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ENInst: Enhancing Weakly-supervised
Low-shot Instance Segmentation

Moon Ye-Bin, Dongmin Choi, Yongjin Kwon, Junsik Kim, Tae-Hyun Oh

Abstract— We address a weakly-supervised low-shot instance
segmentation, an annotation-efficient training method to deal
with novel classes effectively. Since it is an under-explored
problem, we first investigate the difficulty of the problem and
identify the performance bottleneck by conducting systematic
analyses of model components and individual sub-tasks with
a simple baseline model. Based on the analyses, we propose
ENInst with sub-task enhancement methods: instance-wise mask
refinement for enhancing pixel localization quality and novel
classifier composition for improving classification accuracy. Our
proposed method lifts the overall performance by enhancing the
performance of each sub-task. We demonstrate that our ENInst is
7.5 times more efficient in achieving comparable performance to
the existing fully-supervised few-shot models and even outperforms
them at times.

Index Terms—Low-shot learning, weakly-supervised learning,
instance segmentation, sub-task analysis, enhancement methods

I. INTRODUCTION

Instance segmentation is a fundamental task for a high-
level understanding of visual scenes, which jointly tackles the
classification, detection, and segmentation of object instances
of interest in a given image. Many convolutional neural network
approaches [1]–[8] have been developed and applied to real-
world applications, including autonomous vehicles [9]–[11],
robotics [12], medical [13], [14], etc. These methods, however,
are restricted to pre-defined classes and typically rely on a
massive number of annotations obtained from costly effort
of human annotators. These limit the models’ extension to a
variety of real-world scenarios [15], i.e., novel classes, where
there are countless object classes that are novel to the models.
Collecting a significant number of instance-wise mask labels for
fully-supervised learning on novel classes in every application
scenario is impractical due to the difficulty of collecting rare
class samples or the high annotation cost, e.g., fuzzy and
complex boundary cases [16], [17].

A potential workaround to the issue is low-shot learning [20]–
[28] that trains a model to rapidly adapt to novel classes only
with a few limited numbers of training data. Leveraging low-
shot learning in instance segmentation [19], [29]–[32] alleviates
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Fig. 1: Label efficiency of ENInst on MS-COCO [18]. Our
ENInst needs much fewer clicks to achieve similar perfor-
mance to fully-supervised MTFA [19], where F denotes fully-
supervised setting with mask, and W denotes weak one with
bounding box for novel classes adaption.

the requirement of a large number of supervised data for novel
classes. Although low-shot learning allows users to simply add
novel classes into the model, mask labeling is still cumbersome
and tricky for unskilled users [16]. It is hard for unskilled users
to assess what level of mask quality is necessary for the model;
e.g., exquisite mask labeling is expensive and time-consuming,1

but on the other hand, applying a quickly annotated noisy mask
to a supervised mask loss would be detrimental. This is because
typical supervised mask losses over-confidently exploit mask
labels.

Weakly supervised learning [33]–[37] is an efficient way to
tolerate the problems, which assumes the presence of noise in
mask labels. With weakly-supervised and low-shot learning,
unskilled users may now quickly add novel classes without has-
sle, i.e., minimize human effort and handle human annotation
error. Despite these practical and necessary properties, weakly-
supervised learning with few examples is under-explored in
the instance segmentation context [31].

In this work, we tackle a weakly-supervised low-shot
instance segmentation problem with bounding boxes as weak
supervision, which offer essential information about the local-
ization of each object [39] with just two clicks. Before designing
our methods, we first investigate the components of a simple
baseline model and its detailed behaviors in systematical tests
to better understand performance bottlenecks and to reveal
promising ways we move forward.

Since the evaluation metric (average precision) of instance
segmentation is tightly entangled with the performance of

1Although there have been developed a few tools to enable efficient polygon-
based annotations, e.g., [16], mask labeling still requires a lot more clicks
than the bounding box. This is incomparably more expensive than the image-
or box-level labeling.
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Fig. 2: Illustration of our ENInst (left) and the proposed enhancement methods developed by our analysis (right). 1) We train the
whole network in the base training phase (gray region), 2) fine-tune the prediction heads (blue region), where the classification
head for novel classes is parameterized by a linear combination of base classifiers and random vectors, named as the novel
classifier composition (NCC; pink region), and its coefficients are fine-tuned with Manifold Mixup [38], 3) and then conduct
inference with instance-wise mask refinement (IMR; yellow region) in a test-time optimization manner.

multiple sub-tasks, i.e., classification, box and pixel localization,
it is difficult to analyze individual sub-task performance. There-
fore, we analyze disentangled classification and localization
performance by introducing a class-agnostic metric and ground-
truth allocation tests and identify the performance bottleneck.

Based on the analysis results, we identify the priority of
the sub-tasks as pixel localization, classification, and box
localization in order. Then, we propose ENInst, which improves
the overall performance by enhancement methods for the
first two sub-tasks: Instance-wise Mask Refinement (IMR) for
improving the mask quality and Novel Classifier Composition
(NCC) for enhancing the classification accuracy. Our ENInst is
also annotation-efficient, as exhibited in Fig. 1, where ENInst
has 7.5 times fewer clicks to achieve similar performance to a
fully-supervised counterpart. Our evaluation on MS-COCO [18]
and PASCAL VOC [40] shows that our method performs
comparably to the existing fully-supervised low-shot instance
segmentation models or outperforms at times while notably
saving label costs. Our main contributions are summarized as:
• We identify the priority of sub-tasks in weakly-supervised

low-shot instance segmentation by systematic analyses. To
do that, we introduce a new class-agnostic metric and ground-
truth allocation tests.

• We propose ENInst for weakly-supervised low-shot instance
segmentation with enhancement methods: instance-wise mask
refinement and novel classifier composition.

