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Abstract

Effective feature fusion of multispectral images plays a crucial role in multi-

spectral object detection. Previous studies have demonstrated the effectiveness

of feature fusion using convolutional neural networks, but these methods are

sensitive to image misalignment due to the inherent deficiency in local-range

feature interaction resulting in the performance degradation. To address this

issue, a novel feature fusion framework of dual cross-attention transformers is

proposed to model global feature interaction and capture complementary in-

formation across modalities simultaneously. This framework enhances the dis-

criminability of object features through the query-guided cross-attention mech-

anism, leading to improved performance. However, stacking multiple trans-

former blocks for feature enhancement incurs a large number of parameters

and high spatial complexity. To handle this, inspired by the human process of

reviewing knowledge, an iterative interaction mechanism is proposed to share

parameters among block-wise multimodal transformers, reducing model com-

plexity and computation cost. The proposed method is general and effective

to be integrated into different detection frameworks and used with different

backbones. Experimental results on KAIST, FLIR, and VEDAI datasets show
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that the proposed method achieves superior performance and faster inference,

making it suitable for various practical scenarios. Code will be available at

https://github.com/chanchanchan97/ICAFusion.

Keywords: Multispectral Object Detection, Cross-Attention, Transformer,

Iterative Feature Fusion

1. INTRODUCTION

Thermal spectrum range image provides a special way to perceive the natu-

ral scenes, which is believed to complement visible spectrum images in computer

vision. Multispectral image feature representation and fusion is a challenging

problem, serving a variety of downstream vision tasks, such as object detection,

semantic segmentation and object tracking. As a fundamental vision task, ob-

ject detection remains a hot topic in both academia and industry, and has made

considerable progress in small object detection [1], face and pedestrian detec-

tion [2] and oriented object detection [3, 4], thanks to the rapid development of

convolutional neural networks. However, these methods are still vulnerable to

environmental factors, such as severe weather conditions and changing illumi-

nation. In order to improve the robustness and accuracy of object detectors in

all-weather conditions, multispectral object detection based on both RGB and

thermal images has become a viable solution and is gaining popularity in recent

academic studies.

Compared with mono-modal object detection, the use of multiple modalities

in object detection can provide a richer visual representation of objects, enabling

them to effectively compensate for each other. As illustrated in Fig. 1(a), RGB

images can provide detailed colors, textures, and contours of objects under good

illumination conditions, but these features may not be visible in thermal images.

In contrast, Fig. 1(b) shows that in poor illumination conditions, such as night

or dark places. It is difficult to distinguish object details and edges from the

background in RGB images, but thermal images can still provide perceptible

contour features due to their unique energy radiation imaging mechanism. These
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(a) (b)

Figure 1: Visualization of objects in paired RGB-thermal images. The first and second rows

are RGB and thermal images respectively. The objects are more perceptible in RGB images

(a), while they are much easier to observe in thermal images (b). The dashed windows are

cropped and enlarged for better visualization.

characteristics indicate the complementary nature of RGB and thermal modal-

ities. As a result, effective feature fusion from different modalities is critical for

multispectral object detection.

In the previous studies, convolution-based feature fusion has been widely

used in current state-of-the-art methods. The pioneering work [5] has explored

different convolutional neural network (CNN) based fusion architectures and has

shown that halfway fusion can lead to desirable performance. Zhang et al. [6]

encode the interaction between different modalities and fuse features adaptively.

Zhang et al. [7] introduce auxiliary pedestrian masks to guide the feature repre-

sentation of inter-modal and intra-modal. Fu et al. [8] introduce the attention

modules to perform the pixel-level feature fusion from the spatial and channel

dimension. However, convolution-based feature fusion only pays attention to

local feature information, and it lacks the ability to model long-range feature

relationships due to the limited receptive field of CNN. To this end, we propose

a novel dual cross-attention transformer fusion method that aggregates the fea-

ture information of RGB and thermal modalities from both local and global

perspectives. Although transformers have the potential to address this limita-

tion of CNNs, we observe that naive usage in feature fusion can lead to massive

feature redundancy, resulting in excessive computational load and memory re-
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quirements. To address these issues, we have carefully studied the structure of

fusion transformers and have attempted to answer two key questions.

How to effectively borrow complementary information from other

modalities ? The performance of multispectral object detection is strongly cor-

related with the quality of feature fusion. The traditional fusion method relied

on feature concatenation or addition, which is susceptible to image misalign-

ment due to the inherent constraint of limited local-range feature interaction.

Inspired by pretraining cross-modal feature representations in vision-language

tasks [9], we have proposed a cross-attention fusion transformer for multispectral

image feature fusion to tackle this issue. This method is designed to capture the

complementary features from other modalities, and specifically tailored to en-

hance both feature branches simultaneously. Additionally, our proposed fusion

transformer naturally benefits from its long-range modeling feature interactions,

which aid in the discovery of discriminative complementing information from

other modalities. Different from the single transformer fusion methods [10] that

concatenate the tokens of each modality and compute the queries, keys, values

from all modality information, our proposed method computes the correlation

across modalities only with queries from the auxiliary modality.

How to efficiently integrate and refine multispectral image fea-

tures ? Transformer-based models are well known in the vision world for their

enormous computational complexity. Besides, most of the existing methods [11]

stack numerous blocks to boost performance, resulting in a surge of computa-

tional cost. However, humans generally repeatedly review the knowledge after

learning new ones, which aids in the retention of what they have learned. In-

spired by this, we have proposed an iterative learning strategy. This method

not only learns global complementary information based on the bidirectional

feature flow interaction between the RGB and thermal branches, but also iter-

atively refines the feature representation of inter-modality and intra-modality

simultaneously, thereby strengthening the discriminative feature information.

In contrast to standard methods that stack multiple blocks, our proposed itera-

tive learning strategy shares parameters in each block and improves the balance
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between model performance and complexity.

