
Network Pruning via Resource Reallocation

Yuenan Hou1, Zheng Ma2, Chunxiao Liu2, Zhe Wang2, and Chen Change Loy3†

1The Chinese University of Hong Kong 2SenseTime Group Limited 3S-Lab, Nanyang Technological University
1hy117@ie.cuhk.edu.hk, 2{mazheng, liuchunxiao, wangzhe}@sensetime.com, 3ccloy@ntu.edu.sg

Abstract

Channel pruning is broadly recognized as an effective
approach to obtain a small compact model through elimi-
nating unimportant channels from a large cumbersome net-
work. Contemporary methods typically perform iterative
pruning procedure from the original over-parameterized
model, which is both tedious and expensive especially when
the pruning is aggressive. In this paper, we propose a sim-
ple yet effective channel pruning technique, termed network
Pruning via rEsource rEalLocation (PEEL), to quickly pro-
duce a desired slim model with negligible cost. Specif-
ically, PEEL first constructs a predefined backbone and
then conducts resource reallocation on it to shift param-
eters from less informative layers to more important lay-
ers in one round, thus amplifying the positive effect of
these informative layers. To demonstrate the effectiveness
of PEEL , we perform extensive experiments on ImageNet
with ResNet-18, ResNet-50, MobileNetV2, MobileNetV3-
small and EfficientNet-B0. Experimental results show that
structures uncovered by PEEL exhibit competitive perfor-
mance with state-of-the-art pruning algorithms under var-
ious pruning settings. Our code is available at https:
//github.com/cardwing/Codes-for-PEEL.

1. Introduction

Recent years have witnessed the great success of con-
volution neural networks in many computer vision tasks,
e.g., image classification [5], semantic segmentation [19]
and object detection [25]. The remarkable performance
usually comes at the cost of dramatically increased net-
work complexity, which makes these models prohibitive
for resource-limited edge devices and mobile applications.
Channel pruning [14, 20] has been acknowledged as an ef-
fective algorithm to notably reduce the model’s demand on
computational and storage resources via discarding less in-
formative channels of the original model.

†: Corresponding author.

FLOPstarget

FLOPsback

0

resource
pool

(a) (b)

resource
pool

unpruned model over-pruned backbone final pruned network

Figure 1: Illustration of PEEL. Given the original unpruned
model and target FLOPstarget, PEEL performs the fol-
lowing operations: (a) construct an over-pruned backbone
model whose FLOPsback is smaller than the target value
FLOPstarget and store the extra FLOPs (FLOPstarget −
FLOPsback) in a resource pool, (b) reassign the resources
in the pool to different layers of this backbone model based
on the estimated layer importance and obtain the desired
compact model. The blue part in each block denotes the
remaining channels in a layer and the white part represents
the pruned channels.

Conventional channel pruning approaches [16, 3, 29]
typically remove redundant channels from a large, cum-
bersome neural network to acquire a compact model. For
instance, Guo et al. [3] introduce additional parameters to
learn the retaining probability of each individual channel
and prune unnecessary channels based on the learned prob-
ability value. Liu et al. [16] add L1 regularization of Batch
Normalization (BN) statistics to the training process and re-
cursively eliminate less important channels according to the
magnitude of BN statistics. These channel pruning tech-
niques either entail extra learnable parameters or involve it-
erative and expensive pruning procedure, which prohibits
many of them from real-world applications.

In this paper, we propose a conceptually simple yet ef-
fective channel pruning approach to obtain a compact and
good-performing network with negligible cost. Our algo-
rithm is based on the premise that all layers do not con-
tribute equally to the final performance of the network. Lay-
ers that have indispensable effect on the network behavior
are regarded as important while other layers are considered
as less crucial. By shifting resources from less crucial layers
to more significant layers, one can easily acquire a desired

1

ar
X

iv
:2

10
3.

01
84

7v
1

 [
cs

.C
V

]
 2

 M
ar

 2
02

1

https://github.com/cardwing/Codes-for-PEEL
https://github.com/cardwing/Codes-for-PEEL

slim model from off-the-shelf network architectures.
Our method is known as network pruning via resource

reallocation (PEEL). As the name implies, PEEL addresses
channel pruning via reallocating the resources on a well-
established backbone model. As shown in Fig. 1, we first
construct an over-pruned backbone model and store the
saved resources (e.g., FLOPs, parameters or latency) in a
resource pool. By estimating layer importance via some
standard criteria, resource reallocation is then performed to
assign resources to different layers based on the estimated
layer significance in one round.

PEEL offers the possibility of reassigning parameters on
a backbone architecture. As opposed to previous backward
elimination methods, PEEL is built upon forward selection
on a predefined architecture. It does not introduce addi-
tional learnable parameters and is free from expensive iter-
ative pruning procedure. Despite its simplicity, PEEL can
find good structures based on diverse backbone models on
ImageNet, and its performance is on par with the architec-
tures pruned by state-of-the-art channel pruning algorithms
(e.g., DMCP [3]) under various pruning levels.

In summary, we contribute a simple yet effective chan-
nel pruning algorithm, PEEL, to produce a desired com-
pact model via performing resource reallocation on a pre-
defined backbone model. Through extensive experiments,
we verify that PEEL can produce stable searching results
with small performance variance. Besides, it is applica-
ble to various backbone models and is robust to the cri-
terion to determine the layer importance. We validate the
effectiveness of PEEL on modern CNN architectures, i.e.,
ResNet-18, ResNet-50, MobileNetV2, MobileNetV3-small
and EfficientNet-B0, on the large-scale ImageNet bench-
mark. Under diverse FLOPs constraints, PEEL can con-
sistently find targeted slim models with less searching cost
compared with the state-of-the-art channel pruning tech-
niques, e.g., DMCP [3], FPGM [7] and USNet [29]. We
hope PEEL can serve as a strong baseline to facilitate fu-
ture research on channel pruning.

2. Related Work
Channel Pruning: Channel pruning is a prevailing ap-
proach to remove redundant channels from the over-
parameterized neural networks. Typically, channel prun-
ing is composed of three stages, i.e., training the original
network, pruning unimportant channels and finetuning the
pruned architecture [16, 4].