II. RELATED WORK

The scope of our work covers across weakly-supervised
learning and low-shot learning, as well as instance segmentation
in terms of the architecture and the task. We overview the
related work from each perspective.
Low-shot Instance Segmentation. Instance segmentation
has been mainly tackled in the fully-supervised regime with
abundant data and pre-defined classes [1], [5]–[7]. A potential
way to extend to novel classes data-efficiently is to integrate
with few- or low-shot learning schemes [20], [21], [23], [41]–
[43], which enable training models by rapidly adapting to novel

classes with scarce data.2 By applying low-shot learning to
instance segmentation, few- and low-shot instance segmentation
(LSIS) models [19], [29], [30], [32] have been developed, which
can be classified into matching-based and fine-tuning methods.

Matching-based methods [29], [30] employ an attention
module between the support and query feature vectors and
then recognize the mask of each instance in the query image
based on the attention scores. These methods require significant
changes in their architecture or layers when the problem settings
are changed, e.g., the supervision type, the number of classes,
instances, and example images. On the other hand, the fine-
tuning approaches [19], [44] have a distinctive advantage of
handling these changes by adopting a two-phase procedure, i.e.,
pre-training and fine-tuning. The first phase trains the network
on the existing classes, and the second phase rapidly adapts
the trained model on novel classes with few examples and
iterations. Our method is a fine-tuning approach that shares
the same advantage.

Weakly-supervised / Low-shot Segmentation. To ease human
effort and reduce the influence of human annotation error, weak
supervision can be considered. There are studies for weakly-
supervised instance segmentation based on weaker but less
laborious annotations such as class labels [36], [45]–[47] or
bounding boxes [33]–[35], [39], [48]. Although class labels
are much less costly than other labels, the quality of predicted
masks with the class labels is worse than the one obtained by
bounding boxes due to no localization information [49]. We
use bounding boxes as weak labels that are in a good trade-off
between annotation convenience and localization capability.
However, weakly-supervised instance segmentation does not
consider the novel classes, which the low-shot regime can
handle.

Despite being able to handle novel classes effortlessly,
weakly-supervised low-shot instance segmentation [31], [50]

2Few-shot typically refers to less than 10-shots, and low-shot refers to a
broader range of shots. Typically, it has been referred to less than 30-shots as
in [24], [32].
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is under-explored.3 While not instance segmentation, there are
only a few weakly-supervised few-shot semantic segmentation
methods [25], [51]–[54]. Most of them use prototype matching
methods, which are hard to extend to instance segmentation,
e.g., the difficulty of distinguishing each instance. They also
have limitations on dealing with a more number of shots due
to their lack of architecture flexibility, and has been no deep
consideration for the low performance of weakly-supervised
few-shot semantic segmentation. In contrast, we are based on
a flexible fine-tuning method and analyze the performance
bottlenecks in the baseline model.

Compared to our classification enhancement method, [55]
propose a novel class classifier initialization, but it differs from
ours in that they need additional networks and do not consider
parameterizing the classifier. There are prior works [56]–[59]
considering the adaptation from base to novel classes in few-
shot semantic segmentation. The extension of these approaches
to few-shot instance segmentation is non-trivial. [60] propose a
compositional regularization inducing the image feature could
decompose into pre-defined attributes, but it also differs from
our method in that they need additional attribute annotations
and do not parameterize the classifier but regularize the feature
to decomposable into attributes.

III. PROBLEM SETTING AND BASELINE

In this section, we first describe the basic formulation of
weakly-supervised LSIS data setting (Sec. III-A). We then
present a simple baseline that deals with weakly-supervised
LSIS in a fine-tuning manner (Sec. III-B). The baseline is
leveraged to understand the problem setting and is further
extended in the later sections.

A. Problem Setup

We have three different data splits: the base split Dbase

for the pre-training phase, the fine-tuning split Dfine for the
fine-tuning phase, and the query split Dquery for the inference
phase. The base split Dbase is the training data for the base
classes Cbase containing a sufficiently large amount of pairs of
an image I and its instance-wise annotations Ab

I , i.e., {(I,Ab
I )},

where Ab
I = {(ci,bi,mi)}NI

i=1, NI is the number of instances
in the image I, ci ∈ Cbase is the class label, bi is a bounding
box label, and mi is a mask annotation of the i-th instance.
The fine-tuning split Dfine consists of pairs of an image and
its annotation, {(I,An

I )}, where An
I = {(ci,bi)}NI

i=1 and the
class is in the novel class set, i.e., ci ∈ Cnovel. We sample
K number of images for each class in Cnovel, i.e., K-shot,
where K is typically a small value in the low-shot regime. The
query split Dquery contains only images {I} for novel classes
Cnovel not overlapped with the images of Dfine, i.e., disjoint
sets. The annotations of the query split Dquery are used only
for evaluation purpose.

The aim of LSIS is to identify the class of each instance
in a query image of Dquery, to localize their bounding boxes,
and to segment. In this work, we refer to weak label if a label
is given as bounding box annotation.

3We extend our technical report [50] in this work.