To summarize, our main contributions are as follows:

• A novel dual cross-attention feature fusion method is proposed for multi-

spectral object detection, which simultaneously aggregates complementary

information from RGB and thermal images.

• An iterative learning strategy is tailored for efficient multispectral feature

fusion, which further improves the model performance without additional

increase of learnable parameters.

• The proposed feature fusion method is both generalizable and effective,

which can be plugged into different backbones and equipped with different

detection frameworks.

• The proposed CFE/ICFE module can function with different input image

modalities, which provide a feasible solution when one of the modality is

missing or has pool quality.

• The proposed method can achieve the state-of-the-arts results on KAIST

[12], FLIR [13] and VEDAI [14] datasets, while also obtains very fast

inference speed.

The rest of this paper is organized as follows. Section II introduces the re-

lated work published in recent years. Section III describes our proposed method

in detail. The experimental results are given in Section IV and we conclude the

paper in Section V.

2. Related work

2.1. Multispectral Object Detection

Recent multispectral object detection research has made consistent progress,

particularly in multispectral pedestrian detection. Hwang et al.[12] have built

5



the first multispectral pedestrian benchmark and provided a hand-crafted ap-

proach based on the Aggregated Channel Feature (ACF) by extending the in-

frared channel features. To make full use of complementary information between

different modalities, Zhou et al. [15] use the ethos of differential amplifiers to

understand the consistency and difference between distinct modalities by lever-

aging common-mode and differential-mode information. Zhang et al. [16] em-

ploy a method for cyclically fusing and refining multispectral features, which

aims to improve the consistency of both modalities. To capture the discrimina-

tive object features in the multispectral images, MSDS-RCNN [17] is the first

work that uses semantic segmentation to guide multispectral object detection

via multi-task learning. Shen et al. [18] propose a mask-guided mutual atten-

tion module and score fusion module based on the anchor-free detector, which

achieves the trade-off between accuracy and speed. Taking into account the

variation in lighting between day and night, Li et al. [19] have developed an

Illumination-aware Network (IAN) that predicts an illumination weight from

RGB images via a Gate Unit and weights the results from the RGB and ther-

mal branches. With the goal of addressing the misalignment problem between

two modalities, Zhang et al. [20] utilize a Region Feature Alignment (RFA)

module to anticipate feature offset between RGB and thermal pictures. Kim et

al. [21] take into account the model’s many uncertainties and provided a loss

function to direct the visual representation of two modalities in the feature-level

to be similar. To tackle the issue that the existing methods lack the ability to

model long-range dependencies across modalities, CFT [10] and LGADet [22]

are proposed to improve the quality of feature fusion with local and global atten-

tion mechanisms. However, these methods only simply integrate Transformer

or non-local network into detection framework without taking full advantage of

complementary information between global features. In this paper, we propose

a novel iterative cross-attention interaction method that fully utilizes both local

and global feature information between different modalities.
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2.2. Attention-based methods

Attention mechanism originates from research on human vision, which is

widely used in the computer vision field. SENet [23] proposes a simple yet

effective structure to learn the weights between different channels with fully

connected network. Inspired by this, SKNet [24] proposes a dynamic selection

mechanism that allows each neuron to adaptively adjust its receptive field size

based on multiple scales of input information. CBAM [25] proposes a lightweight

and general module to adaptively refine the features in both channel and spa-

tial dimensions. ECANet [26] proposes a local cross-channel interaction strategy

with an adaptive one-dimensional convolution, which only involves a handful of

parameters while bringing clear performance gain. More recently, CANet [27] is

proposed with an effective class-specific attention encoding module that learns

a class-specific dictionary to encode class attention maps. In this paper, we

propose a cross-modal attention module which leverages the complementary

information from auxiliary modality to enhance the mono-modality feature rep-

resentation.

2.3. Transformer for Multimodal Learning

Transformer has been applied to multimodal tasks as a result of its signifi-

cant performance improvement in NLP and CV. Multi-Modality Cross Attention

(MMCA) [28] is proposed for image and text matching, which jointly models the

intra-modal and inter-modal relationships between image and sentence in a uni-

fied depth model. TransFusion [29] provides a robust solution for LiDAR-camera

fusion with a soft-association mechanism to handle inferior image conditions.

Botach et al. [30] propose an architecture of multimodal tracking transformer,

which models referring video object segmentation task as sequence prediction

problems. A token-based multi-task decoder [31] for RGB-D salient object de-

tection method is developed by introducing task-related tokens and a novel

patch-task-attention mechanism. Li et al. [32] propose a Transformer-based

RGB-D egocentric action recognition framework and model the temporal struc-

ture of the data from different modalities with self-attention. Xiao et al. [33]
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Figure 2: Overview of our multispectral object detection framework. (The upper and bottom

branch are the RGB and thermal feature extraction module, C1∼C5 represent different scales

of feature maps, DMFF module is our proposed feature fusion method, Neck module is the

multiscale feature aggregation network, and Head module outputs the final detection results.)

have designed five attribute-specifc fusion branches to integrate RGB and ther-

mal features under various challenges of RGB-T tracking, and strengthened the

aggregated feature and modality-specifc features with an enhancement fusion

transformer. These studies have proved that Transformer is effective in various

multimodal tasks. In this paper, we introduce Transformer into multispectral

object detection that aims to better harvest the complementary information

between RGB and thermal modality from a global perspective.

3. The proposed method

3.1. Architecture

As illustrated in Fig. 2, the proposed method is a dual-branch backbone net-

work, which is tailored for feature extraction from RGB-thermal image pairs.

Our method mainly comprises of three stages: the mono-modal feature ex-

traction, the dual-modal feature fusion and the detection neck and head. The

mono-modal feature extraction is firstly used for RGB and thermal images in-

dependently, which can be formulated in Eq. 1.

