataset are the same and all based on [65].

5.2. Ground-truth generation

We take the row separation line prediction branch as an example to introduce how to generate the ground-truth top
boundary, center line, and bottom boundary of each row separator. In SciTSR, PubTabNet, and FinTabNet datasets,
the row and column spanning information of each cell in each table are annotated to represent the table structure,
and the bounding boxes of text-lines in each cell are annotated to represent the content of each cell. As tables in
these datasets are axis-aligned, we calculate a minimum bounding box for each table row by using an axis-aligned
rectangle to enclose the text-line boxes in all non-spanning cells in this row with the minimum area. The top and
bottom boundaries of the minimum bounding box of each table row are taken as the ground-truth bottom and top
boundaries of the row separators above and below this table row, respectively. In the WTW dataset, since only the
borders of bordered cells are labeled, we generate the ground-truth center lines of row separators above and below a
table row by connecting and extending the top and bottom borders of annotated cell boxes in this row, respectively,
and set the width of all the separator masks to 8 pixels to obtain the top and bottom boundaries of each row separator.
As tables in the in-house dataset could be distorted, in addition to the row and column spanning information of each
cell, the borders of both table cells and text-lines are also annotated. We calculate the labeled row separation lines by
connecting the top and bottom borders of cell boxes in each table row first. Given these labeled row separation lines
as well as the bounding boxes of text-lines in each cell, we follow [14] to generate a segmentation mask for each row
separator by moving the corresponding separation line upwards and downwards respectively until it touches a text box
that belongs to a non-spanning cell. Then, the top boundary, center line, and bottom boundary of each row separator
mask are considered as the ground-truth lines of each row separator.

We use cells detected by the split model to generate positive and negative relational pairs for training the cell
merging module. Given detected/ground-truth row and column separators from a table image, we intersect their
center lines and boundaries to generate cell boxes and shrunk cell boxes for detected/ground-truth cells, respectively.
Then, we assign each detected cell bdet, whose shrunk cell box is denoted as bdet shrunk, to a ground-truth cell box bgt

if the following condition is satisfied, i.e.,

Area(bdet shrunk ∩ bgt)
Area(bdet shrunk)

> 0.5 (15)

where Area(bdet shrunk) and Area(bdet shrunk ∩ bgt) denote the area of bdet shrunk and the area of the overlap between
bdet shrunk and bgt, respectively. After that, each detected cell is paired with each of its 4-connected cells to construct
candidate relational pairs. If two cells in a relational pair are assigned to the same ground-truth cell box, we give this
relational pair a positive label, otherwise a negative label. During training, we ignore all the negative relational pairs
that contain cells not assigned to any ground-truth cell.

5.3. Implementation details

All experiments are implemented in Pytorch v1.8.1 and conducted on a workstation with 8 Nvidia Tesla V100
GPUs. We use ResNet18-FPN as the backbone and set the channel number of P2 to 64 in all experiments. The
weights of RestNet-18 are initialized with a pre-trained model for the ImageNet classification task. The models are
optimized by AdamW [66] algorithm with batch size 16. We use a polynomial decay schedule with the power of 0.9
to decay the learning rate, and the initial learning rate, betas, epsilon, and weight decay are set as 1e-4, (0.9, 0.999),
1e-8 and 5e-4, respectively. Synchronized BatchNorm is applied during training. In DQ-DETR based split modules,
we set the channel number of E′row/E

′
col to 256, and the query dimension, head number, and dimension of feedforward

networks in transformer decoder layers to 256, 16 and 1024, respectively.
In the training phase, we randomly rescale the shorter side of table images to a number in {416, 512, 608, 704,

800} while keeping the aspect ratio for all datasets except WTW. For WTW, we follow [10] to resize both sides of
each training image to 1024 pixels. In each image, we sample a mini-batch of 64 hard positive and 64 hard negative
cell pairs for the cell merging module. The hard samples are selected with the OHEM [67] algorithm. During training,
we first train the reference point detection module for N epochs and then jointly train this module and the separation

14



line regression module for N epochs. Finally, the cell merging module is further added and jointly trained for another
N epochs. Here, N is set as 12 for PubTabNet and 20 for the other datasets.

In the testing phase, we rescale the longer side of each image to 1024 while keeping the aspect ratio for SciTSR,
PubTabNet, FinTabNet, and in-house dataset. For WTW, the strategy is the same as in training.

Table 1: Results on SciTSR dataset.

