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• A novel 3D face denoising network based on the implicit neural repre-

sentation

• Positonal encoding and multi-scale decoding fusion strategy help to

denoise

• A lightweight fusion network achieving high face recognition perfor-

mance
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Abstract

With the increasing availability of consumer depth sensors, 3D face recogni-

tion (FR) has attracted more and more attention. However, the data acquired

by these sensors are often coarse and noisy, making them impractical to use

directly. In this paper, we introduce an innovative Depth map denoising net-

work (DMDNet) based on the Denoising Implicit Image Function (DIIF) to

reduce noise and enhance the quality of facial depth images for low-quality

3D FR. After generating clean depth faces using DMDNet, we further design

a powerful recognition network called Lightweight Depth and Normal Fu-

sion network (LDNFNet), which incorporates a multi-branch fusion block to

learn unique and complementary features between different modalities such
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as depth and normal images. Comprehensive experiments conducted on four

distinct low-quality databases demonstrate the effectiveness and robustness

of our proposed methods. Furthermore, when combining DMDNet and LD-

NFNet, we achieve state-of-the-art results on the Lock3DFace database.

Keywords: depth map denoising, implicit neural representations,

low-quality 3D face recognition, lightweight network, deep learning

1. Introduction

Owing to technological breakthroughs in deep learning [1, 2] and the

significant advancement in 2D face recognition (FR) [3, 4, 5], 3D FR has

drawn increasing attention in the computer vision community. Especially in

2017, the release of iPhoneX marked the first year of the application of 3D

FR in smartphone scenarios, which showcased the enormous potential among

academic and industry communities.

Unlike 2D face images, 3D face data provides additional information such

as the geometric structure of the face, including depth, shape, and curvature.

This extra information not only allows for more accurate face recognition but

also facilitates reliable and robust face anti-spoofing by detecting imperson-

ation attacks. Moreover, 3D faces have a certain degree of privacy preserva-

tion, which can effectively prevent biological information leakage from being

used for the black industry chain. In the last two decades, some 3D face

databases have been proposed for academic research, such as FRGC v2 [6],

Bosphorus [7], and BU3DFE [8]. However, most of them are collected by ex-

pensive and sophisticated 3D scanners, making them unaffordable for prac-

tical applications. Recently, consumer depth cameras such as Kinect and
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RealSense have become increasingly popular, allowing users to acquire 3D

data at an affordable price. This has significantly propelled the development

of the 3D vision field [9, 10, 11]. Nevertheless, depth images or point clouds

collected by these devices are relatively rough and noisy, presenting a huge

challenge for downstream tasks. As a result, developing ways to obtain clean

and smooth faces using low-quality depth face data is crucial for 3D FR.

In this paper, we view face denoising from the perspective of implicit

neural representation and propose a novel Depth Map Denoising Network

(DMDNet) based on the Denoising Implicit Image Function (DIIF) to re-

move noises and improve the quality of facial depth images for low-quality 3D

face recognition. Our DMDNet comprises an encoder and a decoding func-

tion, as illustrated in Figure 1. The encoder represents noisy depth images

as a set of latent codes distributed in spatial dimensions, while the decoding

function takes the coordinate information and the latent code queried by

the coordinate as input and predicts the denoised depth value at the given

coordinate. Since face images are highly structured, our DMDNet utilizes

the spatial and semantic information implicit in the coordinate to provide

a strong prior for denoising. Compared to traditional denoising networks

based on an encoder-decoder approach, our DMDNet achieves better results.

Moreover, we also leverage positional encoding to encode the coordinate in-

formation such that the denoising performance in high-frequency details can

be improved, and simultaneously, we propose a Multi-Scale Decoding Fusion

strategy which jointly utilize latent codes from different levels for decoding,

achieving robustness to the change of spatial structure and improving the

representation ability.
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Figure 1: The overall structure of the proposed DMDNet. Our DMDNet consists of an

encoder Eϕ and a decoding function fθ. Eϕ represents noisy depth image as a set of latent

codes distributed in 2D spatial domain, while the fθ takes the coordinate information and

the latent code queried by the coordinate as input and predicts the denoised depth value

at the given coordinate.

To achieve better 3D FR performance using these denoised images, we

further design a novel and efficient recognition network, called Lightweight

Depth and Normal Fusion network (LDNFNet), which takes advantage of

multiple modalities (i.e. depth and normal images) for recognition. In ad-

dition to learning specific features from every single modality, we design a

multi-branch fusion block to learn common features between different modal-

ities, in which the features from different modalities are fused in an efficient

way.

To summarize, the contributions of this paper are as follows:

• To the best of our knowledge, this is the first work that implicit neural

representation is introduced into 3D face denoising. The utilization of

coordinate information provides a strong prior for denoising. Addition-

ally, positional encoding and multi-scale decoding fusion strategies help
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to obtain better denoising performance.

• We propose a novel LDNFNet for 3D face recognition, in which the

multi-branch fusion block achieves the modal fusion between depth and

normal images. It simultaneously learns specific and common features

while reducing the extra computational overhead.

• Our proposed DMDNet outperforms existing methods on 3D face de-

noising tasks. When combining DMDNet and LDNFNet, we achieve

state-of-the-art results on Lock3DFace datasbase.

2. Related Works

In this section, we concisely review the related methods of depth map

denoising, low-quality 3D FR, and Implicit Neural Representations (INRs).

2.1. Depth Map Denoising

Traditional depth map denoising methods aim to generate high-quality

depth maps by fusing multiple consecutive low-quality depth frames. For

instance, KinectFusion [12] presents a real-time reconstruction pipeline for

indoor rigid scenes using consumer depth sensors. DynamicFusion [13] ex-

tends this goal to non-rigid scenes. While fusion-based methods effectively

reduce noise and enhance the quality of the original depth maps, they often

involve complexity and require sequences of depth maps as input, resulting

in a certain time delay.

