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Abstract

The findings on open-set recognition (OSR) show that models trained on classification datasets are capable of detecting unknown
classes not encountered during the training process. Specifically, after training, the learned representations of known classes
dissociate from the representations of the unknown class, facilitating OSR. In this paper, we investigate this emergent phenomenon
by examining the relationship between the Jacobian norm of representations and the inter/intra-class learning dynamics. We provide
a theoretical analysis, demonstrating that intra-class learning reduces the Jacobian norm for known class samples, while inter-
class learning increases the Jacobian norm for unknown samples, even in the absence of direct exposure to any unknown sample.
Overall, the discrepancy in the Jacobian norm between the known and unknown classes enables OSR. Based on this insight, which
highlights the pivotal role of inter-class learning, we devise a marginal one-vs-rest (m-OvR) loss function that promotes strong inter-
class separation. To further improve OSR performance, we integrate the m-OvR loss with additional strategies that maximize the
Jacobian norm disparity. We present comprehensive experimental results that support our theoretical observations and demonstrate
the efficacy of our proposed OSR approach.
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1. Introduction

In recent years, deep neural network (DNN) based mod-
els have demonstrated remarkable success in closed-set recog-
nition, where the train and test sets share the same categor-
ical classes to classify. In practical environments, however,
a deployed model can encounter instances of class categories
unknown during its training. Detecting these unknown class
instances is crucial in safety-critical applications such as au-
tonomous driving and cybersecurity. A solution to this is open-
set recognition (OSR), where a classifier trained over K known
classes can classify them and reject unknown class instances in
the test stage [1].

A predominant approach in DNN-based OSR is to train a dis-
criminative model over known classes with a metric-learning
loss, and derive a score (or decision) function that captures the
difference between the known and unknown in terms of their
representations. For the score function to work effectively, the
unknown class must be dissociated from the known class in the
representation space. Interestingly, [1] along with subsequent
works [2, 3, 4] observed that training over known classes alone
results in this separation; the model separates the unknown
class from the known classes even though the model did not
utilize any unknown class instance during its training.

However, the underlying mechanism of this phenomenon has
rarely been explored in the context of representation learning.
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Figure 1: During the closed-set metric learning, the model learns only over the
known classes Ck , but the learning also changes the representation of unknown
class. We ask why. We discover that the intra-class learning diminishes the
Jacobian norm of known class representations, while the inter-class learning
increases the Jacobian norm of the unknown. The resulting disparity in Jaco-
bian norm separates the unknown from the known.

This work aims to analyze this phenomenon, namely, how the
closed-set metric learning separates the unknown class from the
known classes in the representation space.

To this end, we analyze the Jacobian norm of representation
∥
∂ f (x)
∂x ∥F , which is the Frobenius norm of the Jacobian matrix.

We discover that inter-class separation learning within known
classes plays a crucial role in OSR, as it alters the represen-
tations of unknown class instances without direct exposure to
them. Specifically, inter-class learning elevates the Jacobian
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norm of the unknown, whereas intra-class learning diminishes
the Jacobian norm of the known. This resulting disparity be-
tween the known and unknown in terms of Jacobian norm leads
to a differentiation between their respective representations.

We provide comprehensive theoretical validation for our hy-
pothesis, which is further reinforced by a wealth of empirical
evidence. Additionally, inspired by the integral role of inter-
class learning in segregating unknown class instances, we de-
velop a marginal one-vs-rest (m-OvR) loss function designed
to foster substantial inter-class separation. Furthermore, we in-
corporate the model loss with auxiliary techniques to enhance
the Jacobian norm disparity, ultimately strengthening the dis-
tinction between known and unknown classes.

The contributions of our works are summarized as follows:

1. We theoretically show that the closed-set metric learning
separates the representations of unknown class from those
of the known classes by making their Jacobian norm differ-
ent. In particular, we discover that the inter-class learning
is the key factor in this process as it alters the unknown
class instances’ representations without directly accessing
them.