Methods
SciTSR SciTSR-COMP

Prec. (%) Rec. (%) F1. (%) Prec. (%) Rec. (%) F1. (%)
TabStruct-Net [7] 92.7 91.3 92.0 90.9 88.2 89.5
GraphTSR [18] 95.9 94.8 95.3 96.4 94.5 95.5
LGPMA [12] 98.2 99.3 98.8 97.3 98.7 98.0

FLAG-Net [11] 99.7 99.3 99.5 98.4 98.6 98.5
RobusTabNet[14] 99.4 99.1 99.3 99.0 98.4 98.7

TSRFormer w/ DQ-DETR 99.5 99.3 99.4 99.1 98.6 98.9

Table 2: Results on PubTabNet dataset.

Methods Training Dataset TEDS (%) TEDS-Struct (%)

EDD [19] PubTabNet 88.3 -
TableStruct-Net [7] SciTSR - 90.1

GTE [8] PubTabNet - 93.0
LGPMA [12] PubTabNet 94.6 96.7

FLAG-Net [11] SciTSR 95.1 -
RobusTabNet [14] PubTabNet - 97.0

TSRFormer w/ DQ-DETR PubTabNet - 97.5

5.4. Comparisons with prior arts
We compare our DQ-DETR based TSRFormer with previous state-of-the-art TSR methods on five public datasets

first, including SciTSR, PubTabNet, FinTabNet, WTW, and cTDaR TrackB2-Modern. As reported in Table 1, our
approach achieves comparable performance on both the full testing set and the SciTSR-COMP subset (containing
complicated tables only) against previous best methods. Moreover, the smaller accuracy degradation of our approach
on the SciTSR-COMP subset demonstrates that our approach is more robust to tables with complex structures than
other TSR methods. On the competitive PubTabNet dataset (see Table 2), our approach achieves the highest TEDS-
Struct score of 97.5%. On FinTabNet (see Table 3), our approach outperforms TableFormer [41] by 1.6% absolutely in
terms of TEDS-Struct score. On the more challenging WTW dataset (see Table 4), our DQ-DETR based TSRFormer
achieves 1.9% higher F1-score than Cycle-CenterNet [10], which is specially designed for recognizing distorted bor-
dered tables. On cTDaR TrackB2-Modern, the table detector in RobusTabNet[14] and our table structure recognizer
are combined together to conduct end-to-end evaluation. Since the outputs of our approach are cell boxes rather than
convex hulls of cell contents, for the sake of fair comparison, we use the same text detection algorithm as CascadeTab-
Net [46] to detect texts in each image and then assign them to table cells if 80% of a text box is located in a cell box.
As shown in Table 5, our DQ-DETR based TSRFormer achieves 0.6% higher F1-score than RobusTabNet [14]. It is
noted that the score on this dataset is relatively low mainly because the localization accuracy of text boxes generated
by OCR is not good enough. To further verify the robustness of our DQ-DETR based TSRFormer to different types
of distorted tables, we compare it to RobusTabNet[14], which is one of the previous best performing TSR methods,
on our challenging in-house dataset. As shown in Table 6, DQ-DETR based TSRFormer outperforms RobusTabNet
significantly by improving the F1-score from 92.3% to 95.7% under the default evaluation setting. The qualitative
comparison examples in Fig. 9 show that our approach is more robust to some challenging cases, like distorted tables
with many empty cells, than RobusTabNet.
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More qualitative results of our approach on different datasets are shown in Fig. 10, from which we can observe
that our approach is robust to tables with complex structures, borderless cells, large blank spaces, empty or spanning
cells as well as distorted or even curved shapes.

Table 3: Results on FinTabNet dataset.

Methods Training Dataset TEDS-Struct (%)

Det-Base [8] PubTabNet 41.6
EDD [19] PubTabNet 90.6
GTE [8] PubTabNet & FinTabNet 91.0

TableFormer [41] FinTabNet 96.8
TSRFormer w/ DQ-DETR FinTabNet 98.4

Table 4: Results on WTW dataset.

Methods Prec. (%) Rec. (%) F1. (%)

Cycle-CenterNet [10] 93.3 91.5 92.4
TSRFormer w/ DQ-DETR 94.5 94.0 94.3

Table 5: TSR Performance comparison on ICDAR2019 cTDaR TrackB2-Modern. * indicates that the results are from [21].