In recent years, several studies have explored the use of neural networks

for denoising and refining low-quality depth maps. DDRNet [14] proposes a

cascaded depth denoising and refinement network that enhances the quality
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of noisy depth maps by leveraging multi-frame fused geometry and high-

quality color images through joint training. DDRNet shows promising results

for various generic 3D objects. However, it neglects to address the need for

identity consistency in the specific task of 3D face denoising.

On the other hand, 3D-FRM [15] presents an innovative and lightweight

3D face refinement model to reduce noise in low-quality facial depth maps.

It improves face recognition performance on the Lock3DFace database us-

ing the denoised depth face images. The structure of 3D-FRM is based on

a fully convolutional encoder-decoder architecture. Although convolutional

neural networks possess many excellent properties like parameter sharing and

translation invariance, they overlook the coordinate information in the depth

image, which is helpful for the network to perceive the spatial structure of

the face.

To address these limitations, we propose a novel Depth Map Denois-

ing Network (DMDNet) based on implicit neural representation. DMDNet

explicitly leverages coordinate information and enhances denoising perfor-

mance on depth face images. Additionally, we incorporate a perceptual loss

to ensure identity consistency before and after denoising.

2.2. Low-quality 3D Face Recognition

In the last few decades, 3D FR has received significant attention, espe-

cially with the release of high-quality 3D face databases like FRGC v2 [6],

BU3D-FE [8], and Bosphorus [7]. High-quality 3D FR has demonstrated

impressive recognition results, but the performance of low-quality 3D FR

remains unsatisfactory.

Some early works [16, 17] primarily relied on hand-crafted descriptors
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such as LGBP and HOG. Despite promising results, these methods used lim-

ited subjects and lacked generalizability to other databases. To address this,

Zhang et al. [18] first introduced a public comprehensive low-quality 3D face

database named Lock3DFace, comprising 5,671 video sequences of 509 indi-

viduals. They presented a baseline recognition result using the traditional

approach, i.e. ICP. Subsequently, Cui et al. [19] established a baseline for

the deep learning method by applying Inception v2 [20] to Lock3DFace. To

further enhance recognition accuracy, Mu et al. [21] designed a lightweight

yet efficient deep model called Led3D and proposed a data processing system

including point-cloud recovery, surface refinement, and data augmentation,

resulting in finer and bigger training data. Lin et al. [22] employed pix2pix

[23] network to generate high-quality faces from noisy ones. Additionally,

they introduced a multi-quality fusion network (MQFNet) to fuse data of

different qualities and improve FR performance. Zhao et al. [24] proposed

a lightweight multiscale fusion network (LMFNet) with a hierarchical struc-

ture, achieving superior performance on Lock3DFace.

Among these methods, Led3D [21] and MQFNet [22] are most relevant to

our LDNFNet. Led3D introduced an efficient deep model for 3D face recog-

nition. In our work, we extend Led3D into a three-path form to fully utilize

the complementary information between different modalities. On the other

hand, MQFNet uses general convolutional layers to achieve feature fusion

from data of different qualities. However, we propose an innovative multi-

branch convolutional fusion block to mine more diverse fusion representations

with fewer parameters and computations.
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2.3. Implicit Neural Representations

Implicit neural representation is a widely used method for representing

objects as a multi-layer perceptron (MLP) that maps coordinates to signals

in a specific domain. This idea has been applied to modeling 3D objects

[25, 26], 3D scene surface [27, 28] and 2D images [29, 30].

In the 3D domain, Chen et al. [26] proposed an implicit field decoder

that generates 3D shapes, which can be easily transferred to a variety of

applications, including generation, interpolation, and single-view reconstruc-

tion. Deepsdf [25] is a representation of signed distance functions (SDFs) of

shapes via latent code conditioned feed-forward decoder networks, achieving

state-of-the-art performance for learned 3D shape representation.

In the 2D domain, Sitzmann et al. [30] replaced the ReLU in the MLP

with a periodic activation function (sinusoidal) and demonstrated that it can

model more natural and refined images. Chen et al. [29] proposed the Local

Implicit Image Function (LIIF) for representing images as a series of spatially

distributed latent codes. The decoding function takes the coordinate infor-

mation and queries the latent code around the coordinate as inputs, then

predicts the RGB value at the given coordinate as an output. Due to the

continuous coordinates, LIIF can be presented in arbitrary resolution.

Referring to LIIF [26], we propose Denoising Implicit Image Function

(DIIF) to introduce the concept of implicit neural representation into the

field of depth map denoising. In addition, we propose two effective strategies:

positional encoding and multi-scale decoding fusion (MSDF), which greatly

improve the performance of denoising and enhance the denoising metrics.
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Figure 2: Illustration of DIIF. The input noisy depth map is represented as a feature map

F ∈ RC×H×W by the encoder Eϕ. Each feature vector zi ∈ RC×1×1 in the feature map

(shown as a grid of yellow dashed lines in the middle plot) is assigned a coordinate. Given

a query coordinate xq, we first select the closest feature vector z∗ (depicted as the green

dot in the middle plot with coordinate x∗) based on the Euclidean distance from xq to the

position of each feature vector, and use it as the latent code for this local region. Then,

the decoding function fθ takes latent code z∗ and the distance vector (xq − x∗) as inputs,

and outputs predicted denoised depth values at xq.