According to the pruning directions, contemporary chan-
nel pruning algorithms can be categorized into two types,
i.e., backward elimination from the original model [3, 2,
4, 6, 7, 16, 28] and forward selection from an empty net-
work [27, 32]. The majority of the pruning methods fall
into the former type and they delete unnecessary connec-
tions based on diverse pruning criteria, e.g., the magnitude

of kernel weights [4] or BN statistics [16], the feature map
reconstruction errors [20] or the absolute first-order gradient
of objective function [21]. For instance, Liu et al. [16] add
L1 regularization to the network training phase to enforce
network sparsity and remove channels whose BN statistic
is smaller than a preset threshold. Guo et al. [3] phrase
channel pruning as a Markov process and introduce addi-
tional parameters to each channel to learn the probability of
pruning. Contrary to the preceding indirect pruning algo-
rithms, another line of work [28, 29] concentrates on train-
ing a supernet and directly takes the accuracy of the sampled
structures as the measurement. For example, Yu et al. [28]
first train a universally slimmable super-network and then
exhaustively evaluate a collection of sampled sub-networks
from the trained supernet to determine the optimal substruc-
ture. Nonetheless, the aforementioned work suffers from
expensive training and searching cost especially when the
pruning is aggressive since either iterative pruning proce-
dure or many rounds of evaluation are required to find the
best-performing architecture.

As to the forward selection, Ye et al. [27] start from an
empty network and gradually add important neurons from
the original model in the greedy manner. Zhuang et al. [32]
recursively place important channels in each empty layer
based on the gradient norm. Our algorithm belongs to the
forward selection category but has several distinctions with
[27, 32]. First, we start from a predefined backbone instead
of an empty architecture therefore making our selection pro-
cess more efficient. Second, in contrast to previous efforts
that add informative neurons one by one, PEEL first esti-
mates the importance of different layers and then reallocate
resources to these layers via the estimated importance in one
round, which substantially relieves the selection burden.

Our work is related to network rejuvenation [22]. How-
ever, the ultimate objective of [22] is to increase the re-
source utilization ratio and it is not dedicated to the network
pruning task. In all, our PEEL differs from their method
in four aspects. First, PEEL reassigns resources accord-
ing to the computed layer importance while [22] allocates
the resources based on the number of remaining channels
in each layer. The allocation policy of [22] heavily hinges
on the quality of the backbone model and may suffer a lot
if the architecture of the backbone model is irrational. Sec-
ond, [22] requires sophisticated procedure, e.g., parameter
reinitialization, neural rescaling and well-designed training
scheme, to train the resulting model while PEEL just entails
the vanilla training strategy. Third, [22] has several hyper-
parameters to tune, e.g., the sparsity coefficient, the pruning
threshold for each layer and the utilization threshold to con-
duct neural rejuvenation, while PEEL has only one hyper-
parameter. Fourth, [22] conducts experiments only on mild
pruning levels on ImageNet whereas PEEL includes mild,
medium and aggressive pruning settings.

Knowledge Distillation: Knowledge distillation [8] is
widely acknowledged as an effective technique to transfer
the dark knowledge from the large over-parameterized net-
work to the small compact model. The large network is
called teacher and the small model is dubbed student. The
transferred knowledge can take on many forms, e.g., soft-
ened output logits [8], visual attention maps [30, 9] or in-
termediate feature maps [15, 11]. The above distillation
algorithms typically consume huge memory storage since
they need to simultaneously load both student and teacher
during training. To circumvent the participation of cumber-
some teacher models, recent studies [24, 10, 31] have fo-
cused on deriving the supervision signals from the student
model itself. For instance, Hou et al. reinforce the represen-
tation learning of shallow layers via attention maps of deep
layers [10]. Our algorithm only adopts the simplest form
of knowledge distillation [8] to compare fairly with other
pruning algorithms. Nevertheless, the aforementioned dis-
tillation approaches can also be employed to further boost
the performance of the final compact model.

3. Methodology
Channel pruning can be formulated as follows: given

the target resource constraint (e.g., FLOPs, parameters, la-
tency), the objective is to find a set of channel configu-
rations that achieves the optimal performance on the tar-
get task. Considering that the possible number of channels
in each layer is a non-negative integer, we phrase channel
pruning as a combinatorial optimization problem. The spe-
cific mathematical formulation is presented below:

max
(c1,...,cN)

f(c1, ..., cN).

s.t. e(c1, ..., cN) ≤M
0 ≤ ci ≤ Ci
0 ≤ i ≤ N

(1)

Here, f is the performance estimation function of the
model, e is the resource estimation function, M is the target
resource contraint (e.g., FLOPstarget in Fig. 1), ci and Ci
are the channel number in the i-th layer of the pruned and
original unpruned model, respectively, N is the number of
layers in the unpruned network.

Conventional approaches [29, 3, 17, 16] typically discard
unnecessary channels from the original over-parameterized
network. Distinct from previous backward elimination
methods, the proposed PEEL addresses channel pruning via
reallocating parameters in a predefined architecture, usually
an over-pruned backbone from the original network. The
resource consumption of this predefined structure is smaller
than the target value and the remaining resources are stored
in a place named resource pool (Fig. 1). The intuition of
PEEL is that those informative layers should be assigned

more parameters to amplify their positive effect on the final
performance.

The proposed PEEL is comprised of five steps, namely,
the construction of the over-pruned backbone and resource
pool, estimation of layer importance, layer grouping, reallo-
cation of parameters to the backbone based on the estimated
importance, and finally, the retraining the resulting compact
model with knowledge distillation.
Step 1 - Construction of the over-pruned backbone and
resource pool: Given the target resource constraintsM , we
first build an over-pruned backbone model. In this paper,
we adopt uniform pruning [18] to construct the backbone
model. Uniform pruning possesses many attractive prop-
erties. First, it preserves the original architecture as much
as possible and therefore the pruned network shares more
structural similarity with the original model. Such struc-
tural resemblance will facilitate the knowledge distillation
process and can bring more gains to the pruned model. Sec-
ond, contrary to previous pruning methods that require the
training of the original unpruned network, uniform pruning
introduces no training and searching cost since the pruning
ratio is same for all layers. Third, when the pruning is mild,
e.g., pruning fewer than 40 % channels, uniform pruning
can serve as a strong baseline, with its performance compa-
rable with that of contemporary pruning algorithms. Conse-
quently, we employ uniform pruning to construct a simple
backbone model.

We next prepare the resource pool. We define the propor-
tion of the resources the backbone model consumes (e.g.,
FLOPsback in Fig. 1) to the given target resource constraint
M as λ (0 ≤ λ ≤ 1), which is a tunable hyperparameter
in our algorithm. The resource pool thus stores the extra
resources of (1− λ)M , e.g., FLOPstarget − FLOPsback in
Fig. 1. Intuitively, a high λ suggests few resources will be
kept in the resource pool. With a small λ, more resources
will be stored in the pool by having a much slimmer over-
pruned backbone. In our experiments, λ is empirically set
as 0.8 since this value yields satisfactory results. We avoid
an overly small λ observing that over-aggressive pruning
will hurt the backbone’s performance, which could hardly
be compensated by subsequent operations. It is notewor-
thy that although we leverage uniform pruning to establish
the backbone model, PEEL can still work well when taking
different models as backbones.
Step 2 - Estimation of layer importance: One crucial
drawback of uniform pruning is that it considers all layers
to be of equal importance and forces the same pruning ra-
tio for all layers. This practice neglects the fact that some
layers contribute more than other layers to the model perfor-
mance, therefore these influential layers should be assigned
more parameters. Hence, one core objective of PEEL is
to distinguish important layers from less informative layers
and place more parameters in these informative layers.