B. Baseline

We design a baseline model as a fine-tuning based low-
shot approach [19], [44], [61], which can be easily adapted to
different types of labels in each phase according to the choice
of loss functions without changing its architecture.
Architecture. A baseline is based on an anchor-free architec-
ture to mitigate the inherent biases of anchor-based methods
that limit the performance [6], [29], [62], [63], which appears
more notably in small data regimes [19], [32]. The baseline
model uses the CondInst architecture [8], which consists of
the ResNet-50 FPN backbone, prediction heads, and mask
branch, illustrated in the left of Fig. 2. In particular, the weight
parameters of the mask head are conditionally predicted by the
instance-specific controller head. This instance-wise structure is
favorably leveraged in our instance-wise enhancement method
later in Sec. V.
Pre-training on Base Classes. Our procedure is divided into:
pre-training on base classes, fine-tuning on novel classes, and
inference. The training parts at each stage are illustrated in the
left of Fig. 2 (see the gray and blue regions). In the pre-training
phase, we train the whole network with the base class data
Dbase and the loss function:

L = Lcls. + λ1Lcen. + λ2Lreg. + λ3Lmask, (1)

where the classification loss Lcls. is the focal loss [64], the
centerness loss Lcen. is the binary cross-entropy loss for
capturing object centerness [65], and the box regression loss
Lreg. is the IoU loss [66]. We set all the balance parameters
{λ·} to be one. The mask prediction loss Lmask is defined
according to the type of supervision. In the pre-training phase
using full-supervision, we use the dice loss [67], following [8],
as:

Lfull
mask = 1

|{cx ̸∈bg}|
∑

x 1{cx ̸∈bg}Ldice(m̃x,mx), (2)

where cx denotes the classification label at pixel x, bg denotes
the background label, and 1{·} is the indicator function being
1 if true and 0 otherwise. The notation m̃ is a prediction mask,
and m denotes a binary ground-truth mask.

We pre-train the model for explicit comparison in Sec. IV,
but this phase can be omitted by utilizing existing pre-trained
instance segmentation model.
Fine-tuning on Novel Classes and Inference. In the fine-
tuning phase, we fine-tune only the prediction heads on the
novel class data Dfine while freezing the other parts (see the
left of Fig. 2). Through this fine-tuning phase, the baseline
model can flexibly deal with the condition changes in a single
model, e.g., the number of classes, instances, and examples. We
use the same loss in Eq. (1), but the mask loss Lmask is changed
to the weakly mask loss defined as Lweak

mask = Lproj.+Lpair.

following [33]:

Lproj. =
1
2

∑
a∈{x,y} Ldice(proja(m̃), proja(m)),

Lpair. = − 1
|Ein|

∑
e∈Ein

1{Se≥τ} logP (e),
(3)

where proja∈{x,y}(·) is the pixel projection function onto each
axis, implemented by max-pooling along each axis, an edge
e denotes a neighboring pixel pair along each axis, and the
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TABLE I: Ablation study of the fine-tuning phase according
to the target fine-tuning components on the 10-shot setting. To
reduce randomness, we first fine-tune all the prediction heads
composing classification & centerness (Cls.), box regression
(Box), and controller (Cont.), and then replace the weights of
not checked components with base class pretrained parameters
for (A–C). We fine-tune the whole model, including the
backbone & mask branch (Others), for (D).

Cls. Box Cont. Others
Detection Segmentation

AP AP50 AP AP50

(A) ✓ 9.29 16.78 6.19 13.37
(B) ✓ ✓ 9.28 16.79 6.19 13.36
(C) ✓ ✓ ✓ 9.28 16.79 7.94 14.72
(D) ✓ ✓ ✓ ✓ 9.11 15.18 7.64 13.61

set Ein is a set of e such that at least one of the pixels in
e is in the ground-truth box. P (e) measures the likelihood
for two pixels i and j in e to be the same class as P (e) =
m̃i·m̃j+(1−m̃i)·(1−m̃j). The color similarity Se between two
pixels in e is Se = Sim2.0(ui,uj), where u is the color vector,
and the similarity function Sim(·) with temperature parameter
κ is Simκ(f , f

′) = exp(− 1
κ∥f − f ′∥22). We find that using a

much lower learning rate and a few training iterations [68] is
important in the fine-tuning step for novel classes with few
examples.

IV. ANALYSIS

It is common that a trade-off exists between annotation
cost and performance, and also the performance is often
degraded with weaker supervision. In this section, we analyze
performance bottlenecks of the weakly-supervised low-shot
problem with baseline to better understand the problem and to
further develop ways to improve the performance. We conduct
the ablation study of target components to be fine-tuned with
the following dataset settings.

Datasets. We follow the standard practice [19], [30], [61]
of splitting the 80 classes in MS-COCO [18]. The 20 classes
included in both MS-COCO and PASCAL VOC [40] are chosen
as novel classes (Cnovel), the remaining 60 classes as base
classes (Cbase), and we use the test set of MS-COCO as Dquery.
However, the test set includes some images in which no novel
class instance appears, which introduces biases to false positives
by regarding all the predictions as false. To homogenize the
potential false positives and focus more on true positives in
analysis, we build a new data split, called COCO novel-only,
where we exclude the images containing no novel class instance
from Dquery, i.e., excluding 1,008 out of 5k images in the test
set.

A. Ablation Study of Components

In the fine-tuning phase, we fine-tune the prediction heads
over the novel class data: classification, centerness, box regres-
sion, and the controller. We first investigate the performance
bottleneck from the model component perspective. Table I
shows the effect of fine-tuning each component.

TABLE II: Individual sub-task analysis with the GT allocation
test and FG-AP of the baseline. The orange colors represent the
upper bound of each sub-task performance through improved
classification accuracy. The green colors are the upper bound
of the segmentation performance that can be achieved by only
increasing the mask quality. The blue colors measure the joint
upper bound performance of the classification accuracy and
mask quality at the same time.