3. Depth Map Denoising Network

In this paper, we propose a novel Depth Map Denoising Network (DMD-

Net) based on the Denoising Implicit Image Function (DIIF) to effectively

remove noise on low-quality depth face images. An overview of the network

is demonstrated in Figure 1, which contains a fully convolutional encoder Eϕ

and a decoding function fθ. Eϕ used to extract the features F ∈ RC×H×W of

the input noisy depth map Din. fθ is an MLP with parameters θ that takes

coordinate x ∈ R2 and corresponding feature vector z ∈ RC×1×1 located in

the 2D spatial domain of F as input and predicts the clean signal (i.e. the

depth value). In the following, we will provide a detailed explanation of DIIF
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and the specific structure of DMDNet.

3.1. Denoising Implicit Image Function

Inspired by recent advances in implicit neural representations (INRs) for

3D object/scene representation [25, 27, 30] and 2D image generation [30, 29,

31], we propose Denoising Implicit Image Function representation to explore

the feasibility of leveraging INRs for depth map denoising.

Typically, INRs use an MLP to map coordinates to signals in a specific

domain. To share the knowledge across different input instances, DIIF adopts

the encoder-based approach [30, 29], where each instance is encoded as fea-

ture vectors (referred to as latent codes) and concatenated with coordinates

as input to the MLP. Similar to works such as LIIF [29] and LIG [27], DIIF

is defined as:

dq = fθ(z
∗, xq − x∗), (1)

z∗ = Eϕ(Din)[x
∗], (2)

where dq is the clean depth value at coordinate xq on the denoised depth

map, and z∗ is a local latent code at coordinate x∗ in the feature map, which

is closest to xq. To ensure consistency, we normalize all coordinates to the

range [−1, 1], enabling coordinates from different domains to share the same

coordinate system.

An illustration of DIIF is presented in Figure 2. Firstly, DIIF encodes

the input noisy depth map into a feature map using an encoder network Eϕ.

This feature map can be seen as a grid of feature vectors, each associated

with a spatial coordinate. To denoise a query point xq, DIIF selects the
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Figure 3: The detailed structure of the DMDNet encoder. The 3 × 3 convolutional layer

here has a default stride of 1 and a padding of 1. The ×N in the cuboid indicates the

number of blocks.

closest feature vector based on Euclidean distance, which serves as the latent

code representing the local region around the query point. Subsequently, the

decoding function fθ takes this latent code z
∗, along with the distance vector

(xq − x∗) between the query point and the coordinate of the selected feature

vector, to predict the denoised depth value at the query location.

3.2. Convolutional Encoder

The architecture of the encoder network is shown in Figure 3. Firstly,

We compute the corresponding normal map from the depth map and feed

both into a convolutional layer with a kernel size of 3× 3 respectively. Then,

we utilize a series of ResBlocks proposed in EDSR [32] to extract high-level

information from the combined features while retaining the original informa-

tion. Furthermore, three DS-ResBlcoks are used to obtain feature maps at

different resolutions. Each DS-ResBlcok downsamples the feature map by a

3 × 3 convolutional layer with a stride of 2 and then integrates the features
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using three ResBlcoks with a 3 × 3 convolutional layer. By extracting the

output of the ResBlocks and each DS-ResBlcoks, we can obtain four feature

maps possessing varying resolutions (128, 64, 32, and 16) for use in the de-

coding stage. A discussion on the design of our encoder is given in Appendix

B.

3.3. Decoding Function

We employ a five-layer MLP with decreasing hidden dimensions (256,

128,64,32) as decoding function. Each linear layer in the MLP is followed by

ReLU activation, except for the final layer, which uses Tanh activation to nor-

malize output. Although simply using an MLP as the decoding function can

achieve impressive results, its reconstruction performance in high-frequency

details is still unsatisfactory. Based on this, we apply two effective strategies

to improve the decoding performance of the MLP, namely positional encoding

and multi-scale decoding fusion.

Positional Encoding: In recent works [30, 28, 33], it has been shown

that incorporating coordinate position encoding can significantly enhance

reconstruction of high-frequency object details. We adopt a combination of

Fourier Features and Coordinate Embeddings, as employed in [31, 33], for our

positional encoding.

Fourier Features is a linear layer with a sine activation function that maps

the 2D coordinate vector x to a N-dimensional Fourier vector eff ∈ RN . The

Fourier Features encoding can be expressed as follows:

eff = sin(Wffxi), (3)

where xi ∈ R2 represents the initial coordinate vector, Wff ∈ RN×2 is

12
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Figure 4: A simple illustration of MSDF. The feature maps obtained from the Encoder

at different resolutions are fed into the decoding function in tune, along with the query

coordinates. Their intermediate features are fused by element-wise addition before the

last linear layer. Finally, the fused features are fed into the final linear layer with Tanh

activation to predict the denoised depth values.

a learnable weight matrix shared by all coordinates, and sin(·) denotes the

sine activation function.

Coordinate Embeddings, on the other hand, train a distinct vector eice ∈

RN for each spatial coordinate. This further improves the network’s ability

to reconstruct fine-grained details and can even enable key points localization

on faces. The Coordinate Embeddings encoding can be written as follows:

eice = W i
cexi, (4)

where W i
ce ∈ RN×2 represents a trainable transformation matrix. Each ma-

trix is trained separately for each coordinate, thus allowing for more expres-

sive representation of high-frequency information.

Multi-Scale Decoding Fusion: Convolutional neural network is a

stack of multiple convolutional layers in which shallower layers usually have
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smaller receptive fields to capture low-level features, and deeper layers have

larger receptive fields to capture abstract semantic features. It is natural to

combine features at different layers to reconstruct better images. Motivated

by this idea, we propose a Multi-Scale Decoding Fusion strategy (MSDF)

to make full use of the features at different scales of the encoder. A simple

illustration is shown in Figure 4.