2. We empirically validate our theory, observing that the Ja-
cobian norm difference between the known and unknown
classes is strongly correlated to the unknown class detec-
tion performance.

3. Based on the integral role of inter-class learning for the
unknown class segregation, we devise a marginal one-vs-
rest (m-OvR) loss that can induce strong inter-class sepa-
ration within the known classes. We further integrate the
model loss with auxiliary techniques that can enhance the
unknown class segregation via the Jacobian norm differ-
ence.

We highlight that our primary objective is not to advance the
state-of-the-art in the field. Rather, our foremost contribution
lies in providing a theoretical elucidation of how a model gains
awareness of the unknown through closed-set metric learning.
Additional contributions encompass the empirical validation of
our theoretical framework, as well as an examination of preva-
lent deep learning methodologies within the context of our pro-
posed theory.

To the best of our knowledge, this is the inaugural study to
investigate open set recognition (OSR) representations in rela-
tion to their Jacobian norm.

2. Related Works

2.1. Theoretical/empirical works on OSR.

Recent theoretical works [5, 6] tackle OSR with theoreti-
cal guarantees on the performance but with specific distribu-
tional modeling assumptions (e.g. Gaussian mixture). [7] con-
duct theoretical studies in a more general setting by extending
the classical closed-set PAC framework [8] to open-set environ-
ments, deriving analytical bounds of the generalization error in

the context of OSR. [9] relates OSR to transfer learning and in-
terprets the unknown class samples as covariate shifts. This en-
ables the substitution of theoretical bounds derived in the trans-
fer learning setting [10] to open-set environments. On the other
hand, [11] observes that for a model trained only with known
class samples, the magnitudes of representation vectors tend to
exhibit relatively larger values over the known class than over
the unknown ones. [12] empirically proved that the standard
discriminative models detect unknown classes mainly based on
their unfamiliar features rather than based on the novelty of un-
known category.

2.2. OSR Methods
For a general, broad survey on OSR models, the readers are

recommended to [4, 13]. Here, we focus on reviewing state-of-
the-art OSR models, mainly focusing on discriminative ones.

The basic baseline model [14, 1, 15] trained by softmax
cross-entropy loss is known to perform both closed-set classifi-
cation and unknown class detection reasonably effectively. To
enhance its unknown detection mechanism, OpenMax [16] ap-
plied probabilistic modification on the softmax activation based
on extreme value theory. DOC [17] replaced the softmax cross
entropy with the one-vs-rest logistic regression, finding its ef-
fectiveness on invalid topic rejection in natural language. RPL
[18] proposed to maximize inter-class separation in the form of
reciprocal, followed by a variant [19] that utilizes synthetic, ad-
versarially generated unknown class. CPN [20] learns embed-
ding metrics by modeling each known class as a group of mul-
tiple prototypes. PROSER [21] leverages latent mixup samples
[22, 23] as a generated unknown class and places their represen-
tations near the known class representations. [24], on the other
hand, proposed a collection of multiple one-vs-rest networks to
mitigate the over-confidence and poor generalization issue, and
utilizes a collective decision score for effective OSR.

Recently, [15] demonstrated that the basic SCE baseline
could outperform all other OSR baselines if the SCE model is
trained with strong data augmentation and utilizes state-of-the-
art optimization techniques. On the other hand, [25] showed
that a prior on well separated discriminative embedding is still
critical for effective open-set recognition.

2.3. Jacobian Norm in Deep Discriminative Models
Within the domain of discriminative learning, though not ex-

plicitly in the context of OSR, the Jacobian of the representa-
tion function has been examined in closed-set settings within
various contexts. [26, 27] demonstrate that the explicit min-
imization of the Frobenius norm of the Jacobian of classifica-
tion prediction output, specifically the softmax output and logit,
promotes a smoothness prior on it, subsequently enhancing the
generalization of recognition in closed-set scenarios. Neverthe-
less, the explicit computation of the Jacobian demands substan-
tial computational resources. To address this, [28] has intro-
duced an efficient method of computing the Jacobian norm via
its random projection, serving as an unbiased estimator of the
raw Jacobian norm.