Shot GT
Detection Segmentation

AP FG-AP AP FG-AP

K = 1
FW baseline 2.25 3.37 2.04 2.45
GT-cls 5.88 3.37 5.04 2.45
GT-mask - - 4.08 13.56

K = 5
FW baseline 6.74 8.38 5.93 6.39
GT-cls 11.07 8.38 9.33 6.39
GT-mask - - 11.13 20.37

K = 10
FW baseline 9.28 10.65 7.94 7.57
GT-cls 12.68 10.65 10.43 7.57
GT-mask - - 12.56 18.69

Comparing (C) and (D), it is efficient and effective to fine-
tune only the prediction heads rather than fine-tuning the whole
network. Comparing (A), (B), and (C), while the fine-tuned
controller helps to improve the mask quality, fine-tuning the box
regression head does not show a significant effect. The result
of (B) implies that if classification fails, there is no detection
performance gain even though box prediction improves. While
this ablation study shows the classifier is the bottleneck for
performance, it is still unclear to identify the effects of
individual sub-tasks for segmentation, i.e., classification and
mask prediction. To disentangle the effects of each sub-task,
we conduct additional analyses.

B. Individual Sub-task Analysis

To further identify the performance bottleneck among the
sub-tasks, we analyze the baseline using a foreground-AP (FG-
AP) metric and our proposed ground-truth (GT) allocation
tests. Although AP is a representative measure to evaluate the
performance of instance segmentation, it cannot tell which sub-
task the performance bottleneck comes from since AP mixes
the performance of multiple sub-tasks, e.g., both classification
accuracy and mask quality together. Thus, we introduce a
new FG-AP metric that is invariant to classification accuracy,
whereby we can scrutinize the influences of classification
accuracy and mask quality individually. Also, as another way
to examine the impact of each sub-task by AP, we assign and
replace our baseline results of a sub-task with a GT of the
corresponding task, named GT allocation tests. Thereby, we
can figure out disentangled performance effects of a sub-task by
allocating the maximum possible performance for the sub-task.

Specifically, the typical mean AP measures AP in each class
and averages them over classes.4 Differently, FG-AP measures
the bounding box or mask quality in a class-agnostic manner,
which projects all the classes into a single foreground class.
In GT class allocation test (denoted as GT-cls), if a predicted

4For consistency with the prior works, mean AP (mAP) is simply indicated
as AP in the later part of this work.
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Algorithm 1: Ground-truth Class Allocation

Input: prediction labels {c̃j , b̃j}
Np

I
j=1,

ground-truth labels {ci,bi}NI
i=1,

Np
I is the number of predicted instances, and

NI is the number of ground-truth instances in an image
I.

for j = 1, 2, . . . , Np
I do

for i = 1, 2, . . . , NI do
IoUsji =compute IoU between b̃j and bi;

end
k = argmaxi IoUsji;
c̃j := ck;

end
Output: allocated ground-truth class {cj , b̃j}

Np
I

j=1

instance has the most overlapping area w.r.t. GT bounding
box, we assign the label of the corresponding GT instance to
the instance; thus, we can independently measure the box or
mask quality, assuming the label prediction is always correct.
Analogously, GT mask allocation test (denoted as GT-mask)
assigns the mask of a GT instance to a predicted instance
with the most overlapping area w.r.t. GT bounding box. We
summarize our ground-truth class allocation test in Algorithm 1.
The ground-truth mask allocation algorithm is the same as class
one except using mask labels instead of class labels.

Both the FG-AP metric and GT allocation tests can be
regarded as oracle tests and provide performance upper bounds
that can only be achieved by perfectly performing one of
the sub-tasks. At first glance, the FG-AP and the GT class
allocation seem similar, but the ways of normalization are
different as:

FG-AP =
TP1+TP2+···+TP|C|

P1+P2+···+P|C|
,

GTcls-AP = 1
|C|

(
TP1

P1
+ TP2

P2
+ · · ·+ TP|C|

P|C|

)
,

(4)

where TPc and Pc are the numbers of respective true-positives
and positives of a sub-task for the class c ∈ C. The GT class
allocation test takes performance imbalance across classes into
account by the class-wise normalization.

Table II shows the classification and mask performance of the
baseline through the analysis method. Respectively comparing
orange and green against the baseline, we can see that the
improvement tends to be higher with GT masks except for
the 1-shot case, where training the classifier is sensitive with
1-shot. This implies that the mask quality is more important
than classification in the segmentation task, but improving both
sub-tasks can lead to noticeable performance gains for overall
instance segmentation (see blue). However, the classification
does not lose its importance in the sense of improving the
performance of both detection and segmentation tasks.

V. ENINST WITH ENHANCEMENT METHODS

Inspired by the above analyses, we focus on enhancing the
mask quality and classification accuracy. We propose ENInst
with enhancement methods: Instance-wise Mask Refinement

Instance-wise Mask Head (𝒘)Label Class A

Label Class B

Feed-forward

Gradients

Pixel Labels

𝐿!"#

Fig. 3: Illustration of our test-time MRF formulation, called
Instance-wise Mask Refinement (IMR). The pixel label are
parameterized by the shared mask head parameter w, and we
optimize over the shared parameter w as variables. This is a
distinctive feature from the existing MRF or CRF methods,
e.g., [69], [70], where each pixel label is directly modeled as
a large number of variables.

(IMR) for mask quality, and Novel Classifier Composition
(NCC) for classification accuracy.
Mask Enhancement. To further improve the mask quality,
we propose Instance-wise Mask Refinement (IMR), which
is a test-time optimization method of mask prediction. We
observe that the feed-forward mask prediction does not align
well with instance boundaries, even if those are clearly visible.
We further enforce an initial mask prediction to follow the
corresponding instance boundaries by propagating the mask
along the boundaries as a post-refinement. We iteratively refine
an instance-wise initial mask prediction obtained from each
mask head in the inference phase, which is formulated as a
Markov Random Field (MRF) problem [69], [70].