2 3

d1 d2 d3

1

d4

2

3

d1

d2

d3

1

d4
Figure 2: Illustration of pruning channels in residual blocks.
For layer i, the number of input and output channels are
di and di+1, respectively. The output of layer 1 and 3 are
added element-wise via the residual connection. Hence, d2
and d4 have to be kept equal after pruning.

There are several options for the evaluating criteria on
estimating layer importance, e.g., weight magnitude [4],
reconstruction errors of layer activations [20], BN statis-
tics [16], and gradient of the cost function [21]. We even-
tually choose the BN statistics, i.e., absolute gamma value,
as the criterion to reflect the importance of each layer to the
final performance as it yields appealing results and requires
little computation cost. Batch normalization [13] has been
a basic block in modern CNN architectures to address the
internal covariate shift. Suppose Xi and Xo are the input
and output of the BN layer, respectively. BN layer performs
the following transformation on the input:

Xo = γ
Xi − µ√
σ2 + ε

+ β, (2)

where µ and σ are the mean and standard deviation of the
current input along the channel dimension, respectively, ε is
a small value to ensure numerical stability, γ and β are two
learnable parameters for the BN layer. Following [16], we
add the L1-norm of γ to the main loss to encourage sparsity:

Ltrain = Lcls(OS ,OL) + αs
∑Nγ

i=1
|γi|, (3)

where Nγ is the number of all γ in the network, αs is the
sparsity coefficient, OS is the model prediction, OL is the
ground-truth label and Lcls is the cross entropy loss.
Step 3 - Layer grouping: Considering the fact that mod-
ern CNN architectures, e.g., ResNet, have residual connec-
tions, pruning channels in these networks is troublesome
since the output of one layer is directly added to that of an-
other layer, and the channel dimension of these layers has
to be kept the same. An example is presented in Fig. 2.
To prune these three layers, we have to keep d2 equal to
d4. Moreover, ResNet typically has many residual blocks,
thus posing more constraints on the consistency in the chan-
nel dimensions of multiple layers. To address the afore-
mentioned issue, we decide to group convolutional layers
according to their positions in the original network. More
concretely, layers whose feature maps have the same spatial
size are grouped together. Under this condition, the output
channels of the layers in one group will undergo the same

linear expansion or shrinkage, which satisfies the dimension
consistency requirement raised by residual connections.
Step 4 - Resource reallocation: After the layer grouping
process, we need to properly assign the remaining resources
in the resource pool to those groups of layers. There are two
options for the resource reallocation procedure, i.e., allocat-
ing the additional parameter resources in one round or in
multiple rounds. The primary distinction between these two
options is that the former only considers layer importance
in the current uniformly pruned model while the latter takes
into account the ever-changing layer significance in vari-
ous intermediate models. Apparently, the one-round prac-
tice will consume much less computation budget than the
multiple-round version. Here, we focus on the one-round
allocation as it can already bring appealing results and leave
the comparison between one-round and multi-round assign-
ment in the ablation study.

Suppose there are G groups in total after layer grouping
and the total number of their output channels in group i is
gi. Then, for group i, its importance is calculated as:

Ti =
1

gi

∑gi

j=1
|γj |. (4)

Then, the resources assigned to group i are:

Ri =
Ti∑G
j=1 Tj

(1− λ)M, (5)

where (1 − λ)M is the resources available in the resource
pool. In each group, we adopt the linear expansion strategy,
i.e., the channels of all layers in one group are multiplied
by a common value. In other words, the increased channels
of one layer is proportional to its original number of chan-
nels. After performing the linear expansion on each layer,
we eventually obtain the desired compact model.
Step 5 - Distilling knowledge from the original model:
Once the compact model is obtained after resource allo-
cation, we follow the common practice in network prun-
ing [3, 29] and start to train this model from scratch with
both hard label and soft label supervision signals. The hard
label denotes the ground-truth one-hot vector and the soft
label represents the softened probability distribution from
the original cumbersome model [8]. By distilling the prob-
abilistic knowledge from the trained unpruned network, the
small compact model can learn better representations and
exhibit better generalization capability after the training
phase. The final loss function is written as below, which
is comprised of the hard label loss and the distillation loss:

Lretrain = Lcls(OS ,OL) + αdLdistill(PS ,PT). (6)

Here, OS is the probability output of the compact model,
OL is the ground-truth label, PS and PT are the output

probabilities of the pruned and unpruned model, respec-
tively. We denote αd as the coefficient to balance the hard
label loss and distillation loss, Lcls is the cross entropy loss
and Ldistill is the KL divergence loss. Note that PS and PT
are obtained via performing softmax on the output logits [8]
and the temperature is set as 1.

4. Experiments
Following [3], we perform extensive experiments on Im-

ageNet under various pruning levels. There are 1000 classes
in ImageNet, around 128M images are used for training and
50K images for validation. We choose modern CNN archi-
tectures, i.e., ResNet-18 [5] and ResNet-50 [5], for pruning
as they are widely used in both academia and industry. Fol-
lowing [3], we also perform pruning on MobileNetV2 [23].
This is a more challenging task since MobileNetV2 is al-
ready a compact model. We also report results on prun-
ing extremely efficient architectures, i.e., MobileNetV3-
small [12] and EfficientNet-B0 [26]. It is noteworthy that
PEEL is not limited to these architectures and can be em-
ployed to address the pruning of more sophisticated net-
works.
Evaluation metric: Following [3], we adopt the top-1 ac-
curacy on the center crop as the evaluation metric.
Implementation details: To ensure a fair comparison, we
adopt the exact setting of [3]. Concretely, the total number
of epochs for training the uniformly pruned backbone is 50.
The final pruned architecture is trained for 100 epochs for
ResNets, 250 epochs for MobileNetV2, and the first epoch
is used to warm up the pruned model. Batch size is set as
512 and the initial learning rate is set as 0.2. The learn-
ing rate is gradually reduced to zero via a cosine learning
rate schedule. Label smoothing is employed to relieve the
over-fitting issue, and the corresponding smoothing factor
is set as 0.1. Parameters αs and αd are set as 0.0001 and
0.1, respectively. As to data augmentation, random crop-
ping and resizing, random horizontal flipping, color jitter
and normalization are orderly applied to the input images
during training. For knowledge distillation, ResNet-18 and
ResNet-50 are trained with the original distillation strat-
egy [8]. For MobileNetV2, we follow [3, 28] and make
use of the in-place distillation to train the compact model.
Baseline algorithms: DMCP [3] is currently the most com-
petitive algorithm in channel pruning. It models channel
pruning as a Markov Decision Process, where the state is
the remaining channels in a layer, and the transition from
one state to another state represents the pruning process. By
fusing the learnable transition probabilities with the layer
output, the whole system is optimized end-to-end with gra-
dient descent and can be easily combined with specific
FLOPs constraint to acquire the desired network architec-
ture. The training cost of DMCP is composed of two parts,
i.e., the learning of pruning probabilities and the training of