In practice, we first selected four feature maps (mentioned in Section 3.2)

with different resolutions from the encoder, corresponding to the information

captured by different receptive fields. We then feed these four feature maps

into the decoding function fθ in turn, along with the query coordinates,

and fuse their intermediate features by element-wise addition before the last

linear layer. Finally, the fused features are fed into the final linear layer with

a Tanh activation function to obtain the denoised depth values.

Latent codes from feature maps at different resolutions can represent

decoding functions at multiple scales, thereby greatly improving the MLP’s

expressive ability. Moreover, we can notice that since the resolution of the

query coordinate grid is the same, and yet the resolutions of the feature maps

are different, the relative coordinates (xq − x∗ in Equation 1) calculated

according to the nearest principle, are also different. More precisely, the

relative coordinate distance increases with the expansion of the receptive

field of the feature map, which helps the network to perceive the change of

spatial structure brought by different scale features.

3.4. Loss Function

The goal of DMDNet is to generate denoised depth faces while preserving

identity information. Therefore, we propose a joint loss function consisting
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of an L1 loss and SSIM [34] loss for image reconstruction, and a perceptual

loss for identity preservation.

We utilize a pre-trained face recognition model to compute the perceptual

loss, which can be formulated as:

Ll1
per = ∥F (Dpred)− F (Dgt)∥1, (5)

where F (·) denotes the feature vector extracted by the recognition model,

Dpred is the denoised depth map generated by DMDNet, and Dgt represents

the supervised ground truth.

The overall loss function can be expressed as follows:

L = λ1L
l1
rec + λ2L

SSIM
rec + λ3L

l1
per, (6)

where parameters λ1,λ2, and λ3 are used to balance the importance of dif-

ferent losses.

4. Lightweight Depth and Normal Fusion Network

After recovering clean depth faces using DMDNet, we propose a Light-

weight Depth and Normal Fusion Network (LDNFNet) for 3D face recog-

nition. The detailed structure of LDNFNet is shown in Figure 5, which

contains three paths: depth, normal, and fusion. The depth and normal

paths extract unique information for their respective modalities, while the

fusion path extracts complementary information between modalities using a

lightweight but efficient multi-branch fusion block.

In the depth and normal paths, depth features and normal features are ex-

tracted separately through a backbone network as Led3D [21], which contains

15
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Figure 5: (a) Architecture of our LDNFNet. The structure of the Backbone is the same

as Led3D [21]. (b) Detailed structure of the Fusion Block. We take the multi-branch

convolutional structure proposed in [35] to build the fusion block. (c) Detailed structure

of the ConvBlock.

4 convolutional blocks (ConvBlocks). Each block is composed of a convolu-

tional layer with a kernel size of 3 × 3, a batch normalization layer, and a

ReLU activation layer. The output features of each block are concatenated

together in the channel dimension by the MSFF [21] module. Additionally,

feature maps at different scales are integrated by another Convblock to gen-

erate more discriminative representations of 3D faces. Finally, the integrated

features of the depth map and normal map are vectorized by the SAV mod-
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ule [21], which is a spatial attention-weighted pooling of the feature maps.

We utilize the Fully-Connected (FC) layer and the Softmax layer with the

cross-entropy loss to compute the identification losses (LD and LN) for the

depth path and normal path.

In the fusion path, LDNFNet concatenates the depth features and nor-

mal features outputted by the MSFF module in the channel dimension and

obtains the fused features through a fusion block. We used the multi-branch

convolutional structure proposed in ResNext [35] to build the fusion block

shown in Figure 4b. Each branch shares the same topology, consisting of a

1 × 1 convolutional layer and a 3 × 3 convolutional layer, which is equiva-

lent to projecting the input features into several different feature subspaces,

where the network can learn and discover more diverse feature representa-

tions. In addition, this multi-branch operation can also be seen as a form of

regularization. With each additional branch, the network learns features with

sparser relationships. Although there is complementary information between

depth maps and normal maps, there is also a lot of redundant information.

Therefore, this sparsity greatly reduces the risk of overfitting. Finally, the

outputs of each branch are aggregated by concatenation and a 1× 1 convo-

lutional layer. In practice, LDNFNet implements multi-branch convolution

by grouped convolution as mentioned in [35], which has fewer parameters

and computations than traditional convolution, making it a lightweight op-

tion. The fusion path, like the other two paths, is also vectorized using the

SAV module. Then, the feature vectors of the three paths are concatenated

to produce the final feature vector Ffinal and the identification loss (LF ) is

computed using Ffinal.
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In summary, the training loss function is denoted as the sum of three-path

losses:

L = LD + LN + LF , (7)

In the testing phase, we calculate the cosine similarity of samples in the

probe and gallery, using the final feature vector, Ffinal. More details of

LDNFNet are given in Appendix A.

5. Experiment

In this section, we construct comparative analyses to verify the effec-

tiveness of our proposed DMDNet and LDNFNet. Specifically, we evaluate

the performance of DMDNet using classical denoising metrics such as Peak

Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM),

and Root Mean Square Error (RMSE), on the Bosphorus database. We also

measure the rank-one recognition accuracy of DMDNet on the Lock3DFace

database. Our method outperforms other denoising approaches, demonstrat-

ing superior results. Furthermore, by combining DMDNet and LDNFNet, we

achieve state-of-the-art recognition performance on the Lock3DFace database.

Finally, extensive ablation experiments are implemented to demonstrate the

rationality of our proposed method.