Methods IoU@0.6(%) IoU@0.7(%) IoU@0.8(%) IoU@0.9(%) WAvg.
P R F1 P R F1 P R F1 P R F1 F1(%)

Zou et al.[35] 18.8 10.1 13.1 - - - 1.7 0.9 1.2 - - - -
NLPR-PAL* 32.2 42.1 36.5 26.9 35.1 30.5 17.2 22.5 19.5 3.1 4.0 3.5 20.6

CascadeTabNet[46] 49.9 39.0 43.8 40.3 31.5 35.4 21.6 16.9 19.0 4.1 3.2 3.6 23.2
GTE[20] - - 38.5 - - - - - - - - - 24.8

RobusTabNet[20] 76.4 76.8 76.6 71.3 71.6 71.4 58.1 58.4 58.3 25.7 25.8 25.8 55.3

TSRFormer w/ DQ-DETR 74.2 72.1 73.2 71.4 69.4 70.4 62.0 60.2 61.1 29.1 28.2 28.6 55.9

Table 6: Results on In-house dataset.

Methods Prec. (%) Rec. (%) F1. (%)

SPLERGE [6] 85.4 82.3 83.8
RobusTabNet [14] 93.0 91.6 92.3

TSRFormer w/ SepRETR 95.1 95.3 95.2
TSRFormer w/ DQ-DETR 95.7 95.7 95.7

Table 7: Results on In-house dataset. Limitation threshold denotes the limitation while assigning text-lines to predicted cells. The default limitation
threshold is 50%. The limitation of 80% is more strict.

Methods Limitation threshold = 50% Limitation threshold = 80%
Prec. (%) Rec. (%) F1. (%) Prec. (%) Rec. (%) F1. (%)

SPLERGE 85.4 82.3 83.8 80.6 67.6 73.6 (-10.2)
RobusTabNet 93.0 91.6 92.3 92.2 89.6 90.9 (-1.4)

TSRFormer w/ SepRETR 95.1 95.3 95.2 94.4 93.8 94.1 (-1.1)
TSRFormer w/ DQ-DETR 95.7 95.7 95.7 95.3 94.8 95.1 (-0.6)
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Table 8: Comparisons of TSRFormer w/ SepRETR and TSRFormer w/ DQ-DETR on different datasets.

Methods Dataset Prec. (%) Rec. (%) F1. (%) TEDS-Struct (%)

TSRFormer w/ SepRETR SciTSR 99.5 99.4 99.4 -
TSRFormer w/ DQ-DETR SciTSR 99.5 99.3 99.4 -
TSRFormer w/ SepRETR SciTSR-COMP 99.1 98.7 98.9 -
TSRFormer w/ DQ-DETR SciTSR-COMP 99.1 98.6 98.9 -
TSRFormer w/ SepRETR PubTabNet - - - 97.5
TSRFormer w/ DQ-DETR PubTabNet - - - 97.5
TSRFormer w/ SepRETR FinTabNet - - - 98.3
TSRFormer w/ DQ-DETR FinTabNet - - - 98.4
TSRFormer w/ SepRETR WTW 93.7 93.2 93.4
TSRFormer w/ DQ-DETR WTW 94.5 94.0 94.3
TSRFormer w/ SepRETR cTDaR TrackB2-Modern - - 53.6 (WAvg.)
TSRFormer w/ DQ-DETR cTDaR TrackB2-Modern - - 55.9 (WAvg.)
TSRFormer w/ SepRETR In-house 95.1 95.3 95.2 -
TSRFormer w/ DQ-DETR In-house 95.7 95.7 95.7 -

5.5. Ablation studies

We conduct a series of experiments to evaluate the effectiveness of different modules in our approach on our
in-house dataset.

Figure 9: Qualitative results of RobusTabNet (middle) and our proposed DQ-DETR (right) for row separation line prediction on a challenging
curved table with borderless cells and large blank spaces.