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

PEEL

DMCP

Comparison between structures searched by NPRR and DMCP on
ResNet-18 when #FLOPs=1.04G

Layer index

#C
h

an
n

el

Figure 3: Comparison between structures searched by
PEEL and DMCP on ResNet-18 when #FLOPs=1.04G.
The vertical bar and vertical line denote the mean and vari-
ance of the channel numbers in each layer, respectively. Re-
sults are averaged over five runs.

the pruned model. The sampling procedure to acquire the
compact model consumes negligible resources since they
employ expected sampling to obtain the desired network
in one round. In the subsequent paragraphs, we will sys-
tematically compare our PEEL with DMCP in terms of the
overall performance under diverse FLOPs requirement, the
expected training cost, the variability of the searched struc-
tures as well as performance stability. FPGM [7], NR [22],
MetaPruning [17], AutoSlim [28] and AMC [6] are also in-
cluded in the performance comparison since there are all
contemporary channel pruning techniques.

4.1. Results

Comparisons with state of the arts: The detailed per-
formance comparison of PEEL and contemporary channel
pruning algorithms is shown in Table 1. We also record the
floating-point operations (FLOPs) to approximate the for-
ward time of different architectures. From Table. 1, we ob-
serve that PEEL achieves 25% and 45% FLOPs reduction
for ResNet-18 and ResNet-50, respectively, with almost no
loss of accuracy. As to MobileNetV2, the result is more
encouraging as our algorithm can find a strong architecture
with 2.5% higher in top-1 accuracy than the original model
while possessing the same FLOPs. In addition, PEEL con-
sistently finds better architectures whose performance out-
performs those searched by other competitive channel prun-
ing techniques, e.g., DMCP [3], NR [22] and MetaPrun-
ing [17]. For instance, when the backbone model is ResNet-
50 and the target FLOPs is 2.2G, the architecture produced
by PEEL is 0.5% higher in top-1 accuracy than that found
by DMCP. Moreover, the network structure obtained via
PEEL consistently outperforms the uniformly pruned model
in all experiments, suggesting the effectiveness of the pro-
posed resource reallocation approach.
Pruning MobileNetV3-small and EfficientNet-B0: As

Table 1: Performance of PEEL and various channel pruning
approaches with and without knowledge distillation (KD)
on ImageNet validation set.

Backbone Method Top-1 Acc (%) FLOPsw/ KD w/o KD

ResNet-18

Uniform 1.0 × 70.3 1.8G
Uniform 0.85 × 69.0 68.5 1.33G

NR [22] 68.6 68.2 1.33G
DMCP [3] 70.0 69.7 1.33G

PEEL 70.6 70.1 1.33G
Uniform 0.75 × 68.2 67.8 1.05G

NR [22] 68.1 67.9 1.04G
FPGM [7] 68.4 68.1 1.04G
DMCP [3] 69.4 69.0 1.04G

PEEL 69.9 69.3 1.04G

ResNet-50

Uniform 1.0 × 76.4 4.1G
Uniform 0.85 × 75.8 75.4 3.0G

NR [22] 75.2 74.8 3.0G
MetaPruning [17] 76.2 76.0 3.0G

AutoSlim [28] 76.0 75.8 3.0G
DMCP [3] 76.5 76.4 3.0G

PEEL 76.9 76.6 3.0G
Uniform 0.75 × 74.6 74.1 2.3G

NR [22] 74.3 74.0 2.4G
MetaPruning [17] 75.4 75.2 2.3G

FPGM [7] 75.6 75.5 2.4G
DMCP [3] 76.3 76.2 2.2G

PEEL 76.8 76.5 2.2G
Uniform 0.5 × 72.9 72.7 1.1G

NR [22] 73.1 72.6 1.1G
MetaPruning [17] 73.4 73.2 1.1G

AutoSlim [28] 74.0 73.6 1.1G
DMCP [3] 74.6 74.4 1.1G

PEEL 75.1 74.7 1.1G

MobileNetV2

Uniform 1.0× 72.3 300M
NR [22] 73.0 72.2 300M

AutoSlim [28] 74.2 73.1 300M
DMCP [3] 74.6 73.9 300M

PEEL 74.8 74.2 300M
Uniform 0.75 × 70.1 69.2 210M

NR [22] 70.2 69.4 211M
MetaPruning [17] 71.2 70.1 217M

AMC [6] 70.8 70.0 211M
AutoSlim [28] 73.0 72.2 211M

DMCP [3] 73.5 72.4 211M
PEEL 73.9 73.0 211M

Uniform 0.5 × 64.8 64.3 97M
NR [22] 64.2 63.8 87M

MetaPruning [17] 63.8 63.4 87M
DMCP [3] 66.1 65.6 87M

PEEL 66.6 66.0 87M
Uniform 0.35× 60.1 59.7 59M

NR [22] 59.7 59.2 59M
DMCP [3] 62.7 62.4 59M

PEEL 62.9 62.6 59M

Table 2: Pruning MobileNetV3-small and EfficientNet-B0.

Backbone Method Top-1 Acc (%) FLOPs

MobileNetV3
Uniform 1.0 × 67.4 56M

PEEL 67.2 49M

EfficientNet-B0
Uniform 1.0 × 77.1 390M

PEEL 77.0 346M

Table 3: Performance variance of searched architectures of
PEEL and DMCP on ResNet-50. Results are averaged over
five runs.

Method
#FLOPs

2.2G 1.8G 1.1G
PEEL 76.7% ± 0.2% 75.3% ± 0.3% 75.0% ± 0.2%
DMCP 75.7% ± 0.7% 74.2% ± 0.8% 73.8% ± 0.8%

Table 4: Comparison between the training time and memory
usage of PEEL and DMCP on ResNet-50 (#FLOPs=1.1G).
Here, the memory usage is measured on one GPU and the
batch size is set as 64 for each GPU.