Inspired by MRF formulation, the objective function of IMR
is formulated as:

LIMR = µ1Lunary + µ2Lpairwise, (5)

where {µ·} are the balance parameters, we set µ1 = 0.05 and
µ2 = 5. The unary term Lunary roughly distinguishes between
foreground and background as:

Lunary =
∑

x ̸∈G ηSfg
x · (1−m̃x(w)) + Sbg

x · m̃x(w), (6)

where Sfg
x = Sim0.05(f̂x,pfg) is a foreground similarity

with the feature vector passed through the mask head’s
first layer f̂x at pixel x and a foreground prototype pfg,
Sbg
x = Sim0.05(f̂x,pbg) is a background similarity with a

background prototype pbg, G is a gray area that contains
uncertain pixels having low values in both the foreground
and background similarity, m̃x(w) is the mask prediction at
pixel x parameterized by the mask head parameter w that is
learnable, and η is the balance parameter between foreground
and background, set as η = 5. The foreground prototype vector
pfg is computed as follows:

pfg =
1

|{x ∈ I}|
∑
x∈I

f̂x · m̃x(w). (7)

To compute the background prototype pbg, we first assume
that there are some background pixels along the edge of each
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Fig. 4: Examples of qualitative improvement by IMR. Most of the initial mask region is maintained by the unary term Lunary

in the objective function of IMR, and over-covered (e.g., left red boxes of sofa and bus) or uncovered (e.g., right red box of
bus) regions are iteratively refined by the pairwise term Lpairwise. The initial mask is refined faster in the early step than in the
last step of the iteration, i.e., most of refinement is done before 5-step in these examples.

Fig. 5: Mask head input feature visualization. The visualized
results (even columns) show that the feature map represents the
semantically meaningful pixel neighborhood better than raw
pixel color (odd columns), e.g., the boundary of each sheep, bus
and shadow. Comparing the RGB image and feature, measuring
similarity at the feature level could be more effective, which
inspires the design of IMR. The channels of the feature are
projected to RGB color by Gaussian random vectors.

bounding box prediction b̃x with high probability. We define
the average of the top-5 features with the highest foreground
error Efg

x = ∥f̂x − pfg∥22 among features on the edge pixels
as the background prototype pbg as:

pbg =
1

5

∑
x∈V

f̂x, (8)

where the set V contains the pixels of the top-5 features with
the highest foreground error. The gray zone set G contains
the uncertain pixels having high values in both the foreground
error Efg

x and background error Ebg
x = ∥f̂x−pbg∥22. The pixel

x belongs to the gray zone G if satisfies the condition gx ≥ ρ,
where gx = min(Efg

x , Ebg
x ), and ρ is the threshold parameter.

We set the threshold parameter as ρ = maxx(gx/5).
The pairwise loss Lpairwise deals with the gray area and is

defined as:

Lpairwise =
∑

x

∑
x′∈Nx

Wx,x′∥m̃x(w)− m̃x′(w)∥22, (9)

where Nx is the set of 8-neighbor pixels of pixel x, and Wx,x′

is a weight function being Sx,x′ if Sx,x′ > 0.5 and 0 otherwise,
with a feature similarity Sx,x′ = Sim0.2(fx, fx′), and f is the
feature vector of the mask feature (see Fig. 2).

We then ensemble the refined and initial mask heads for
better performance and robustness and feed-forward the mask
features to predict the refined masks. Our mask refinement

effectively corrects the edge cases. IMR improves the initial
mask as a test-time optimization using MRF at the feature-level,
which is the distinctive point from existing work using MRF
at the raw pixel-level; thus, we think it could be applied in
other general segmentation models having mask head, but we
leave it as future work.

Our IMR is distinctive in that the pixel label variables
in MRF are parameterized by the instance-wise mask head
parameter w as in Fig. 3, and we optimize over the parameter.
Thereby, we hypothesize that we can obtain the regularization
effect according to the inductive bias of the convolution filter,
called Deep Image Prior (DIP; [71]). This leads to faster
convergence than the existing pixel-wise label MRF [69], [70].
The examples in Fig. 4 empirically show the fast convergence
because the most of refinement is done in the early step of the
iteration. Our IMR can be regarded as an extension of DIP
to a mask space; thus, we first show that DIP also effectively
works for a mask space as well as an image space. Also, we
compute the feature similarity for measuring the loss, while the
conventional segmentation using MRF typically uses raw pixel
color similarity. Compared to the raw pixels, where the object
boundaries are often ambiguous due to a lot of variations,
e.g., hue, intensity, saturation, the feature better preserves the
semantic boundaries clearly, as shown in Fig. 5.

One might question the difference between our IMR and the
existing post-processor Conditional Random Field (CRF; [70]).
While our IMR is designed for instance segmentation context,
CRF has been applied in semantic segmentation context, i.e.,
not commonly used in instance segmentation. To fairly compare
the methods in the same context, we perform instance-wise
CRF by explicitly giving the class logit corresponding to the
predicted class. We compare our IMR and CRF in terms of
instance segmentation performance improvement and run-time
per image in a 10-shot case on PASCAL VOC dataset, as
shown in Fig. 6. In addition to the CRF, we also compare
IMR with the GrabCut method applied to the mask branch of
the baseline. While both GrabCut and CRF exploit pixel-level
MRF, our IMR is feature-level MRF. The results show that
IMR has more improvement with less amount of time, which
means IMR has a better trade-off than GrabCut and CRF in
the instance segmentation context.



7

Fig. 6: Comparison of IMR against GrabCut and CRF for
performance improvement compared to the baseline and run-
time per image. IMR is more effective than GrabCut and CRF
in the instance context in terms of both performance and run-
time. Note that IMR could be thought of as feature-level MRF,
GrabCut and CRF as raw pixel-level MRF.