Effectiveness of DQ-DETR based split module. As shown in Fig. 1 and Fig. 11, TSRFormer w/ DQ-DETR
can achieve much higher localization accuracy on challenging tables. However, the gap between TSRFormer w/
DQ-DETR and TSRFormer w/ SepRETR in Table 6 is only 0.5% in F1-score on our In-house dataset under the
default setting. The reason is that the adopted evaluation metrics do not require high localization accuracy. Since
the cTDaR TrackB metric uses the convex hull of all the text-line boxes located in each table cell to represent this
cell, if no less than 50% of one text-line located in a cell box, we assign the text-line to this cell for calculating
convex hulls. The limitation of 50% is not strict with localization accuracy since the predicted separation lines
which are overlapped with some text-lines may not be punished. Therefore, increasing this number of limitation can
generate a more strict evaluation metric. For instance, we replace 50% with 80% which means the predicted results
will miss a text-line if less than 80% of it is located in the related cell. The new experimental results are shown in
Table 7. Under the new evaluation setting, the result of SPLERGE significantly drops by 10.2% absolutely in F1-
score. RobusTabNet and TSRFormer w/ SepRETR also drop 1.4% and 1.1% respectively. It’s notable that the result
of TSRFormer w/ DQ-DETR only drops 0.6%, which is 1.0% better than that of TSRFormer w/ SepRETR. Table 8
shows that the DQ-DETR based split module does not exhibit a competitive advantage over the datasets with only
horizontal-vertical tables such as SciTSR, PubTabNet, and FinTabNet. However, the DQ-DETR based split module
has demonstrated its superiority over the SepRETR based split module on challenging table datasets such as WTW
and the In-house dataset. Especially, TSRFormer w/ DQ-DETR achieves 2.3% higher F1-score than TSRFormer w/
SepRETR on cTDaR TrackB2-Modern. We think the reason is that the training data is insufficient and DQ-DETR has
better generalization ability.
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Figure 10: Qualitative results of our approach. (a-b) are from SciTSR, (c) is from PubTabNet, (d) is from FinTabNet, (e-h) are from WTW, (i-l) are
from the in-house dataset.

Figure 11: Qualitative results of SepRETR (middle) and DQ-DETR (right) on distorted tables.

Ablation studies of several modules in TSRFormer. As shown in Table 9, we analyze the influence of several
modules in TSRFormer w/ both SepRETR and DQ-DETR and draw the following conclusions. First, SCNN [60] is
important in both settings, which can bring significant gains. Second, due to the existence of spanning cells, adding a
cell merging module and jointly training the split module with it for another 20 epochs can obtain consistent accuracy
improvements. Third, following the conference paper [16], we add an additional auxiliary segmentation branch while
training and find this can improve the SepRETR based split only model by 1.6% in F1-score. However, after adding
the cell merging module and training the models for another 20 epochs, the gap almost disappears. We find the reason
is that this auxiliary segmentation branch can only accelerate the convergence of SepRETR based split module. In
contrast, DQ-DETR is not significantly affected by this auxiliary branch because the progressive regression strategy
in DQ-DETR significantly reduces the difficulty of this regression problem.

Effectiveness of progressive regression strategy. We conduct several experiments to demonstrate the effective-
ness of our proposed progressive regression strategy in DQ-DETR. To do so, we compare its performance with the
direct regression strategy (i.e., SepRETR) presented in our conference paper [16] and the iterative refinement strategy
adopted by DINO [57]. The decoder layer for iterative refinement, named IterativeRETR in our work, maintains the
same architecture as the DQ-DETR decoder layer, except for the progressive generation of new points. This decoder
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Table 9: Ablation studies of several modules in TSRFormer on In-house dataset.

SCNN Aux-seg. Cell Merging F1. (%)

SepRETR

88.6
✓ 91.0
✓ ✓ 92.6
✓ ✓ 95.0
✓ ✓ ✓ 95.2

DQ-DETR

88.8
✓ 92.5
✓ ✓ 92.7
✓ ✓ 95.7
✓ ✓ ✓ 95.7

Table 10: Effectiveness of progressive regression strategy.

Method Prec. (%) Rec. (%) F1. (%)SepRETR layers IterativeRETR layers
0 5 94.4 94.0 94.2
1 4 95.2 95.4 95.3
2 3 95.1 95.3 95.2
3 2 95.2 95.3 95.2
4 1 95.0 95.0 95.0
5 0 95.2 95.4 95.3

5 DQ-DETR layers 95.5 95.9 95.7

layer also enhances the embedding of queries output by the preceding decoder layer, followed by refining the positions
of the corresponding points. To comprehensively compare our proposed progressive regression strategy with the other
two strategies, we stack several SepRETR layers with several IterativeRETR layers to replace the DQ-DETR decoder
for separation line prediction. Table 10 illustrates that our proposed DQ-DETR decoder achieves better performance
than various combinations of SepRETR and IterativeRETR layers when using the same number of decoder layers.
This result highlights the superiority of our progressive regression strategy over the direct regression and iterative
refinement strategies.

Effectiveness of prior-enhanced bipartite matching strategy. We conduct several experiments by training the
DQ-DETR based split module with different matching strategies and epochs. As shown in Table 11, training the model
with the original strategy in DETR by 40 epochs achieves much higher accuracy than training by 20 epochs, which
means the split module has not fully converged. In contrast, using the proposed prior-enhanced matching strategy
can achieve much better results. The small performance gap between models trained with 20 and 40 epochs shows
that these two models have converged well, which demonstrates that our prior-enhanced matching strategy can make
convergence much faster.