F i
R = Ψbackbone(IR;θR),F

i
T = Ψbackbone(IT ;θT ) (1)

where F i
R, F

i
T ∈ RW×H×C denote the feature maps from the i-th layer (i=3, 4,

5) of the RGB and thermal branch respectively. H, W and C denote height,
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width and channel number of feature maps. IR, IT ∈ RW×H×C represent

the input RGB and thermal images, Ψbackbone denotes the feature extraction

function with parameters θR and θT for RGB and thermal branch respectively.

In generic object detection, VGG16 [34], ResNet [35] and CSPDarkNet [36]

are commonly used as function Ψbackbone. In the feature extraction stage, the

multi-scale features are commonly utilized to capture objects with different size.

Secondly, given feature maps of F i
R and F i

T , cross-modal feature fusion is

required to aggregate features from different branches in multispectral object

detection, which can be defined in Eq. 2.

F i
R+T = Φfusion(F

i
R;F

i
T ;θf ) (2)

where F i
R+T ∈ RW×H×C denotes the fused features in the i-th layer. Φfusion(·)

denotes the feature fusion function with parameter θf . Given that previous

researches [5, 19] have explored different fusion architectures and validated that

halfway fusion outperforms the other fusion methods, we use halfway fusion

as the default setting and fuse the multimodal features from convolution layer

C3∼C5 as shown in Fig. 2. In general, addition operation or NIN fusion [17] 1 is

commonly used as feature fusion function Φfusion(·). In this paper, a dual cross-

attention feature fusion transformer is proposed to model Φfusion(·), which will

be described in section 3.2.

Finally, the feature maps from {F i
R+T }Li=1 are fed to the detector neck for

multi-scale feature fusion, and then delivered to the detector head for subsequent

classification and regression which is formulated in Eq. 3.

[Dcls,Dbbox] = ϕhead(ϕneck({F i
R+T }Li=1);θh) (3)

where ϕneck and ϕhead represent the multi-scale feature aggregation and detec-

tion head function. FPN [37] and PANet [38] is commonly utilized as function

ϕneck to enhance the semantic expression and localization ability of features,

1Φfusion = conv1×1([FR,F T ]), where conv1×1 is a 1× 1 convolution, [·] denotes the con-

catenate operation.
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Figure 3: Illustration of the proposed DMFF module.(In the upper row, the proposed DMFF

module comprised of Spatial Feature Shrinking (SFS) module, Iterative Cross-modal Feature

Enhancement (ICFE) module and the bimodal feature fusion module with NIN fusion. The

SFS module compresses the size of the feature map for subsequent CFE module, the ICFE

module refines the cross-modal features by dual CFE modules, and the bimodal feature fusion

module conducts the local feature fusion from the output of ICFE module. The bottom row

illustrates the details of the CFE module for the enhancement of thermal modality.)

while ϕhead acts as a role of classification and bounding box regression with

parameter θh, such as detection head of YOLO [36] and FCOS [39]. For a fair

comparison, we adopt these default setting of detection necks and heads in the

original paper.

3.2. Dual-modal Feature Fusion (DMFF)

Fig. 3 illustrates the structure of our Dual-modal Feature Fusion (DMFF)

module, which mainly contains three components: the Spatial Feature Shrinking

(SFS) module, the Iterative Cross-modal Feature Enhancement (ICFE) module,

and the bimodal feature fusion module with NIN fusion. The modules will be

detailed in the following sections.

3.2.1. Cross-modal Feature Enhancement (CFE)

Different from the previous studies which capture the local features of dif-

ferent modalities, the proposed CFE module enables mono-modal to learn more

complementary information from auxiliary modality in a global perspective.
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The proposed CFE module not only retrieves the complementary relationship

between the RGB and thermal modality, but also overcome the deficiency in

modeling the long-range dependencies of cross-modal features.

Given input feature maps FR and F T ∈ RH×W×C2, we first flatten each

feature map into a set of tokens and add a learnable position embedding, which is

a trainable parameter of dimensionHW×C that encodes the spatial information

between different tokens. After that, we can obtain a set of tokens TR,T T ∈

RHW×C with position embeddings as the input of CFE module. Since the

RGB-thermal image pairs are usually not perfectly aligned, we employ dual

CFE modules to harvest the complementary information for the enhancement

of the RGB and thermal features respectively. The parameters are not shared

between the two CFE modules. In Fig. 3(bottom), we only illustrate the CFE

module of thermal branch for clarity, which is formulated in Eq. 4.

T̂T = FCFE−T ({TR,T T }) (4)

where TR and T T denotes the RGB and thermal feature tokens input to the

CFE module. T̂T indicates the enhanced thermal features with the CFE module.

FCFE−T (·) denotes our proposed CFE module for thermal branches.

The details of the CFE module are as follows. Firstly, the tokens of thermal

modality T T are projected to two separate matrices V T ,KT ∈ RHW×C to

compute a set of values and keys (Eq. 5). And then, the tokens of RGB modality

TR are projected to another separate matrix QR ∈ RHW×C to compute a set

of queries (Eq. 5).

V T = T TW
V ,KT = T TW

K ,QR = TRW
Q (5)

where W V , WK and WQ ∈ RC×C denote the weight matrices.

Secondly, the correlation matrix is built via dot-product operation, followed

by a softmax function normalizes the correlation scores, which represents the

2The vector FR and F T represent the feature maps from the i-th layer of different branches,

similar to that in Eq. 1. For simplicity, we remove the superscript i.
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similarity between different features of RGB and thermal modality. After that,

the vector ZT is obtained by multiplying the correlation matrix with vector

V T (Eq. 6), which refines the RGB features by leveraging the similarity across

modalities.