Fig. 7: Visualization of weights in NCC, i.e., correlation
between base and novel classes in MS-COCO. Top-20 base
classes are selected based on the max weight value. Red color
stands for high correlation and blue color for low correlation.

Classification Enhancement. Since the novel and base
classes are not overlapped, the novel class classifiers have
been randomly initialized in the fine-tuning based low-shot
approaches [19], [61] and are trained from scratch. With few
training examples, optimizing from random initials would
introduce unexpected random effects and require a more
number of iterations that may be prone to overfitting; thus, we
hypothesize that parameterization with prior knowledge of base
classes may lead to faster convergence and better generalization.
We propose the Novel Classifier Composition (NCC), which
is depicted in the top right side of Fig. 2.

Our NCC leverages the prior knowledge of the trained
base classifiers θbase by linearly combining its parameters
to represent the parameters of a novel classifiers θnovel.
However, since the dimension of each classifier d is typically
larger than the number of base classifiers |Cbase|, e.g., 256-
D or 512-D vs. 60 classes for MS-COCO or 15 classes for

TABLE III: Ablation study of NCC according to the base
classifiers and noise vectors on the MS-COCO dataset with a
10-shot setting.

Base Noise
Detection Segmentation

AP AP50 AP AP50

(A) 9.28 16.79 7.94 14.72
(B) ✓ 9.69 17.30 8.26 15.25
(C) ✓ ✓ 9.81 17.60 8.33 15.46

PASCAL VOC, respectively, fewer bases than d limit spannable
subspaces due to large null spaces. To fill up the inexpressible
null space by the base classifiers θbase alone, we propose
to append r number of additional Gaussian random vectors
R ∈ Rd×r as extra bases that span full column rank with
high probability [72]. That is, we parameterize the novel
classifier θnovel as θnovel(α) = [Θbase;R]α, where a stack
of base classifiers Θbase ∈ Rd×|Cbase|, weight coefficient
α ∈ R|Cbase|+r, and fine-tune θnovel(α) w.r.t. α over the low-
dimensional space spanned by α. We set r = 20 for MS-COCO
and r = 10 for PASCAL VOC. Training a linear coefficient α
rather than θnovel is much efficient in terms of the number of
training parameters (d|Cnovel| > (|Cbase|+ r)|Cnovel|).

The visualization of weights α′ ∈ R|Cbase|×|Cnovel|, which is
the collection of the weight coefficient α of novel classifiers,
in Fig. 7 shows the correlation between base and novel classes.
We select the top-20 base classes, i.e., R20×|Cnovel|, based on
the max weight value due to a large number of base classes.
The result shows that semantically or visually similar base
classifiers are more helpful in representing the novel classifier,
e.g., the truck (in top row) is helpful to represent the car,
motorcycle, bus, and train. It implies that the prior knowledge
of base classes is informative to parameterize the novel classes.

To investigate the role of the noise vectors R, we conduct
an ablation study of our NCC in Table III. The result shows
that parameterizing NCC with only the base classifiers is
already helpful, and noise vectors further provide additional
improvement. For further exploration, we explicitly rank the
weights of each vector. We confirm that the base classes with
high correlation occupy the top, the less semantically related
ones occupy the bottom, and the noise vectors fill the middle,
as we postulated.

Furthermore, to avoid sharp decision boundaries and favor
smoother ones that can potentially be better generalized [38],
[73], we additionally apply Manifold Mixup [38] in the fine-
tuning phase of the classifier head. Different from the existing
work [38], [74], applying it in the pre-training phase with an
additional auxiliary loss, we apply it to the fine-tuning phase
and one-stage networks by re-formulating the focal loss [64]
to be a Mixup loss. As a byproduct, our Manifold Mixup
fine-tuning is more computationally efficient than [38] because
it works on the classification head with feature reuse within a
batch.

VI. EXPERIMENTS

We evaluate the weakly-supervised LSIS baseline and
our ENInst. We report the averaged results of 10 random
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Fig. 8: Qualitative segmentation examples. (Top) The baseline
shows fine qualitative results, but some of them stick out of
the object, do not completely cover the object, and have no
prediction results due to the low confidence score. (Bottom)
Our enhancement methods refine the initial masks to better fit
the semantic boundaries and properly recover the confidence
score. The segmentation performance of ENInst is better than
the baseline by + 3.66 AP on the 10-shot VOC novel setting.

compositions of the fine-tuning dataset Dfine. We present the
partial metrics in this section.

Competing Methods. Only one model, Siamese Mask R-
CNN [31], conducts LSIS in a weakly-supervised regime. Due
to the lack of competing methods dealing with the same task,
we construct another baseline with GrabCut [69] by changing
the mask branch of the baseline to the GrabCut branch in the
inference phase, so the detection performance is the same as
the baseline.

While MTFA [19] is the fully-supervised LSIS approach,
we mainly compare our method with MTFA for reference.
Similar to ours, MTFA is based on the fine-tuning approach but
uses an anchor-based network architecture. We also compare
with the variant of MTFA, iMTFA [19], and the well-known
fully-supervised LSIS networks, MRCN+ft-full [32], Meta R-
CNN [32], and FGN [30], where we abbreviate “Mask R-CNN”
as “MRCN.”

Implementation Details. For implementation, we use PyTorch
Distributed library [75] and 2 NVIDIA GeForce RTX A6000
GPUs for pre-training and 1 GPU for fine-tuning and inference.
The code is based on Detectron2 [76] and AdelaiDet [77].