5.1. Datasets and Preprocessing

Three high-quality datasets (FRGC v2, Bosphorus, BU3DFE) and four

low-quality datasets (Lock3DFace, USTC [36], MultiSFace [37], IIIT-D [38])

are utilized for evaluation.

FRGC v2 is collected by the laser 3D scanner and contains 4007 3D

faces with expression changes from 466 individuals.
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Bosphorus is acquired by the high-precision structured-light 3D system

and consists of 4666 3D faces of 105 subjects with expression, occlusion, and

pose variations.

BU3DFE is captured with a 3D face imaging system and includes both

prototypical 3D facial expression shapes and 2D facial textures of 2500 faces

from 100 subjects.

Lock3DFace is collected by the Kinect V2 camera, composed of 5671

video sequences of 509 subjects and contains various variations in expression,

poses, time changes, and occlusions.

USTC is acquired using a PrimeSense camera within the same indoor

environment, comprising 24,839 RGB-D images depicting 873 distinct iden-

tities.

MultiSFace is collected by the Pmdtec Pico Flexx camera and comprises

upper-body recordings from 31 individuals, each with 16 unique sequences.

IIIT-D has 4603 depth maps of 106 subjects, which were captured by

Kinect V1 with moderate pose and expression variations.

We employ a uniform preprocessing pipeline proposed in [21], including

nose tip based cropping, outlier removing, and hole filling. In addition, each

depth face is resized to 128 × 128 and normalized to a range of [0, 255]. To

overcome the risk of overfitting caused by the limited amount of 3D face

data, we implement the pose generation method proposed in [21, 15] for data

augmentation.

5.2. Settings

Depth face denoising. Using the data quality degradation methods

(downsampling and adding noise) proposed in the 3D-FRM [15], we generate
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the high- and low-quality depth face pairs on the FRGC v2, BU3DFE, and

Bosphorus datasets. The first two are used for training of DMDNet, and

the last one is used for evaluating denoising metrics. In total, the training

dataset comprises 149,661 depth face pairs, while the total testing dataset

consists of 4,662 depth face pairs. To compute the perceptual loss Ll1
per, we

pre-train a face recognition model using all the high-quality data from these

three datasets. The architecture of the model is the same as Led3D [21].

We use the Adam optimizer with an initial learning rate of 10−4. The

model is trained for 100 epochs with a batch size of 64, and the learning rate

decays by a factor of 0.5 every 20 epochs. The parameters (λ1, λ2, and λ3)

of the loss function are set to 1, 0.5, and 0.001, respectively.

Depth face recognition. Lock3DFace is the largest publicly available

low-quality 3D face database, and we apply it in the experiment for face

recognition in terms of rank-one accuracy. We adopt the same protocol in

[21] in which the training and testing sets are divided by subjects. We use

all data from 340 randomly selected subjects for training and the remaining

data from 169 subjects for testing.

To demonstrate that better face recognition can be achieved using our

proposed denoising network DMDNet, we employ the same settings as in 3D-

FRM [15] for fair comparison. Firstly, we use Led3D [21] as the recognition

model and pre-train it with augmented low-quality depth face images from

the training set of Lock3DFace. Next, we use DMDNet to denoise all the

low-quality data in Lock3DFace, and then fine-tune the pre-trained model

based on the denoised training data. Finally, we evaluate the recognition

accuracy of the denoised testing data.
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Method
Bosphorus Lock3DFace

PSNR↑ SSIM↑ RMSE↓ NU FE PS OC TM Total

Led3D - - - 99.62 97.62 64.81 68.93 64.97 81.02

DDRNet 31.44 95.96 0.0623 99.92 96.83 64.61 67.92 72.65 81.75

3D-FRM 32.04 96.35 0.0587 99.96 96.83 64.98 69.25 73.68 82.23

DMDNet 32.60 97.31 0.0470 100 99.13 79.76 80.63 73.17 86.50

NU: neutral. FE: expression. OC: occlusion. PS: pose. TM: time.

Table 1: Quantitative comparison results of different models for denoising metrics on

Bosphorus database, and quantitative results in terms of rank-one recognition rate (%) on

the Lock3DFace database using the denoised depth faces generated by different denoising

methods.

When pre-training, we use the SGD optimizer with a learning rate of 10−2

for 100 epochs. We fine-tune the pre-trained model using the SGD optimizer

with a learning rate of 5 × 10−3 for 50 epochs. The batch size is set to 384

for both pre-training and fine-tuning.

To compare further with the current state-of-the-art works, we construct

another experiment replacing the recognition model with our proposed LD-

NFNet, with all other settings remaining unchanged.

5.3. Results

5.3.1. Results of DMDNet

We evaluate the performance of DMDNet from two perspectives: denois-

ing metrics and rank-one recognition accuracy, and compare it with other
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denoising works [15, 14]. The results are presented in Table 1. As observed,

our method outperforms other methods in terms of PSNR, SSIM, and RMSE,

exhibiting an improvement of 0.56db, 0.96%, and 0.117, respectively, com-

pared to 3D-FRM. This demonstrates that our proposed DMDNet is more

effective for depth face denoising. Moreover, upon denoising the data in the

Lock3DFace database using our method, we can achieve higher face recogni-

tion accuracy on almost all the subsets, indicating that DMDNet can main-

tain the original identity information and reconstruct high-frequency facial

details that are helpful for recognition.

5.3.2. Results of LDNFNet

To expand upon comparisons with other 3D FR works, we replace Led3D

with the proposed LDNFNet as the recognition model. The resulting average

performance and accuracy on all subsets are presented in Table 2. LDNFNet

trained with original noisy data outperforms previous work on almost all

subsets, demonstrating its ability to fully utilize the information from the

depth and normal maps, which provides more discriminative features for

face recognition when compared to Led3D. Additionally, when using the

denoised data from DMDNet for fine-tuning, LDNFNet* achieves state-of-

the-art results on all subsets, and the average performance is also the highest.