Table 11: Effectiveness of prior-enhanced matching strategy.

Matching Strategy #Epochs F1. (%)

Original in DETR 20 88.1
Prior-enhanced 20 92.7

Original in DETR 40 90.2
Prior-enhanced 40 92.8
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(a) Failure case of the excessively
curved tables.

(b) Failure case of the extremely dense tables.

Figure 12: Some typical failure cases, including extremely curved table and extremely dense table.

5.6. Analysis on the efficiency of our approach
We make a thorough analysis on the efficiency of our proposed approach over our in-house dataset, including

model parameters, GFOLPS, FPS, and GPU memory footprint, as shown in Table 12. Compared with the competitive
method RobusTabNet [14], although the configuration of our proposed TSRFormer with DQ-DETR has about 75%
more parameters and 20% less FPS than RobusTabNet due to the usage of multiple deformable transformer decoder
layers, it achieves 4.2% higher F1-score than the former one on In-house dataset. We also design the lightweight
version of SepRETR [16] and DQ-DETR to explore the relationship between efficiency and performance. Specifically,
for light-SepRETR, we reduce the point number K predicted for each curvilinear line from 15 to 9 and change the
query dimension, head number, and dimension of feed-forward layers in the transformer decoder from 256, 16, 1024 to
128, 8, 512, respectively. For light-DQ-DETR, we keep the same configuration as light-SepRETR with the exception
of the point number K, which is reduced from 15 to 11. As shown in Table 12, the parameters, GFLOPS, and FPS
of light-DQ-DETR based TSRFormer are very close to that of RobusTabNet yet light-DQ-DETR based TSRFormer
still achieves 3.6% higher F1-score. Compared with light-SepRETR based TSRFormer, light-DQ-DETR improves
the F1-score by 1.5%, but the cost of these two models is similar.

Table 12: Analysis on the efficiency of our proposed approach on In-house dataset with Limitation threshold = 80%.

Model #Param(M) GFLOPS F1. (%) FPS
GPU Memory
Footprint (G)

RobusTabNet 20.1 26.42 90.9 5.19 2.3
TSRFormer(SepRETR) 26.7 36.86 94.1 5.17 5.5
TSRFormer(light-SepRETR) 21.7 30.35 93.0 6.71 3.1
TSRFormer(DQ-DETR) 35.0 35.15 95.1 4.17 5.8
TSRFormer(light-DQ-DETR) 22.9 28.01 94.5 5.34 3.4

5.7. Limitations of our approach
Although the proposed TSRFormer with DQ-DETR demonstrates superior capability in most scenarios as demon-

strated in the previous experiments, it still has some limitations. For example, the progressive regression approach
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still struggles with excessively curved tables due to the potential cumulative error problem and the lack of training
data. Furthermore, the regression-based TSR approach still fails on some extremely dense tables with extreme size.
An adaptive scaling strategy may be necessary for tables with extreme sizes. Some failure examples are presented in
Fig. 12. Note that these difficulties are common challenges faced by other state-of-the-art methods. Finding practical
solutions to these problems will be the focus of our future work.

6. Conclusion and future work

In this paper, we presented TSRFormer, a new regression based separation line prediction approach for table
structure recognition, which contains two effective components: a DQ-DETR based split module for separation line
prediction and a relation network based cell merging module for spanning cell recovery. Compared with previous im-
age segmentation based separation line detection methods, our DQ-DETR based separation line regression approach
can achieve higher TSR accuracy without relying on heuristic mask-to-line modules. Experimental results show that
the proposed prior-enhanced bipartite matching strategy can accelerate the convergence speed of two-stage DETR
effectively. Furthermore, dynamic query and progressive regression approaches are beneficial for high localization
accuracy compared to SepRETR. Consequently, our approach has achieved state-of-the-art performance on four pub-
lic benchmarks, including SciTSR, PubTabNet, FinTabNet, WTW, and cTDaR TrackB2-Modern. We have further
validated the robustness of our approach to tables with complex structures, borderless cells, large blank spaces, empty
or spanning cells as well as distorted or curved shapes on a more challenging real-world In-house dataset.

For future work, we will study how to improve the progressive regression approach to reduce the potential cumu-
lative error problem. Furthermore, to achieve more robust structure recognition of dense tables, we will study effective
technologies for adaptive scaling. The concept of Dynamic Query is general and elegant for regression problems. In
the future, we will explore its full potential on other regression tasks.
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