In the pre-training phase, we train the whole network by
SGD with batch size 8, 0.01 learning rate, 90,000 iterations
for COCO and 20,000 for VOC, and 0.9 momentum. In the
fine-tuning phase, we train the prediction heads by SGD with
batch size 8 and 0.005 learning rate. The number of iterations is
different for each shot setting. In the COCO novel test setting,
we set 200 iterations for 1-shot, 800 for 5-shot and 10-shot,
and 1,000 for 30-shot. In the VOC novel test setting, we set the
number of iterations as 1,500. When the novel class classifier
composition (NCC), Manifold Mixup head fine-tuning modules
are added, the number of iterations in the fine-tuning phase
is 500 for 1-shot, 500 for 5-shot, 800 for 10-shot, and 1,000
for 30-shot for COCO, and 100 for 1-shot, 500 for 5-shot and
10-shot for VOC.

A. Comparison

COCO2VOC. We evaluate on the cross-dataset setup, which
is known to be a more challenging setting and helps to measure
the generalization ability of models [30]. It consists of MS-
COCO for training and PASCAL VOC for evaluation, where
the disjoint 60 classes are used for Cbase and the overlapped 20
classes for Cnovel. For a fair comparison with the counterpart
models, we follow the same ground-truth only evaluation
(GTOE) protocol [19].

In Table IV, we summarize the results. The prior work,
except for MTFA and iMTFA, only reported the AP50
performance and did not report the 20 novel classes case.
The performance of the baseline is favorable despite the
disadvantage of the supervision but still lower compared to the
fully-supervised models. Surprisingly, our ENInst improves the
accuracy on both tasks, and our model even outperforms the
fully-supervised models except for the detection of FGN. Note
that FGN tackles a more advantageous setup, i.e., 1-way 1-shot,
and uses a stronger backbone, ResNet-101, than ResNet-50 we
use, which leads to the higher detection performance of FGN.
This result may evidence that our enhancement methods are
effective to compensate the lacking information of weak labels
even on the challenging cross-data setting.
VOC Novel. We evaluate our network on PASCAL VOC. We
configure three novel class setups following [30], where 20
classes are randomly divided into 15 classes to be used in
Cbase and 5 classes to Cnovel, which forms three setups in a
cross-validation manner. We report the mean APs averaged
over the three setups in Table V. The baseline performs 1.5
to 2 times better in segmentation compared with the GrabCut
counterpart. Our ENInst achieves further improvement in both
detection and segmentation tasks by our enhancement methods
and shows comparable performance against the fully-supervised
MTFA, and even outperforms in some detection cases.

We summarize the implications of a few outperforming cases
of our ENInst over the fully-supervised method, MTFA, as
follows:
• Despite the weak label, the small performance gap between

MTFA and our ENInst in segmentation performance implies
the effectiveness of our Instance-wise Mask Refinement
(IMR) method.

• It also implies that fast adaptation of our mask head in
an optimization loop (feed-back, not a feed-forward) is the
crucial design choice that can specialize to each instance.

• The enhancement method for classification accuracy, novel
classifier composition (NCC), contributes to the outperform-
ing cases in detection.

COCO Novel. We evaluate our method on the MS-COCO low-
shot division setting following [19], [61], called COCO novel.
The splits of the base and novel classes, Cbase and Cnovel,
follow the same setting in Sec. IV, but we use all images
of the MS-COCO test set as Dquery without modification. In
Fig. 1, we compare the performance according to the number
of clicks for novel class labeling with the fully-supervised
low-shot models in 1, 5, 10, 30 shot cases. A bounding box
requires just 2 clicks, while a mask requires more than tens
of clicks [78] using an advanced labeling tool for reasonable
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TABLE IV: (a) Comparison on COCO2VOC 1-shot. The first column represents the label types used in the fine-tuning phase,
where F denotes full supervision setting with mask, and W is weak one with bounding box. Bold indicates the best results in
the weakly setting. (b) COCO2VOC 5-shot and 10-shot results of baseline and ENInst in terms of segmentation AP.

(a) Label Method Backbone
(ResNet)

Detection Segmentation

AP AP50 AP AP50

F

*MRCN+ft+full 50 - 6.0 - 0.4
*Meta R-CNN 50 - 20.1 - 12.5
*FGN 101 - 30.8 - 16.2
MTFA 50 9.99 21.68 9.51 19.28
iMTFA 50 11.47 22.41 8.57 16.32

W

*Siamese MRCN 50 - 23.9 - 13.8
GrabCut 50 9.29 17.56 3.89 8.94
Baseline 50 9.29 17.56 7.48 14.70
ENInst (Ours) 50 14.37 27.31 11.51 22.74

*1-way 1-shot results (a more advantageous setup than ours)

(b)
Segmentation AP

5-shot 10-shot

Baseline 14.33 17.32
ENInst (Ours) 19.54 21.07

TABLE V: Comparison on the VOC novel setting. Bold
indicates the best results in the weakly setting.

Label Model
1-shot AP 5-shot AP 10-shot AP

Det. Seg. Det. Seg. Det. Seg.

F MTFA 9.79 9.98 18.13 16.68 20.63 18.72

W
GrabCut 6.38 2.94 13.61 5.81 18.48 7.62
Baseline 6.38 5.39 13.61 10.11 18.48 13.60
ENInst (Ours) 10.38 9.04 17.59 13.72 22.19 17.26

TABLE VI: Compared with MTFA in terms of the number
of iterations in the fine-tuning phase and performance on
detection and segmentation (AP50). Our ENInst achieves better
performance on detection and comparable on segmentation with
a five times lower number of iterations for the fine-tuning phase
and weak labels.

MTFA ENInst (Ours)

Label F W

Iters. 4,000 800
Det. 15.53 16.05
Seg. 14.64 14.29

quality. The previous study [78] shows approximately 15 clicks
are required to achieve a moderate performance. Therefore,
we assume that the bounding box and mask require 2 and
15 clicks per instance, respectively. Although each image in
MS-COCO has 7.7 instances on average [18], we assume one
instance per image for simplicity.