Algorithm Train Time (H) Memory usage (G)
PEEL 37 4.3

DMCP [3] 98 9.5

shown in Table 2, PEEL saves 12.5% FLOPs for
MobileNetV3-small and 11.3% FLOPs for EfficientNet-
B0 without incurring severe performance drops. Note
that MobileNetV3-small and EfficientNet-B0 are two ex-
tremely lightweight classification models and removing re-
dundancy in these models is nontrivial. The experimental
results explicitly showcase the effectiveness and generality
of PEEL on network pruning.

We also visualize the structures uncovered by PEEL and
DMCP. As depicted in Fig. 3, both architectures have more
channels as the layer goes deeper. This is expected since
more channels will be leveraged to compensate for the loss
of spatial information incurred by the downsampling oper-
ations. Nevertheless, PEEL tends to place more channels in
the early stages while DMCP chooses to put more channels
in the later stages. Putting more resources at shallow layers
brings more gains as there is more redundancy in the deep
layers. Besides, the variance of the number of channels in
each layer of PEEL is much smaller than that of DMCP.
For example, the averaged channel variance of DMCP on
the last four layers of ResNet-18 is 38.8 while the channel
variance of PEEL is 21.8. The gap between the structural
variance of DMCP and our algorithm is more evident in
ResNet-50 and MobileNetV2. In ResNet-50, the averaged
channel variance of PEEL is almost half of the variance of
DMCP for all layers. We provide more details in the supple-
mentary material. The searching instability of DMCP also
leads to high performance variance in the searched architec-
tures. The performance of PEEL is much stabler relatively.
We summarize the performance of architectures searched
by PEEL and DMCP in Table 3.

The proposed PEEL not only takes shorter training dura-
tions to find and train the desired model, but also consumes
less GPU memory during the searching phase. Here, we
examine the training cost of PEEL and DMCP, i.e., the to-
tal training hours and the GPU memory usage during the
searching phase. The original unpruned model is ResNet-

1
.3

3
 G

0

.4
9

 G

0
.1

4
 G

1&2 3 4 5 1&2 3 4 5
3

 G

1
.1

 G

0
.2

8
 G

(a) (b)

Figure 4: Where the resources go. Percentage of FLOPs
assigned by PEEL to different groups of (a) ResNet-18 and
(b) ResNet-50 under different target FLOPs constraints. X-
axis denotes group indices and y-axis represents the target
FLOPs. A darker color indicates a larger quantity of as-
signed resources. Since ResNet-18 and ResNet-50 have
only one layer in group 1 and resources assigned to one
layer are very limited, we put this layer into group 2 and
obtain the above figure.

50 and the target FLOPs is 1.1 G. We keep all other hy-
perparameters the same, including batch size (512), GPU
types (NVIDIA TITAN X) and number of used GPUs (8).
From Table 4, the total number of training hours of PEEL is
roughly a third of DMCP. The result is not surprising as
DMCP requires training on the original cumbersome model
whilst PEEL merely entails training of a much slimmer
model. As to the GPU memory usage, since DMCP needs
to collect gradients of several sampled architectures while
PEEL only computes the gradient of one compact architec-
ture, the memory consumption of DMCP is almost twice
as that of PEEL . We also provide a comparison to another
representative USNet [29] in the supplementary material.

4.2. Ablation study

Where the resources go: To have a deeper understanding
on the effect of the resource reallocation module, we vi-
sualize the percentage of resources distributed by PEEL to
different groups of layers on ResNet-18 and ResNet-50. As
shown in Fig. 4, layers in the first three groups are given
much more resources than the last two groups when the
network is slightly trimmed. It is natural as there are more
redundant channels in the deep layers in the mild pruning
level [17]. As the pruning becomes more aggressive, the
percentages of FLOPs assigned to different groups become
more even since all layers do not have sufficient channels
and call for more resources from the resource pool. And
we can observe the same patterns in the resource realloca-
tion of ResNet-18 and ResNet-50 when the FLOPs budget
becomes tighter.
Effect of λ: The resources available in the resource
pool is (1 − λ)M , thus the pool size is controlled by
the hyperparameter λ. We select the value of λ from
{0.5, 0.6, 0.7, 0.8, 0.9, 1} and compare the model perfor-
mance under these settings. As illustrated in Fig. 5 (a),

60

62

64

66

68

70

72

74

76

78

80

1 0.9 0.8 0.7 0.6 0.5

2.2G 1.1G 278M

λ-Accuracy spectrum of one-round
NPRR on ResNet-50

λ

A
cc

u
ra

cy
(%

)

60

62

64

66

68

70

72

74

76

78

80

1 0.9 0.8 0.7 0.6 0.5

2.2G 1.1G 278M

λ-Accuracy spectrum of multi-round
NPRR on ResNet-50 (#rounds=3)

λ

A
cc

u
ra

cy
(%

)

(a) (b)

Figure 5: One-round v.s. multi-round reallocation. We
show the λ-accuracy spectrum of (a) one-round and (b)
three-round resource reallocation of PEEL on ResNet-50.
Different color denotes different target FLOPs.

the performance of the searched model is relatively stable
when λ ranges from 0.7 to 0.9. When λ decreases from
0.7, the performance of the final pruned architecture gradu-
ally drops. The trend is expected since PEEL only performs
the evaluation of layer importance once on the over-pruned
model. The importance evaluation would become inaccu-
rate given a small λ, as more resources are assigned to the
pool while the over-pruned backbone is too slim. Another
phenomenon we observe is that as the pruning becomes
more aggressive, the performance of the pruned model is
more susceptible to the value of λ (see the green line in
Fig. 5 (a)). We conjecture that the performance drop is
caused by the challenging pruning condition. Given very
limited FLOPs resources, one has to allocate resources in
a very careful manner so that the pruned model can exhibit
satisfactory performance.
One-round reallocation v.s. multi-round reallocation:
Recall that we adopt the one-round resource reallocation in
our algorithm, i.e., allocating the resources by just perform-
ing a single pass of layer importance estimation. An alter-
native strategy is to evenly divide the resources into several
parts and reallocate these resources successively in multiple
rounds. Multi-round reallocation is more expensive as one
needs to repeat Step-2 and Step-4 iteratively (see Sec. 3),
and each iteration involves the fine-tuning of the backbone.
As depicted in Fig. 5, the performance of the multi-round
resource reallocation is more stable than the one-round ver-
sion when the λ is set 0.6 and 0.5. For instance, when the
target FLOPs is 2.2G and λ is set as 0.5, the performance of
the one-round reallocation decreases from 76.8% to 75.3%
while the multi-round reallocation can still achieve 76.0%
in top-1 accuracy. The more stable performance may come
from the fact that multi-round resource reallocation reeval-
uates the importance of each layer in each round, thus al-
lowing a more appropriate resource reallocation.
Robustness to the layer importance indicator: The orig-
inal PEEL adopts BN statistics to reflect the importance
of each layer. Here, we explore different importance in-

Table 5: Performance of PEEL with different importance
criteria on ResNet-50.