This further proves the effectiveness of our denoising method.

5.4. Model Analysis

In this section, we showcase the denoising capabilities of DMDNet on the

Bosphorus database and Lock3DFace database. Additionally, we demon-

strate the generalization of DMDNet by evaluating its performance on three
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Method Input
Lock3DFace

NU FE PS OC TM Total

VGG-16 [39] Depth 99.57 94.76 49.21 44.68 34.50 70.58

Inception-V2 [20] Depth 98.97 93.56 54.14 56.98 42.17 74.44

ResNet-34 [2] Depth 99.29 96.09 61.39 54.91 45.00 76.56

MobileNet-V2 [40] Depth 98.91 95.74 69.92 61.44 43.00 79.49

Cui et al. [19] Depth 99.55 98.03 65.26 81.62 55.79 79.85

Led3D [21] Depth+Normal 99.62 98.17 70.38 78.10 65.28 84.22

MQFNet [22] Normal 99.95 97.31 73.61 80.97 61.67 86.55

LMFNet [24] Depth+Normal 99.95 99.21 79.05 84.40 76.31 88.01

LDNFNet Depth+Normal 100 99.37 82.94 85.39 71.95 87.71

LDNFNet* Depth+Normal 99.95 99.49 83.98 85.49 76.32 88.94

Table 2: Comparison of the rank-one recognition rate (%) with other works using the

combination of DMDNet and LDNFNet. The Input column denotes the modality adopted

by the network. In the last two lines, the result of LDNFNet* indicates training with de-

noised data, while the result of LDNFNet indicates training with original noisy data. The

best result is shown in bold, and the second-best result is highlighted with an underline.

databases acquired from different depth sensors. To further validate the ef-

fectiveness of our proposed methods, a series of ablation experiments are

conducted.
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5.4.1. Visualization for Denoised Images

We apply the trained DMDNet to denoise images from the Bosphorus

and Lock3DFace databases. The resulting denoised samples are displayed

in Figure 6, showing that DMDNet effectively reduces noise and generates

smoother depth faces. Due to the lack of real low- and high-quality data pairs,

we use the synthetic data pairs from the FRGC v2 and BU3DFE databases

to train DMDNet. Therefore, the trained DMDNet performs better on de-

(𝑓𝑓) 𝑅𝑅𝐶𝐶𝑠𝑠𝑚𝑚𝑤𝐶𝐶𝑠𝑠𝑅𝑅𝑠𝑠

(𝑏𝑏) 𝑅𝑅𝐶𝐶𝑐𝑐𝑅𝑅𝐿𝐿𝐿𝐹𝐹𝑓𝑓𝑐𝑐𝑠𝑠

Figure 6: Demonstration of the denoised depth faces generated by DMDNet. The first

and third rows are the original noisy depth faces, and the second and fourth rows are

denoised depth faces. To show the effect of denoising more clearly, we also visualize the

corresponding normal map. (a) The denoised results in the Bosphorus database. (b) The

denoised results in the Lock3DFace database.
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Method USTC MultiSFace

Led3D 73.69 59.34

Led3D* 77.24 61.65

(a) Rank-one recognition rate (%) on USTC and

MultiSFace.

Method Accuracy

Inception-V2 65.58

Led3D 74.27

LMFNet 81.13

LDNFNet 86.54

LDNFNet* 88.10

(b) Compared with the rank-one recognition

rate (%) on the IIIT-D database.

Table 3: Generalization evaluation results on different low-quality 3D face datasets. Meth-

ods with * indicate training with denoised data, while those without * indicate training

with original noisy data.

noising low-quality data synthesized from the Bosphorus database. However,

it also performs well on the real-world and noisy Lock3DFace database, indi-

cating DMDNet’s robustness against real noise distributions and its potential

for practical applications.

5.4.2. Generalization Evaluation

In section 5.3, we demonstrate the effectiveness of DMDNet and LD-

NFNet on the Lock3DFace database. To further validate the generalization

of our methods to different types of noise and quality variations, we con-

duct denoising and recognition experiments on three additional databases:

USTC, MultiSFace, and IIIT-D. These databases were collected using dif-

ferent consumer-grade depth sensors, namely PrimeSense, Pico Flexx, and

Kinect V1.
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Loss Bosphorus Lock3DFace

Ll1
rec LSSIM

rec Ll1
per PSNR↑ SSIM↑ RMSE↓ NU FE PS OC TM Total

✓ - - 32.39 97.17 0.0481 100 98.97 79.17 80.58 72.42 86.18

✓ ✓ - 32.63 97.32 0.0468 100 99.33 79.81 80.63 71.20 86.20

✓ ✓ ✓ 32.60 97.31 0.0470 100 99.13 79.76 81.13 73.17 86.50

Table 4: Ablation study on the composition of the loss functions of DMDNet.

Specifically, we adopt the evaluation method mentioned in Section 5.3 to

assess the face recognition rate before and after denoising using DMDNet

on these databases. For the USTC and MultiSFace databases, we employ

Led3D as our recognition model due to the lack of suitable comparisons. The

training set consists of randomly selected 70 percent of the subjects, while

the remaining 30 percent form the test set. Regarding the IIIT-D database,

we follow the same training and testing settings as [24] and employ LDNFNet

to obtain the best results for comparison with other works.