Our ENInst surpasses the fully-supervised MRCN+ft-full
and Meta R-CNN performance by a large margin, even with
a much smaller number of clicks. Given the same number
of clicks, our method achieves about 4.4 AP higher than the
fully-supervised MTFA, and the gap with iMTFA is much
larger. Ours also has 7.5 times less number of clicks to achieve
similar performance with MTFA. Since many images have
more than one object, the gap is expected to be far more
significant. Our approach can notably reduce the number of
clicks while keeping the performance by replacing masks with
bounding boxes given the same budget time in MS-COCO.
Also, we have an efficiency comparison of head fine-tuning
between MTFA and ours in Table VI to support our better
practicality than MTFA. It shows that our head fine-tuning

Fig. 9: Qualitative results of ENInst compared to the MTFA
on the MS-COCO dataset with the 10-shot setting. The results
show that our ENInst has better performance on some samples
than MTFA in terms of both mask quality and classification
accuracy, even with weak labels. Our model is trained with
weakly-labeled annotations, i.e., bounding boxes, having only
10-shot training samples for each class.

converges 5 times faster than MTFA, which implies that our
method is more practical than the existing work.

In the COCO novel-only setting, which is used in Sec. IV
for analysis, ENInst also shows a similar trend to the COCO
novel setting, as shown in Table VII. The qualitative results
can be seen in Fig. 9.

B. Ablation Study of Enhancement Methods

In Table VIII, the results show that the mask enhancement
method with IMR helps improve the segmentation performance
w.r.t. the mask quality in (B). The classification enhancement
methods with NCC (C) and Manifold Mixup head fine-tuning
(E) conduce to improvement in both detection and segmentation
tasks. When using both IMR and NCC (D), we have additional
improvements because IMR and NCC deal with different parts,
i.e., mask quality and classification accuracy. It seems the effect
of NCC is marginal, but when using both of NCC and Mixup (F)
shows an additional gain, which implies that each method has
regularization effects from different aspects. The segmentation
performance is the highest when all the enhancement methods
are used in (G) because they compensate for different aspects.
Our ENInst notably improves the performance by enhancing
both mask quality and classification sides. The gains from
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TABLE VII: Comparison on the COCO novel-only setting, which is explained in Sec. IV. Bold indicates the best results in the
weakly setting.

Label Model

1-shot 5-shot 10-shot

Detection Segmentation Detection Segmentation Detection Segmentation

AP AP50 AP AP50 AP AP50 AP AP50 AP AP50 AP AP50

F MTFA 2.82 5.55 2.97 5.16 7.27 13.59 7.21 12.69 9.27 16.99 9.02 15.88

W
GrabCut 2.25 4.15 0.96 2.15 6.74 12.22 2.67 5.92 9.28 16.79 3.51 7.93
Baseline 2.25 4.15 2.04 3.66 6.74 12.22 5.93 10.89 9.28 16.79 7.94 14.72
ENInst 2.59 4.89 2.34 4.18 7.23 13.04 6.35 11.65 9.81 17.60 8.54 15.57

TABLE VIII: Ablation study of our enhancement methods
on the 10-shot VOC novel setting. (A) is the results of the
baseline, and (G) is of our ENInst.

IMR NCC Manifold
Mixup

Detection Segmentation

AP AP50 AP AP50

(A) 18.48 35.47 13.60 28.94

(B) ✓ 18.48 35.47 14.12 29.23
(C) ✓ 18.83 36.02 13.90 29.41
(D) ✓ ✓ 18.83 36.02 14.42 29.73

(E) ✓ 20.62 40.36 14.85 31.96
(F) ✓ ✓ 22.19 42.29 16.66 34.63
(G) ✓ ✓ ✓ 22.19 42.29 17.26 34.76

(E) to (G) in Table 8 are 1.57 mAP to detection and
2.41 mAP to segmentation, which demonstrate the favorable
compositionality of our methods, i.e., the synergy effect. Note
that data augmentation techniques are essential for data deficient
problems, including our problem; thus, evaluating each module
component over the data augmentation would allow us to see
the genuine effects of data deficient problems.

VII. CONCLUSION

We investigate an underexplored weakly-supervised low-shot
instance segmentation problem by disentangling the instance
segmentation performance with our systematic analyses. The
analyses reveal the performance bottleneck, which motivates
the development of ENInst with enhancement methods for
effective weakly-supervised low-shot adaption. The experiments
demonstrate that our ENInst performs comparably to the
existing fully-supervised methods with much fewer clicks for
labeling and even outperforms them at times. Our ENInst
promotes the overall performance by increasing mask quality
and classification accuracy, respectively. That is, in this work,
we push the Pareto-front of the data efficiency and accuracy
trade-offs in the low-data regime of instance segmentation.
We conclude our work with the following discussions of the
limitation and the future work.
Limitation. ENInst has two enhancement methods, IMR and
NCC. IMR enhances the quality of the mask as the test-time
optimization parameterized by the instance-wise mask head
parameters. IMR efficiently improves the mask quality in the
convolution structured mask head, but IMR needs modification
to use it in other architecture, such as a transformer. IMR
also takes additional time for inference to optimize the mask
head parameters. NCC enhances classification accuracy by
parameterizing the classifier with the base class classifiers
considered prior knowledge. It may not be helpful if there

is no association between the base and novel classes, but
the probability of no visually or semantically similar case
between classes is low, as shown in Fig. 7. It would be an
interesting direction to transfer the existing linguistic knowledge
to the novel classes using, for example, language-driven
augmentation [79]. We think the discussed limitations could
give a direction for future work.
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