Criterion
#FLOPs

2.2 G 1.8 G 1.1 G
BN statistics (Ours) 76.8% 75.5% 75.1%

Filter norm [14] 76.7% 75.2% 75.2%
Reconstruction errors [20] 76.6% 75.4% 75.0%

NPRR is allocating additional resources to deep layers when the backbone model
has the same number of channels for all layers. The base model is ResNet-18 and
target FLOPs is 1.04G.

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

PEEL

Origin

Layer index

#C
h

an
n

el

Group id 1 2 3 4 5

Figure 6: Visualization of the architecture found by
PEEL on a different backbone model that has the same num-
ber of channels for all layers. The base model is ResNet-18,
and target FLOPs is 1.04G.

dicators and check whether the proposed PEEL is sensi-
tive to the chosen indicator. We choose the widely-used
filter norm [14] and reconstruction errors [20] as the cri-
teria. Layers with large filter norm or large reconstruction
errors are considered as important. However, directly tak-
ing filter norm as the evaluating metric is biased since the
filter norm of different layers have diverse scales in magni-
tude [1]. To correct such bias, we follow [1] and learn the
layer-wise affine transformations for the filter norm. Under
this circumstance, filter norm can better reflect the value
of each layer. From Table 5, when pruning ResNet-50 un-
der different FLOPs requirements, architectures searched
by PEEL using BN statistics, filter norm and reconstruc-
tion errors achieve similar performance. The results suggest
the robustness of PEEL, irrespective of the methods used in
evaluating layer importance.
Effect of knowledge distillation: By comparing the two
columns of the Top-1 Acc in Table 1, we find that
PEEL consistently yields better performance than baseline
pruning approaches with or without knowledge distillation
(KD). For instance, when performing pruning on ResNet-
18 and target FLOPs is 1.33G, PEEL with KD is 0.6%
higher than DMCP with KD. One interesting phenomenon
we observe is that KD brings more gains when the backbone
model has fewer parameters. For example, KD can bring
approximately 0.3%, 0.5% and 1.0% to PEEL on ResNet-
50, ResNet-18 and MobileNetV2, respectively when the
pruning is not aggressive. We conjecture that the increased
gains are attributed to the deficiency of small models in

(b)

Performance of NPRR with Importance-guided policy, uniform policy
and random policy on ResNet-50, respectively.

64

66

68

70

72

74

76

78

3 2.2 1.8 1.1 0.53 0.28

Importance

Winner-take-all

Uniform

Random

#FLOPs(G)

A
cc

u
ra

cy
(%

)

45

50

55

60

65

70

75

1.33 1.04 0.8 0.49 0.25 0.14

Importance

Winner-take-all

Uniform

Random

#FLOPs(G)

A
cc

u
ra

cy
(%

)

(a)

Figure 7: Policy on resource reallocation. Performance
of PEEL with importance-guided, winner-take-all, uniform
and random policies on (a) ResNet-18 and (b) ResNet-50,
respectively.

grasping knowledge in labels by themselves and hence they
more eagerly call for the guidance of the original model.
Efficacy of PEEL on a different backbone model: Recall
that we treat the uniformly trimmed model as the backbone
and conduct resource reallocation on it. It is natural to won-
der whether the resource reallocation would still work if a
totally distinct architecture is used. Here, we use an archi-
tecture that has the same number of channels across all lay-
ers as the new starting point. All configurations are the same
as the previous experiments. From Fig. 6, we can observe
that in this new backbone, groups 1, 2 and 3 are assigned
with few parameters while the majority of the resources are
distributed to groups 4 and 5. Overall, PEEL puts more pa-
rameters in the deeper layers, and the resulting architecture
is 8.7% higher in terms of top-1 accuracy in comparison to
the original model (62.4% v.s. 53.7%). The result demon-
strates the effectiveness of resource reallocation as well as
the insensitivity of our algorithm to the backbone model.
Policy on resource reallocation: Here, we compare our
‘importance-guided’ resource reallocation strategy with
other parameter reallocation policies, i.e., winner-take-all,
uniform and random reassignment. The winner-take-all
policy determines the most important group according to
the computed group significance and puts all resources in
that group. The uniform policy adds the same number of
channels to all layers while the random policy stochastically
selects several layers and increases their channels. Here,
we name the original reallocation strategy as importance-
guided policy as it distributes resources based upon the es-
timated layer importance. From Table 7, our importance-
guided reallocation policy evidently outperforms the other
three policies on ResNet-18 and ResNet-50. For instance,
when the target FLOPs is 1.8G on ResNet-50, the top-1
accuracy of the importance-guided policy is 75.5% while
the top-1 accuracy of the winner-take-all, uniform and ran-
dom policy is 74.9%, 74.1% and 74.0%, respectively. The
superior performance demonstrates the effectiveness of the
importance-guided policy.

5. Conclusion
We have presented an easy-to-implement yet effective

channel pruning algorithm, i.e., PEEL, to acquire a de-
sired compact model via reallocating resources from less
informative layers to more crucial layers. The intuition of
PEEL is that layers do not contribute equally to the model
performance and those having an indispensable influence on
the performance should be assigned more resources to mag-
nify their positive effect. We conduct extensive experiments
to verify the efficacy of PEEL on ImageNet dataset with
modern CNN architectures, i.e., ResNet-18, ResNet-50,
MobileNetV2, MobileNetV3-small and EfficientNet-B0.
Experimental results suggest the effectiveness of PEEL in
uncovering compact yet accurate architectures consistently
under various pruning levels, compared with state-of-the-
art channel pruning methods. Besides, PEEL yields stable
searching results with small performance variance, and the
searching cost is evidently smaller than contemporary chan-
nel pruning algorithms (e.g., DMCP [3]).