ZT = softmax(
QRKT

T

√
DK

) · V T (6)

T ′
T = α ·ZTW

O + β · TT (7)

T̂T = γ · T ′
T + δ · FFN(T ′

T ) (8)

Besides, we also employ multi-head cross-attention mechanism with 8 parallel

heads in this paper, which enables the model to jointly understand the correla-

tion between RGB and thermal features from different perspectives.

Thirdly, the vector ZT is reprojected back to the original space through

nonlinear transformation, and added to the input sequence through a residual

connection [35] (Eq. 7), where WO ∈ RC×C denotes a output weight matrix

before FFN layer.

Finally, the feed-forward network (FFN) with two fully-connected layers as

that in the standard Transformer [11] is applied to further refine the global

information to improve the robustness and accuracy of the model and output

the enhanced features T̂T (Eq. 8).

Inspired by [40], we apply learnable coefficients on each branch of residual

connection in Eq. 7 and Eq. 8, adaptively learning the data from different

branches to achieve performance gain, where α, β, γ, δ are the learnable param-

eters initialized as 1 during training.

Similar to the thermal branch, the other CFE module is also utilized to

enhance the features of RGB branch, which can be formulated in Eq. 9:

T̂R = FCFE−R({TR,T T }) (9)

It is worth to mention that CFT [10] is also a transformer-based method,

which directly concatenates the tokens of each modality and computes the cor-

relation across modalities with a single transformer encoder. Differently, we

employ two improved cross-attention transformers to compute the correlation
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across modalities only with queries from auxiliary modality, which have lower

computational complexity and fewer parameters. The detailed computational

complexity comparison between CFT and our method is given in Tab. 1.

Table 1: The computational complexity comparison between CFT and our proposed

method.(T is the length of tokens, while C is the channels of token.)

Step CFT Ours

QKT O(4T 2 × C) O(2T 2 × C)

softmax( QKT√
DK

) O(4T 2) O(2T 2)

softmax( QKT√
DK

) · V O(4T 2 × C) O(2T 2 × C)

FFN O(16T × C2) O(8T × C2)

Total O(4T 2 × C + 16T × C2) O(2T 2 × C + 16T × C2)

3.2.2. Spatial Feature Shrinking (SFS)

Although the initial feature maps used in fusion are downsampled using

backbone, the model’s parameters and memory cost can still much surpass the

operating requirements of standard processors. To lower down the subsequent

computational cost of our module with less information loss in the feature maps,

we apply a SFS module before the CFE module that compresses the feature

maps. In this module, we attempt two different methods with convolution and

pooling operations, and the details are as follows.

Convolution operation. We first design a method for dimension reduction

based on the convolution operation, as shown in Eq 10. Specifically, we trans-

form the spatial information of features to the channel dimension by reshaping

the the dimensions of feature maps, and then compress the channel dimension

with 1× 1 convolution operation.

Fconv = conv1×1(Reshape(F )) (10)

where F denotes the input feature maps. Fconv denotes the compressed feature

maps by 1× 1 convolution.

13



Pooling operation. Average pooling and max pooling are two conven-

tional pooling methods, which commonly used to reduce the spatial dimension

of feature maps without additional parameters. Average pooling computes the

mean of all the elements in the pooling region and retains the background in-

formation in the images, while max pooling considers the maximum element in

the pooling region and mainly retains the texture features of objects. Thus,

we employ a method aggregating average pooling and max pooling adaptively

inspired from mixed pooling [41], as shown in Eq. 12.

Fa = AvgPooling(F , S), Fm = MaxPooling(F , S) (11)

Fo = λ · Fa + (1− λ) · Fm (12)

where F denotes the input feature maps. S denotes scaling factors of feature

maps. Fa and Fm denote the compressed feature maps via AvgPooling(·) and

MaxPooling(·) respectively. λ denotes the weight between 0 and 1, which is a

learnable parameter in this paper.

Compared with the original feature maps of dimension H × W × C, the

compressed feature maps have dimensions (H × W )/S × C, resulting in the

dimension of tokens reduced from HW×C to HW/S×C. Thus, the dimensions

of keys, queries and values in the CFE module become K,Q, V ∈ RHW/S×C .

Finally, the total computational complexity is reduced from O(W 2H2 × C +

8WH × C2) to O(W 2H2/S2 × C + 8WH/S × C2).

3.2.3. Iterative Cross-modal Feature Enhancement (ICFE)

For the sake of strengthening the memory of complementary information

from inter-modal and intra-modal features to further improve the model perfor-

mance, we introduce an iterative learning strategy based on the CFE module and

dubbed as ICFE module. As illustrated in Fig. 4 (a), the traditional methods

generally improve the performance by stacking serveral modules, however this

strategy of dramatically expanding the depth of the model may not only increase

the parameters significantly, but also lead to overfitting. Instead, our proposed
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(a)

(b)

Figure 4: Visualization of difference between the traditional method and ours. (a) Traditional

method stacks multiple blocks in series, and parameters are not shared in each block. (b) Our

proposed ICFE module iteratively refines the features across modalities, and parameters are

shared in each block. Block in the image denotes our proposed dual CFE modules.

iterative learning strategy deepens the depth of the network over multiple it-

erations with shared parameters, and progressively refines the complementary

information across modalities without increasing the number of parameters, as

shown in Fig. 4 (b). Taking n iterations as an example, it can be simplified as

follows (Eq. 13):

{T̂ n
R , T̂

n
T } = FICFE({TR,T T }, n)

= FCFE(· · · FCFE︸ ︷︷ ︸
n

({TR,T T }))
(13)

where {T̂ n
R , T̂

n
T } denotes the output sequence obtained after n iterative oper-

ations, {TR,T T } denotes the input sequence of the ICFE module. FICFE(·)

denotes our proposed ICFE module, which integrates two CFE modules for RGB

and thermal branch respectively. The output of each iterative operation is used

as the input of the next iterative operation, and parameters are shared between

each iterative operation. Besides, The output sequences T̂ n
R and T̂ n

T from ICFE

module are first converted into the feature maps, and then re-calibrated to the

original size of feature map with bilinear interpolation.
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Figure 5: Different fusion modes of CFE module. (a) Single CFE module for RGB modality.