The results are shown in Table 3. Across all databases, the recogni-

tion results after denoising demonstrate improvement, confirming the good

generalization of our DMDNet. Additionally, on the IIIT-D database, our

proposed LDNFNet exhibits significant advantages over other methods, irre-

spective of denoising, thus demonstrating the superiority of LDNFNet.

5.4.3. Ablation Study for DMDNet

We first analyze the composition of the loss function of DMDNet. We

individually use the losses as Ll1
rec, L

l1
rec +LSSIM

rec , and Ll1
rec +LSSIM

rec +Ll1
per to
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Method Bosphorus Lock3DFace

eff ece MSDF PSNR↑ SSIM↑ RMSE↓ NU FE PS OC TM Total

- - - 32.47 97.16 0.0477 100 99.25 78.97 81.08 72.54 86.32

✓ - - 32.49 97.19 0.0476 99.95 99.17 80.01 80.48 71.87 86.23

- ✓ - 32.48 97.18 0.0477 100 99.21 79.32 80.93 72.22 86.28

- - ✓ 32.54 97.29 0.0473 100 99.05 80.01 80.88 72.50 86.42

✓ ✓ - 32.50 97.20 0.0476 100 99.17 79.91 81.18 72.46 86.48

✓ ✓ ✓ 32.60 97.31 0.0470 100 99.13 79.76 80.63 73.17 86.50

Table 5: Ablation study for positional encoding and MSDF. eff denotes the Fourier

Features and ece denotes the Coordinate Embeddings.

guide the training of DMDNet. We then follow the same settings to test the

denoising metrics on the Bosphorus database and the face recognition accu-

racy on the Lock3DFace database. The testing results for the three losses

are shown in Table 4. As we can see, compared to using only L1 loss Ll1
rec as

the reconstruction loss, the joint use of L1 loss Ll1
rec and SSIM loss LSSIM

rec can

effectively improve the denoising metrics and slightly improve face recogni-

tion performance. In addition, although the use of perceptual loss Ll1
per will

cause a certain decrease in denoising metrics, it helps preserve facial identity

information and face recognition. We argue that under the tradeoff between

denoising performance and recognition accuracy, introducing perceptual loss

is worthwhile.

To demonstrate the effectiveness of the two strategies (Positional Encod-
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ing and MSDF) proposed in the decoding function, we evaluate the impact

of each component on denoising performance and face recognition accuracy.

The results are shown in Table 5. Each component used alone improves the

denoising performance of DMDNet, and their combined use further enhances

the performance of face recognition. In particular, the inclusion of MSDF

significantly improves the denoising metrics, with PSNR and SSIM increasing

by 0.1db and 0.11%, respectively, and RMSE decreasing by 0.0006. Further-

more, the use of MSDF yields the highest face recognition accuracy, which

highlights its crucial role.
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Figure 7: Four model structure diagrams are constructed for the LDNFNet ablation study.

5.4.4. Ablation Study for LDNFNet

In this section, we conduct an ablation study for LDNFNet by construct-

ing three contrasting models (Models A, B, and C) based on the structure

of LDNFNet (Model D), as illustrated in Figure 7. The aim of this study is

to validate the effectiveness of our LDNFNet design. Each model removes
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Method
Lock3DFace

NU FE PS OC TM Total

Model A 99.85 98.54 79.32 83.68 66.67 85.32

Model B 100 98.82 79.32 82.18 70.02 85.91

Model C 99.95 99.05 81.35 85.39 72.77 87.32

Model D 100 99.37 82.94 85.39 71.95 87.71

Table 6: Comparison of the rank-one recognition rates of four models on Lock3DFace

database. Model D is the ultimate scheme of our LDNFNet.

or replaces specific components from LDNFNet, allowing us to analyze their

impact on performance.

Specifically, Model A is the simplest variant, comprising only one fusion

path, and it employs a ConvBlock as the fusion module for depth and normal

features. Model B is an extension of Model A, incorporating three paths but

with only one fusion loss, denoted as LF . Model C further includes two

additional auxiliary losses, LD and LN , in addition to the fusion loss LF .

Finally, Model D represents the ultimate scheme of our LDNFNet, where

the fusion module in Model C is replaced with a multi-branch fusion block.

To evaluate the performance of these four models, we train them using the

training set of the Lock3DFace database and assess their rank-one accuracy

on the testing set.

Table 6 presents the results of our evaluation. It is evident from the table

that the three-path structure (Model B) outperforms the single-path struc-
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Block Params(M) MAdds(M)

ConvBlock 8.29 539.14

Multi-branch Fusion Block 0.99 65.11

Table 7: Comparison of the number of parameters and multiply-adds (MAdds) for Con-

vBlock and Fusion Block.

ture (Model A), indicating the advantage of incorporating multiple paths

in LDNFNet. Furthermore, the inclusion of auxiliary losses (Model C) for

the depth and normal paths is crucial in achieving improved results. Addi-

tionally, replacing the ConvBlock with the more sophisticated multi-branch

fusion block (Model D) leads to a performance improvement, emphasizing

the efficacy of our design choices in LDNFNet.

Moreover, we provide a comprehensive comparison of the parameters and

operations between the ConvBlock and the multi-branch fusion block. The

number of operations is measured in multiply-adds (MAdds), and the re-

sults are presented in Table 7. Significantly, the multi-branch fusion block

requires fewer parameters and computations compared to the ConvBlock,

which aligned with our lightweight design goal and supports the feasibility

of deploying LDNFNet in resource-constrained environments.