References
[1] Ting-Wu Chin, Ruizhou Ding, Cha Zhang, and Diana Mar-

culescu. Towards Efficient Model Compression via Learned
Global Ranking. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 1518–1528, 2020. 8

[2] Wei Gao, Yi Wei, Quanquan Li, Hongwei Qin, Wanli
Ouyang, and Junjie Yan. Pruning with Hints: An Efficient
Framework for Model Acceleration. 2018. 2

[3] Shaopeng Guo, Yujie Wang, Quanquan Li, and Junjie Yan.
DMCP: Differentiable Markov Channel Pruning for Neural
Networks. In IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 1539–1547, 2020. 1, 2, 3, 4, 5, 6, 9,
10, 11

[4] Song Han, Jeff Pool, John Tran, and William Dally. Learn-
ing Both Weights and Connections for Efficient Neural Net-
work. In Advances in Neural Information Processing Sys-
tems, pages 1135–1143, 2015. 2, 4

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition. In IEEE
Conference on Computer Vision and Pattern Recognition,
pages 770–778, 2016. 1, 5, 11

[6] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and
Song Han. AMC: Automl for Model Compression and Ac-
celeration on Mobile Devices. In European Conference on
Computer Vision (ECCV), pages 784–800, 2018. 2, 5, 6

[7] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang.
Filter Pruning via Geometric Median for Deep Convolu-
tional Neural Networks Acceleration. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 4340–
4349, 2019. 2, 5, 6

[8] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the
Knowledge in a Neural Network. Statistics, 1050:9, 2015. 3,
4, 5

[9] Yuenan Hou, Zheng Ma, Chunxiao Liu, Tak-Wai Hui, and
Chen Change Loy. Inter-Region Affinity Distillation for

Road Marking Segmentation. In IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 12486–12495,
2020. 3

[10] Yuenan Hou, Zheng Ma, Chunxiao Liu, and Chen Change
Loy. Learning Lightweight Lane Detection CNNs by Self
Attention Distillation. In IEEE International Conference on
Computer Vision, pages 1013–1021, 2019. 3

[11] Yuenan Hou, Zheng Ma, Chunxiao Liu, and Chen Change
Loy. Learning to Steer by Mimicking Features from Het-
erogeneous Auxiliary Networks. In Association for the Ad-
vancement of Artificial Intelligence, volume 33, pages 8433–
8440, 2019. 3

[12] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig
Adam. Searching for mobilenetv3. In IEEE International
Conference on Computer Vision, October 2019. 5

[13] Sergey Ioffe and Christian Szegedy. Batch Normalization:
Accelerating Deep Network Training by Reducing Inter-
nal Covariate Shift. International Conference on Machine
Learning, 2015. 4

[14] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning Filters for Efficient Convnets.
In International Conference on Learning Representations,
2017. 1, 8

[15] Yifan Liu, Ke Chen, Chris Liu, Zengchang Qin, Zhenbo Luo,
and Jingdong Wang. Structured Knowledge Distillation for
Semantic Segmentation. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 2604–2613, 2019. 3

[16] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang. Learning Efficient
Convolutional Networks through Network Slimming. In
IEEE International Conference on Computer Vision, pages
2736–2744, 2017. 1, 2, 3, 4

[17] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo,
Xin Yang, Kwang-Ting Cheng, and Jian Sun. Metaprun-
ing: Meta Learning for Automatic Neural Network Channel
Pruning. In IEEE International Conference on Computer Vi-
sion, pages 3296–3305, 2019. 3, 5, 6, 7

[18] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and
Trevor Darrell. Rethinking the Value of Network Pruning.
In International Conference on Learning Representations,
2018. 3

[19] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
Convolutional Networks for Semantic Segmentation. In
IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 3431–3440, 2015. 1

[20] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A Filter
Level Pruning Method for Deep Neural Network Compres-
sion. In IEEE International Conference on Computer Vision,
pages 5058–5066, 2017. 1, 2, 4, 8

[21] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila,
and Jan Kautz. Pruning Convolutional Neural Networks for
Resource Efficient Inference. In International Conference on
Learning Representations, 2017. 2, 4

[22] Siyuan Qiao, Zhe Lin, Jianming Zhang, and Alan L Yuille.
Neural Rejuvenation: Improving Deep Network Training by

Enhancing Computational Resource Utilization. In IEEE
Conference on Computer Vision and Pattern Recognition,
pages 61–71, 2019. 2, 5, 6

[23] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. MobileNetV2: Inverted
Residuals and Linear Bottlenecks. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 4510–
4520, 2018. 5, 10, 11

[24] Dawei Sun, Anbang Yao, Aojun Zhou, and Hao Zhao.
Deeply-Supervised Knowledge Synergy. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages
6997–7006, 2019. 3

[25] Christian Szegedy, Alexander Toshev, and Dumitru Erhan.
Deep Neural Networks for Object Detection. In Advances in
Neural Information Processing Systems, pages 2553–2561,
2013. 1

[26] Mingxing Tan and Quoc V. Le. EfficientNet: Rethinking
Model Scaling for Convolutional Neural Networks. Interna-
tional Conference on Machine Learning, 2019. 5

[27] Mao Ye, Chengyue Gong, Lizhen Nie, Denny Zhou, Adam
Klivans, and Qiang Liu. Good Subnetworks Provably Exist:
Pruning via Greedy Forward Selection. International Con-
ference on Machine Learning, 2020. 2

[28] Jiahui Yu and Thomas Huang. Autoslim: Towards One-Shot
Architecture Search for Channel Numbers. arXiv preprint
arXiv:1903.11728, 2019. 2, 5, 6

[29] Jiahui Yu and Thomas S Huang. Universally Slimmable Net-
works and Improved Training Techniques. In IEEE Inter-
national Conference on Computer Vision, pages 1803–1811,
2019. 1, 2, 3, 4, 7, 10, 11

[30] Sergey Zagoruyko and Nikos Komodakis. Paying More At-
tention to Attention: Improving the Performance of Convo-
lutional Neural Networks via Attention Transfer. In Interna-
tional Conference on Learning Representations, 2017. 3

[31] Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chen-
glong Bao, and Kaisheng Ma. Be Your Own Teacher: Im-
prove the Performance of Convolutional Neural Networks
via Self Distillation. In IEEE International Conference on
Computer Vision, pages 3713–3722, 2019. 3

[32] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu,
Yong Guo, Qingyao Wu, Junzhou Huang, and Jinhui Zhu.
Discrimination-Aware Channel Pruning for Deep Neural
Networks. In Advances in Neural Information Processing
Systems, pages 875–886, 2018. 2

Appendices
A. A detailed comparison with DMCP

We compare PEEL against the recent and representative
DMCP [3]. Figure 8 shows the accuracy of architectures
pruned by PEEL and DMCP under diverse FLOPs con-
straints on ResNet-18, ResNet-50 and MobileNetV2. Here,
we take the uniform pruning as reference. It is observed
that PEEL can always find better architectures than DMCP

Table 6: Performance variance of searched architectures of
PEEL and DMCP on ResNet-50. Results are averaged over
five runs.

Method
#FLOPs

2.2G 1.8G 1.1G
PEEL 76.7% ± 0.2% 75.3% ± 0.3% 75.0% ± 0.2%

DMCP [3] 75.7% ± 0.7% 74.2% ± 0.8% 73.8% ± 0.8%
USNet [29] 75.4% ± 0.6% 74.0% ± 0.7% 73.4% ± 0.6%

Table 7: Comparison between the training time and memory
usage of PEEL and DMCP on ResNet-50 (#FLOPs=1.1G).
Here, the memory usage is measured on one GPU and the
batch size is set as 64 for each GPU.