(b) Single CFE module for thermal modality. (c) Dual CFE module (shared) for both RGB

and thermal modality. (d) Dual CFE modules for both RGB and thermal modality. (e)

Baseline feature fusion for both RGB and thermal modality. (f) Detection head from all these

output features.

3.2.4. Fusion Modes for Detection Heads

Figure 3 shows how our proposed CFE module can work with different in-

put modalities. We have investigated four alternative fusion modes to validate

the effectiveness of the CFE module, as shown in Fig. 5. Only a single modality

feature is outputted in Fig. 5 (a) and (b), forcing the CFE-R and CFE-T module

to collect complimentary features from thermal and RGB image features respec-

tively. In addition, we have also explored two different work modes with dual

CFE modules, which used shared and unshared parameters, as shown in Fig. 5

(c) and (d). Fig. 5 (e) illustrates the baseline feature fusion method with NIN

fusion method. Finally, all these fused feature maps (Fi, F
′

i , i = {R, T, fused})

will be fed into the detection head as shown in Fig. 5 (f). It’s noteworthy to

see that our method naturally favors both dual and single image modalities.

Thanks to the cross-attention mechanism, even if one of the input modalities is

missing or the image quality is poor, our method can still produce satisfactory

results. The detailed experimental study which can support our assertion will

be postponed in Section 4.3.
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4. Experiments

4.1. Datasets and Evaluation metrics

KAIST Dataset. KAIST [12] is a popular multispectral pedestrian detec-

tion benchmark, which involves scenes with different illuminations. There are

8,963 and 2,252 weakly-aligned image pairs with the resolution of 640× 512 for

training [15] and testing respectively. The performance evaluation on KAIST

dataset is typically in accordance with the metric log-average miss rate [42]. For

more accurate annotations, we use the sanitized annotations for training [20]

and testing [5].

FLIR Dataset. FLIR [13] is a challenging multispectral object detection

dataset including daytime and night scenes. There are 5,142 aligned multispec-

tral image pairs, of which 4,129 are used for training and 1,013 for testing. It

contains three classes of objects, namely ”person”, ”car” and ”bicycle”. Since

the images are misaligned in the original dataset, we select the FLIR-aligned

version [16] for comparisons in our experiment.

VEDAI Dataset. VEDAI [14] is a public dataset for small target detection

in aerial imagery, which contains more than 3,700 annotated targets in 1,268

RGB-infrared image pairs. There are 9 vehicle categories in this dataset. We

use the images with size of 1024 × 1024 for training and testing, and convert

the annotations to the horizontal-box format with [43] as reference since the

original version is annotated as a rotating box with four-corner coordinates.

Log-average Miss Rate. The log-average miss rate (MR−2) [42] is used

for the evaluation on KAIST dataset. It represents the average miss rate under

9 FPPI values, which are sampled uniformly in the logarithmic interval [10−2,1].

The lower values of MR−2, the better performance.

Average Precision. Average Precision (AP) is a common evaluation met-

ric for object detection. The positive and negative samples should be divided

according to the the correctness of classification and Intersection over Union

(IoU) threshold. Usually, 0.5 is used as the IoU threshold. In general, mean
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Average Precision (mAP) represents the average of AP under all categories. Dif-

ferent from MR−2, the higher values of AP and mAP, the better performance.

4.2. Implementation Details

Our method is implemented using PyTorch 1.7.1 framework on a Ubuntu

18.04 server with CPU i7-9700, 64G Memory and Nvidia RTX 3090 24G GPU.

The training phase takes 60 epochs with the batch size of 8. The SGD optimizer

is used with the initial learning rate of 1.0×10−2 and the momentum of 0.937. In

addition, the weight decay factor is 0.0005 and the learning rate decay method

is cosine annealing. The input size of images are 640 × 640 for training and

640 × 512 for testing. Besides, mosaic and random flipping is used for data

augmentation. The loss function is utilized following the detectors of YOLOv5

and FCOS in the orignal paper. In the ablation studies, we use YOLOv5 with

NIN fusion [17] as default baseline for comparison.

4.3. Ablation Study

4.3.1. Effects of learnable parameters applied on residual connection

Given that Shen et al. [40] has proved learning parameters applied on both

branches is slightly better than that on the single branch, we evaluate the effec-

tiveness of learnable parameters applied on both branches of residual connection

in our proposed CFE module. The experimental results are given in Table. 2.

Compared with the CFE module without learnable parameters, adding learnable

parameters on both branches reduces MR from 7.86% to 7.63% on the KAIST

dataset, and improves mAP50 from 77.1% to 77.5% on the FLIR dataset. As

a result, the learnable parameters applied on both branches of residual connec-

tion are effective to achieve performance gain without significantly increasing

the computational cost in our CFE module.

4.3.2. Effects of CFE module for mono-modality and dual-modality

The experimental results of CFE module for mono-modality on both KAIST

and FLIR datasets are presented in Tab. 3, which is separated into three groups
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Table 2: Effects of learnable parameters in CFE module on both KAIST and FLIR datasets.

(LP denotes learning parameters applied on both branches.)

Method LP
KAIST FLIR

Params(M)
MR(%)↓ mAP50(%)↑

Baseline+CFE
✓

7.86

7.63(-0.23)

77.1

77.5(+0.4)

120.2

120.2

acoording to the output modality. In the first group (first row), we apply the

CFE module to enhance RGB features leveraging the compensatory information

from the thermal images and only output the enhanced RGB features for the

subsequent detection, as shown in Fig. 5(a). Our dual branch method with

CFE module outperforms the RGB-only single branch method by 0.65% and

0.90% on the KAIST and FLIR dataset respectively. Similarly, in the second

group (second row), the enhanced thermal feature with CFE module in Fig.