6. Conclution

In this paper, we propose a novel Depth Map Denoising Network (DMD-

Net) based on the Denoising Implicit Image Function (DIIF) to enhance the

quality of facial depth images for low-quality 3D face recognition by elimi-
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nating noise. Moreover, we introduce two effective strategies in the decoding

stage: positional encoding and multi-scale decoding fusion. These approaches

significantly improve the denoising performance of DMDNet. We evaluate

denoising metrics on the Bosphorus database and assess face recognition ac-

curacy on the Lock3DFace database. The results indicate that our proposed

DMDNet outperforms other methods. Additionally, to achieve better 3D

FR performance using the denoised images, we design a Lightweight Depth

and Normal Fusion Network (LDNFNet), which leverages multiple modali-

ties (i.e., depth and normal images) through a multi-branch fusion block. By

combining DMDNet and LDNFNet, we achieve state-of-the-art results on the

Lock3DFace database. Furthermore, experimental results from databases ob-

tained from three different depth sensors demonstrate the robustness of our

proposed methods, and a series of ablation experiments also confirm the

rationality of our methods.

Our work is the first to introduce implicit neural representations to the 3D

face denoising task. Despite the promising performance, our model is rela-

tively simple in its design of the decoding function, which limits the flexibility

of the model. In future work, we will explore designing more sophisticated

decoding functions to further improve the denoising performance.
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Appendix A: Detailed Structure of LDNFNet

This section presents the network details of LDNFNet to facilitate replica-

tion by readers. As illustrated in Figure 5, our proposed LDNFNet comprises

four main modules: the Backbone network, ConvBlock, FusionBlock, and

SAV. The Backbone network replicates the structure of Led3D [21], which

is depicted in Figure 8. For specific parameter configurations and output

dimensions of each module, please refer to Table 8.

Data

Block 1, 32

MaxPool

Block 2, 64

MaxPool

Block 3, 128

MaxPool

Block 4, 256

MaxPool

ConvBlock 1

ConvBlock 2

ConvBlock 3

ConvBlock 4

MSFF

MaxPool 1

MaxPool 2

MaxPool 3

Conv 3 × 3

BN

ReLU

Figure 8: The specific architecture of the LDNFNet backbone network.
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Module Block Layer Parameters Output Size

Backbone

ConvBlock 1

Conv 3, 1, 1, 1
32× 128× 128BN -

ReLU -
MaxPool 3, 2, 1,− 32× 64× 64

ConvBlock 2

Conv 3, 1, 1, 1
64× 64× 64BN -

ReLU -
MaxPool 3, 2, 1,− 64× 32× 32

ConvBlock 3

Conv 3, 1, 1, 1
128× 32× 32BN -

ReLU -
MaxPool 3, 2, 1,− 128× 16× 16

ConvBlock 4

Conv 3, 1, 1, 1
256× 16× 16BN -

ReLU -
MaxPool 3, 2, 1,− 256× 8× 8

MSFF

MaxPool 1 33, 16, 16,− 32× 8× 8
MaxPool 2 17, 8, 8,− 64× 8× 8
MaxPool 3 9, 4, 4,− 128× 8× 8
Concate - 480× 8× 8

ConvBlock ConvBlock 6
Conv 3, 1, 1, 1

480× 8× 8BN -
ReLU -

FusionBlock

ConvBlock 7
Conv 1, 1, 0, 1

480× 8× 8BN -
ReLU -

ConvBlock 8
Conv 3, 1, 1,32

480× 8× 8BN -
ReLU -

ConvBlock 9
Conv 1, 1, 0, 1

960× 8× 8BN -
ReLU -

SAV SAV
Conv 8, 8, 0, N N × 1× 1
Flatten - N

Table 8: Detailed Structure of LDNFNet. The Parameters column goes from left to

right: kernel size, stride, padding, and groups. The parameter N in the SAV module is

equal to the number of input channels. The Output Size column indicates Channels×

Height×Width.
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Appendix B: Discussion on the Encoder Design of DMDNet

In this section, we present a detailed explanation of the encoder design

for our DMDNet. As discussed in Section 3.2, our encoder is primarily con-

structed by stacking a series of ResBlocks and DS-ResBlocks. The ResBlock

is a fundamental module originally proposed in EDSR [32] for low-level im-

age tasks, such as super-resolution and denoising. Notably, the ResBlcok in

EDSR differs from the residual block in the original ResNet [2] as it eliminates

the batch normalization layer after each convolutional layer. This modifica-

tion reduces the model’s memory consumption and enhances its flexibility.

For a more comprehensive understanding of the ResBlock design, please re-

fer to [32]. Due to the excellent performance of ResBlock on low-level image

tasks, we adopt it as the base module of our encoder. To further optimize

the encoder, we introduce a small change to the ResBlock by adjusting the

stride of the first convolutional layer to 2. This adjustment downsamples the

feature map, thereby reducing both memory consumption and computation

overhead. We refer to this modified module as DS-ResBlock.

Another crucial design aspect of our encoder involves the utilization of

both the depth map and its corresponding normal map. This approach is

supported by existing works [21, 15], which demonstrate that normal maps

provide complementary information to enhance task performance. Referring

to 3D-FRM [15], we perform an early fusion of features extracted from the

depth map and normal map. Our experiments substantiate that employing

the normal map modality for assistance yields superior results compared to

using only the depth map modality. We present the comparison results in

Table 9.
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Input
Bosphorus

PSNR↑ SSIM↑ RMSE↓

Depth 32.52 97.28 0.0474

Depth+Normal 32.60 97.31 0.0470

Table 9: Comparison of denoising performance for different inputs.

Despite using a relatively simple fusion approach, the denoising perfor-

mance of DMDNet has been significantly enhanced. We acknowledge that

employing more sophisticated fusion techniques could lead to even greater

performance improvements. However, such investigations are beyond the

primary focus of our work, and we refrain from delving extensively into this

aspect.
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