Algorithm Train Time (H) Memory usage (G)
PEEL 37 4.3

DMCP [3] 98 9.5
USNet [29] 66 8.7

in terms of top-1 accuracy. On all FLOPs levels, PEEL out-
performs DMCP by least 0.4% in terms of top-1 accuracy.
Thanks to the resource reallocation, the top-1 accuracy gap
between PEEL and uniform pruning lies between 1.0% and
3.8%.

Figure 9 reveals the detailed FLOPs assignment on Mo-
bileNetV2 [23]. We observe a similar pattern in the FLOPs
distribution process of MobileNetV2 to that of ResNet-18
and ResNet-50. Concretely, when the pruning is mild, the
resource pool will tend to allocate more resources in the first
three groups as more redundency is expected in deep layers.
When the target FLOPs budget decreases, the reallocated
resources will be more even for five groups as all groups
are in need of more parameters to function effectively.

B. λ-accuracy spectrum of one-round and
multi-round resource reallocation

We have shown the results of ResNet-50 with one-round
and multi-round reallocation in Figure 6 of the main pa-
per. And here, we provide detailed results on ResNet-18
and MobileNetV2. It is noteworthy that we observe a sim-
ilar trend on ResNet-18 and MobileNetV2. Specifically, as
shown in Fig. 10 (1), PEEL with one-round reallocation
can produce relatively stable results when λ is not smaller
than 0.7. When λ continues to decrease, the performance
of PEEL suffers as the one-round evaluation of layer im-
portance becomes less accurate. PEEL with multi-round
resource reallocation (Fig. 10 (2)) can avoid severe perfor-
mance drop when λ is set as 0.6 or 0.5 since it performs
the importance assessment during each round, thus yielding
more reliable statistics of layer importance.

48

53

58

63

68

73

1.33 1.04 0.8 0.49 0.25 0.14

PEEL

DMCP

Uniform

FLOPs-Accuracy spectrum of ResNet-18

#FLOPs(G)

A
cc

u
ra

cy
(%

)

FLOPs-Accuracy spectrum of ResNet-50

#FLOPs(G)

A
cc

u
ra

cy
(%

)

(a) (b)

64

66

68

70

72

74

76

78

3 2.2 1.8 1.1 0.53 0.28

PEEL

DMCP

Uniform

55

57

59

61

63

65

67

69

71

73

75

300 264 211 167 87 59 37

PEEL

DMCP

Uniform

FLOPs-Accuracy spectrum of MobileNetV2

#FLOPs(M)

A
cc

u
ra

cy
(%

)

(c)

Figure 8: FLOPs-accuracy spectrum of PEEL, DMCP and uniform pruning on (a) ResNet-18, (b) ResNet-50 and (c) Mo-
bileNetV2.

2
1

1
M

8

7
M

5

9
M

1&2 3 4 5

Figure 9: Percentage of FLOPs assigned by PEEL to differ-
ent groups of MobileNetV2 under different target FLOPs
constraints. X-axis denotes group indices and y-axis rep-
resents the target FLOPs. A darker color indicates a larger
quantity of assigned resources.

C. Visualization of architectures searched by
PEEL and DMCP

We visualize the architectures obtained by PEEL and
DMCP [3] on ResNet-50 [5] and MobileNetV2 [23]. As
depicted in Fig. 11, on both ResNet-50 and MobileNetV2,
PEEL puts more resources on shallow layers whilst DMCP
has more reallocated parameters on the deep layers. As to
the architectural stability, the variance of channel numbers
of PEEL is much smaller than that of DMCP. For instance,
on ResNet-50, the channel variance of the last nine layers
of PEEL is less than half of DMCP (28.8 v.s. 64.3). These
results strongly support the searching stability of PEEL .

D. Comparison between performance variance
and searching cost of PEEL , DMCP and
USNet

We summarize the performance variance and search-
ing cost of different pruning algorithms in Table. 6 and
Table. 7, respectively. It is evident that PEEL has less

45

50

55

60

65

70

75

1 0.9 0.8 0.7 0.6 0.5

1.04G 0.49G 0.14G

λ-Accuracy spectrum of one-round
NPRR on ResNet-18

λ

A
cc

u
ra

cy
(%

)

45

50

55

60

65

70

75

1 0.9 0.8 0.7 0.6 0.5

1.04G 0.49G 0.14G

λ-Accuracy spectrum of multi-round
NPRR on ResNet-18 (#rounds=3)

λ

A
cc

u
ra

cy
(%

)

(1) (2) Single-round Multi-round

(a) ResNet-18

55

60

65

70

75

80

1 0.9 0.8 0.7 0.6 0.5

264M 167M 59M

λ-Accuracy spectrum of one-round
NPRR on MobileNetV2

λ

A
cc

u
ra

cy
(%

)

55

60

65

70

75

80

1 0.9 0.8 0.7 0.6 0.5

264M 167M 59M

λ-Accuracy spectrum of multi-round
NPRR on MobileNetV2 (#rounds=3)

λ

A
cc

u
ra

cy
(%

)

(1) (2) Single-round Multi-round

(b) MobileNetV2

Figure 10: One-round v.s. multi-round reallocation. We
show the λ-accuracy spectrum of one-round (left) and
multi-round (right) resource reallocation of PEEL on (a)
ResNet-18 and (b) MobileNetV2, respectively. Different
color denotes different target FLOPs.

variance in performance than DMCP [3] and USNet [29].
Besides, PEEL takes shorter training hours and consumes
much less GPU memory to produce a desired slim model
than the other two pruning techniques. It is not surprising
since PEEL trains a much compact model and reallocates
resources on this model while both DMCP and USNet en-

0

500

1000

1500

2000

2500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

PEEL

DMCP

Comparison between structures searched by NPRR and DMCP on ResNet-50
when #FLOPs=1.1G

Layer index

#C
h

an
n

el

(a) ResNet-50

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

PEEL

DMCP

Comparison between structures searched by NPRR and DMCP on
MobileNetV2 when #FLOPs=300M

Layer index

#C
h

an
n

el

(b) MobileNetV2

Figure 11: Comparison between structures searched by PEEL and DMCP on (a) ResNet-50 when #FLOPs=1.1G and (b)
MobileNetV2 when #FLOPs=300M, respectively. The vertical bar and vertical line denote the mean and variance of the
channel numbers in each layer, respectively. Results are averaged over five runs.

tails the training of the original cumbersome network. Be-
sides, as opposed to DMCP and USNet, PEEL is free from
calculating the gradients of multiple sampled substructures,
thus occupying fewer memory resources during the search-
ing phase. These results explicitly showcases the superior
efficiency of PEEL.