5(b) achieves a gain of 0.59% and 1.20% over the thermal-only detector on the

KAIST and FLIR dataset respectively. The top two rows in Tab. 3 indicate

that the quality of RGB features on the KAIST dataset is superior to that of

thermal features for detection, whereas thermal features on the FLIR dataset are

superior to RGB features in quality. This might be caused by the properties of

dataset, the camera model and other elements. Thus, the dual CFE modules are

applied to RGB and thermal branch to collect the complementary information

from each other, and fused features from enhanced RGB and thermal modality

are utilized for the subsequent detection in the last group (last row), which

outperforms the baseline method by 0.70% and 1.00% on the KAIST and FLIR

dataset respectively. As a result, the experimental findings presented above

demonstrate the effectiveness of our proposed CFE module, which favors both

RGB and thermal-based global feature fusion.

4.3.3. Effects of the number of stacked modules

In this section, we provide the mAP values for different number of stacked

CFE modules on FLIR dataset. Tab. 4 shows that as the number of stacked
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Table 3: Effects of CFE module for each modality on both KAIST and FLIR datasets.(The

lower the MR, the better. The higher mAP, the better performance. In the third column, the

letter (a)∼(f) denote the fusion mode in Fig. 5)

Input Modality Output Feature Method
KAIST FLIR

MR(%)↓ mAP50(%)↑

RGB

RGB+Thermal

FR

FR

Baseline-RGB (f)

Baseline+CFE (a)

18.39

17.74(-0.65)

67.8

68.7(+0.9)

Thermal

RGB+Thermal

FT

FT

Baseline-Thermal (f)

Baseline+CFE (b)

18.94

18.35(-0.59)

73.9

75.1(+1.2)

RGB+Thermal

RGB+Thermal

RGB+Thermal

Ffused

Ffused

Ffused

Baseline (e)

Baseline+CFE (c)

Baseline+CFE (d)

8.33

10.78(+2.45)

7.63(-0.70)

76.5

76.0(-0.5)

77.5(+1.0)

Table 4: Comparison with different number of stacked modules on the FLIR dataset.

Number mAP50(%)↑ Mem(M) Params(M) FPS(Hz)

1

2

4

6

8

10

77.5

77.6

77.4

77.8

77.9

78.2

528.5

686.0

1037.5

1795.5

1747.0

2100.5

120.2

164.3

252.5

340.7

428.9

517.1

40.5

31.9

26.9

22.9

19.6

17.3

modules increases to 10, the parameter numbers and GPU memory increases

by more than 4× times, while the running speed decreases dramatically from

40.5 Hz to 17.3 Hz with a marginal benefit of 0.70% in terms of mAP. The

previous studies [44, 45] find that the attention maps across adjacent layers

of vision transformer exhibit very high similarity. As shown in Fig. 6(right),

after visualizing the feature maps of different stacked numbers, we also find this

phenomenon in our experiment. So, we think that the high similarity of feature

maps can result in marginal performance improvement. As a result, stacking

blocks in series is not an efficient solution for feature fusion.

4.3.4. Effects of different number of iterations

The experimental results of varying number of iterations on the KAIST and

FLIR datasets are shown in Tab. 5. With only one iteration, the iterative
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Figure 6: Visualization results of CFE module with different stacking number and ICFE

module with different iteration number on the FLIR dataset. The top row is an image pair

at daytime, and the bottom row is an example at night. The 1st column is the input image;

the 2nd ∼ 5th columns are feature maps from iterative learning; the 6th ∼ 9th columns are

feature maps from different numbers of stacking.

learning method reduces MR from 7.63% to 7.17% on the KAIST dataset and

improves mAP50 from 77.50% to 79.20% on the FLIR dataset. Interestingly, we

find that extra iterations do not boost performance, and one iteration achieves

the best results in our experiment. As shown in Fig. 6(middle), we also vi-

sualize the feature maps of ICFE modules. As the number of iterations rises,

we find that the interaction between different modality features results in nega-

tive effects and the background information are gradually enhanced. We think

that the enhanced interference of background noises may lead to performance

degradation. Furthermore, since the iterative learning technique uses shared

parameters, more iterations will not incur extra parameters or memory costs.

Comparing the experimental results in Tab. 4 and Tab. 5, we can infer

that interative learning is more effective for cross-modal feature interaction and

also outperforms the stacking method. Besides, our method has a much faster

inference speed of 36.7 FPS than the stacking method.

4.3.5. Effects of different spatial feature shrinking methods

We evaluate multiple existing approaches in order to find a reliable down-

sampling method with less loss of feature information, and the experiment re-
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Table 5: Comparison with different number of iterations.

Number
KAIST FLIR

Params(M) Mem(M) FPS(Hz)
MR(%) mAP50(%)

0 7.63 77.5 120.2 528.5 40.5

1 7.17 79.2 120.2 528.5 36.7

2 7.87 76.9 120.2 528.5 32.8

3 7.87 77.5 120.2 528.5 29.6

sults are shown in Tab. 6. In comparison to the other down-sampling ap-

proaches, mixed pooling produces best results, with MR of 7.17% and mAP50

of 79.20% on the KAIST and FLIR datasets, respectively. As a result, we use

mixed pooling to compress the feature maps and reduce computational com-

plexity in this paper.

Table 6: Comparison with different spatial feature shrinking methods.

Methods
KAIST FLIR

MR(%) mAP50(%)

Average Pooling 7.58 77.0

Max Pooling 7.94 78.4

Ours-Conv 7.42 78.6

Ours-Pool 7.17 79.2

4.3.6. Discussion on Different Input Modalities

In this section, we have also conducted four groups of experiments in order

to validate the effectiveness of using different input modalities for CFE, and

the experimental results are shown in Tab. 7. The first group (row 1 ∼ 2)

demonstrates the experimental result in the KAIST and FLIR datasets for the

YOLOv5 detector with a single input image modality (RGB or thermal). In

the second group (row 3 ∼ 5), we provide the results of the YOLOv5+NIN

method with one or two input image modalities (RGB or RGB+Thermal). It is

clear to observe that the performance of the YOLOv5+NIN method with two

different input modalities (row 3) is superior to the YOLOv5 method (row 1 and

2) by a large margin. However, the YOLOv5+NIN method will bring a large
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performance degradation when using the same two modalities (row 4 ∼ 5) as

input. Furthermore, we also conducts experiments with our proposed method

(YOLOv5+ICFE) in the third group (row 6 ∼ 9). It is surprisingly found

that using the same two modality images can still achieve competitive results

comparing to the those with both RGB and thermal images. It indicates that

our method can provide discriminative mono-modal features for the subsequent

detection stage with a slight performance degradation as shown in row 7 and 9

on both KAIST and FLIR datasets. This is beneficial to the scenarios where

one of the input modalities is missing or the image quality is poor. In the last

group (row 10 ∼ 12), we also have observed significant drop in the detection

performance of our proposed method (YOLOv5+ICFE+NIN) due to the append

of the NIN module to the output of the dual CFE modules. The observation

from both row 4 ∼ 5 and 11 ∼ 12 indicates that NIN is harmful to both

the YOLOv5+NIN and our proposed method when only one input modality is

accessible.

Table 7: Comparison with different input modalities. (R denotes RGB, T denotes Thermal.

R+T represents the input with dual modalities, while R+R or T+T denotes input with single

modality and ignores the other modality. In the third column, the letter (a)∼(f) denote the

fusion mode in Fig. 5)

Number Methods Input Output
KAIST FLIR

MR(%)↓ mAP50(%)↑

1

2
YOLOv5

R (f)

T (f)

FR

FT

18.39

18.94

67.8

73.9

3

4

5

YOLOv5+NIN

R+T (e)

R+R (e)

T+T (e)

Ffused

Ffused

Ffused

8.33

43.79(+35.46)

43.79(+35.46)

76.5

57.1(-19.4)

65.3(-11.2)

6

7

8

9

YOLOv5+ICFE

R+T (a)

R+R (a)

R+T (b)

T+T (b)

FR

FR

FT

FT

17.74

20.50(+2.76)

18.35

20.07(+1.72)

68.7

66.3(-2.4)

75.1

74.2(-0.9)

10

11

12

YOLOv5+ICFE+NIN

R+T (d)

R+R (d)

T+T (d)

Ffused

Ffused

Ffused

7.17

31.23(+23.06)

37.42(+29.79)

79.2

57.8(-21.4)

66.0(-13.2)
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4.3.7. Comparisons with different backbones and heads

In order to evaluate the effectiveness and generality of our proposed DMFF

module, we first conduct the experiments on YOLOv5 detector with three dif-

ferent backbones: VGG16, ResNet50 and CSPDarkNet53. As shown in Tab.

8, the results on the KAIST dataset show that our approach outperforms the

baseline method by 0.66%, 0.97% and 1.16% on VGG16, ResNet50 and CSP-

Darknet53 respectively. The results on the FLIR dataset demonstrate that our

approach also achieves a gain of 0.50%, 1.50% and 2.70% over the baseline

method on VGG16, ResNet50 and CSPDarknet53 respectively. As a result, we

conclude that our proposed DMFF module is applicable to various backbones

and is effective under different evaluation metrics.

We also evaluate on the FCOS detector to further examine the effectiveness

and generality of our proposed DMFF module. The experimental results are

given in Tab. 8. Compared with the baseline method, FCOS with DMFF

module reduces MR from 14.03% to 12.96% with a gain of 1.07% on the KAIST

dataset, and improves mAP50 from 69.80% to 71.70% with a gain of 1.90% on

the FLIR dataset. The above results indicate that our proposed DMFF module

works wells for both anchor-base and anchor-free detectors. Finally, it is clear

to find that YOLOv5 detector with CSPDarknet53 backbone achieves the best

performance with a fair number of parameters when compared to the other

backbones and detectors.

Table 8: Comparison with different detectors and backbones.

Detector Type Backbone Method
KAIST FLIR

Params(M) FPS(Hz)
MR(%)↓ mAP50(%)↑

YOLOv5 Anchor-based

VGG16
Baseline

Ours

16.12

15.46(-0.66)

69.3

69.8(+0.5)

42.67

62.17

72.67

54.48

ResNet50
Baseline

Ours

13.65

12.68(-0.97)

70.5

72.0(+1.5)

136.13

313.76

31.38

31.44

CSPDarkNet53
Baseline

Ours

8.33

7.17(-1.16)

76.5

79.2(+2.7)

75.44

120.21

50.00

38.46

FCOS Anchor-free ResNet50
Baseline

Ours

14.03

12.96(-1.07)

69.8

71.7(+1.9)

58.86

65.24

19.21

17.32
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Table 9: Comparsion on the KAIST dataset. (Bold numbers represent the best result in

each column. Methods with suffix † and suffix ‡ use ResNet50 and CSPDarkNet53 backbone

respectively, while the others use VGG16 as defaults.)

Method
Miss Rate(%)↓

FPS(Hz) Platform
All Day Night

ACF+T+THOG [12] 47.32 42.65 56.18 - -

AR-CNN [20] 10.22 10.80 9.02 8.33 TITAN X

CIANet [6] 14.13 14.78 11.14 16.67 GTX 1080Ti

FusionRPN+BF [46] 18.29 19.57 16.27 - -

HalfwayFusion [5] 25.77 24.91 26.67 2.33 TITAN X

IAF-RCNN [19] 15.57 14.81 16.70 4.76 TITAN X

IATDNN-IAMSS [47] 14.46 14.18 15.28 4.00 TITAN X

MBNet [15]† 8.40 8.62 8.27 14.29 GTX 1080Ti

MLPD [48] 7.58 7.96 6.95 - -

MSDS-RCNN [17] 8.23 8.83 6.75 4.55 GTX 1080Ti

Ours‡ 7.17 6.82 7.85 38.46 RTX 3090

4.4. Comparison with State-of-the-art Methods

KAIST Dataset. Tab. 9 shows the comparison of our method with existing

methods on the KAIST dataset. It can be observed that our approach surpasses

most of the state-of-the-art methods in the settings of reasonable, and obtains

the lowest miss rate under daytime subset. Furthermore, Tab. 9 also illustrates

that our approach runs at 38.46 Hz on the RTX 3090 platform. As a result,

our method is beneficial for scenarios of object detection where high detection

speed is required.

FLIR Dataset. Tab. 10 shows the comparison of our method with ex-

isting methods on the FLIR dataset. It is clear to observe that our approach

outperforms all the existing methods and achieves state-of-the-art performance.

Specifically, our method achieves 79.20%, 36.9% and 41.4% in terms of mAP50,

mAP75 and mAP metrics. Furthermore, our method achieves 66.90%, 89.00%

and 81.60% for the categories of Bicycle, Car and Person respectively. Besides,

we also employ the CFT baseline with our proposed modules (Ours*) for a fair

comparison. It is clear to see that our method outperforms Ours* in terms of

all mAP50, mAP75 and mAP metrics.

25



Table 10: Comparison on the FLIR Dataset.

Method
AP50(%)

mAP50(%) mAP75(%) mAP(%)
Bicycle Car Person

MMTOD-CG [49] 50.26 70.63 63.31 61.4 - -

MMTOD-UNIT [49] 49.43 70.72 64.47 61.5 - -

GAFF [7] - - - 72.9 30.9 37.3

CFR [16] 57.77 84.91 74.49 72.4 - -

BU-ATT [50]† 56.10 87.00 76.10 73.1 - -

BU-LTT [50]† 57.40 86.50 75.60 73.2 - -

CFT [10]‡ 61.40 89.50 84.10 78.3 35.5 40.2

Ours*‡ 65.20 90.20 80.40 78.6 35.8 40.8

Ours‡ 66.90 89.00 81.60 79.2 36.9 41.4

Table 11: Comparison on the VEDAI Dataset.

Method mAP50(%) mAP(%)

Input Fusion [43]‡ 74.40 45.65

Mid Fusion [43]‡ 74.80 46.30

SuperYOLO [51]‡ 73.61 -

Ours(baseline)‡ 74.66 44.09

Ours‡ 76.62 44.93

VEDAI Dataset. The experimental comparisons on the VEDAI dataset

are given in Tab. 11. Although we do not apply any tricks for small object

detection, our method still outperforms the baseline method by 1.96% over

mAP, and achieves competitive results with a mAP of 76.62% among the existing

methods. However, under the more strict evaluation metrics mAP, our method

is 0.28%, 1.37% lower comparing to the Input Fusion and Mid Fusion method

respectively.

4.5. Qualitative Analysis

Fig. 7 illustrate sample visualization results of attention maps during day-

time and nighttime on the KAIST and FLIR datasets. As shown in Fig. 7(a),

it’s difficult to detect the pedestrians under poor illumination conditions in the

RGB images with naked eyes, however our method can still identify and locate

the objects by aggregating RGB and thermal images. Besides, the complex ur-
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ban traffic scenes mixed with pedestrians and vehicles bring great challenges,

whereas our method is able to distinguish between different categories of ob-

jects with the assistance of auxiliary modality. Fig. 7(b) illustrate that the

baseline method shows interest in different areas of the input images, resulting

in more false positives. However, our method can exploit the global spatial

location information and the correlation between different objects to capture

highly-discriminative features, as shown in Fig. 7(c).

Figure 7: Visualization results of attention maps on KAIST and FLIR dataset. From left to

right column: ground truth in RGB and thermal images, heatmaps of NIN fusion [17] method

(Baseline), and our proposed method.

4.6. Limitations

In this section, we have provided some the failure cases and analyzed the

limitations of our proposed method. Fig. 8 (a) illustrates that our model

misidentifies the traffic signs or trees as person in some scenarios. In our opinion,

the main reasons for the false positives are the visual appearance similarity to

the traffic signs or trees, and low image quality of the KAIST dataset. In

27



Fig. 8 (b), the occlusion between two overlapping pedestrians can also leads

to false negatives on the FLIR dataset. Furthermore, Fig. 8 (c) shows that

our model may misidentify some devices mounted on rooftops as cars on the

VEDAI dataset because they have similar shapes and colors when viewed from

a bird’s-eye perspective.

Figure 8: Failure cases on the KAIST, FLIR and VEDAI datasets. From left to right columns

are failure cases on the KAIST dataset (a), FLIR dataset (b) and VEDAI dataset (c). The

red triangles indicate the false positives or false negatives in the images. Zoom in for more

details.

5. Conclusions

In this paper, we proposed a novel cross-modal feature fusion framework for

multispectral object detection, which addresses the issue that exsiting methods

mainly focus on local feature correlations between different modalities. More

particularly, the cross-modal feature enhancement module is proposed to en-

hance the feature representation of mono-modality by leveraging the global in-

formation from complementary modality. Furthermore, we introduce iterative

learning strategy to refine the complementary information, which improves the

model performance without adding extra parameters. In terms of detection

accuracy and running speed, our proposed method outperforms the other state-

of-the-art methods on the KAIST, FLIR and VEDAI datasets. In the future,

we intent to further explore the efficient and lightweight cross-modal feature

fusion framework, and extent our approach to other multimodal tasks.
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