[27, 29, 30] have noted that the smoothness prior, as enforced
by Jacobian norm penalization, reduces the sensitivity of the
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network output to minute input perturbations, thereby making
the network robust against adversarial examples. On a theoreti-
cal level, [31] has identified a close connection between weight
decay and the Jacobian norm, establishing that under ideal con-
ditions, a gradient update with weight decay equates to penal-
izing the Frobenius norm of the Jacobian matrix of representa-
tion.

However, all preceding studies on Jacobian analysis have
been confined to the context of closed-set learning. To the best
of our knowledge, our research represents the first instance of
analyzing the Jacobian norm within an open-set scenario, pro-
viding a rigorous examination of its relationship to the unknown
class.

3. Theory: Understanding the Separation of Unknown
Class Representations via Jacobian Norm

We theoretically demonstrate that training a discrimina-
tive model over known classes separate the representations of
known classes from those of the unknown class by decreasing
Jacobian norm over the known classes while increasing the Ja-
cobian norm over the unknown class (Cor. 5 in Sec. 3.2). The
limitation of Jacobian norm theory is given in Sec. 3.3. Our
observation is summarized in Sec. 3.4 with its depiction in Fig.
2.

3.1. Problem Setup and Notation

During closed-set metric learning, the representation embed-
ding function f : Rd → Rdz of a discriminative model is trained
to minimize intra-class distances D( f (x),wy) and maximize
inter-class distances D( f (x), f (x′)) for known class samples x
and x′ paired with different class labels y and y′ (y , y′). The
prototype vector wy∈Rdz is a proxy for the y-th known class
Cy, and is formulated as a learnable parameter. The known set
K= ∪K

k=1 Ck consists of K disjoint disconnected known classes
Ck. The train samples x and x′ are sampled from the known
set, while the labels y and y′ from the corresponding label space
YK = {1, . . . ,K}. The open setO := X\K is the complement of
the known set in the (bounded) global spaceX = [−1, 1]d ⊆ Rd.
The unknown class U we consider is a proper subset of the
open set O. Since our task is not to discriminate within the
unknown class, we treat the unknown class as a single class,
although it may consist of a diverse type of object.

During training, the model has no access to the unknown
classU, and is trained only with the K number of known classes
to discriminate them. After training, the OSR model should
not only discriminate each class in the known set but also need
to differentiate the unknown from the known. Hence, the un-
known class should be separated from all known classes in the
representations space such that f (K) ∩ f (K) = ∅.

3.2. Derivation of the Theory

We prove our theoretical claims by observing how the em-
bedding function f changes on a class interpolating path (i.e.,
a path γ:[0, 1]→X that interpolates two different known classes
Ci and C j by traversing t from 0 to 1 with x0∈Ci and x1∈C j as

depicted in Fig. 1). The detailed assumptions and full proofs
to the theoretical statements are given in Appendix A and Ap-
pendix B, respectively.

Firstly, we show that, during the closed-set supervision, the
intra-class distance minimization minimizes the length of the
projected path over the known class:

Proposition 1. Minimizing intra-class distances D( f (x),wk)
to 0 for all x ∈ Ck minimizes the length of the projected path
f (γ([0, 1]) ∩Ck) for an arbitrary path γ from Ck.

On the other hand, the inter-class distance maximization is
presumed to increase the length of any linear path between the
known classes Ci and C j in the representation space by As-
sumption 2b. In summary, intra-class distance minimization
reduces the projected path length, while the inter-class distance
maximization increases the projected path length.

Now, the increasing/decreasing trend of the projected path
length due to the metric learning is transferred to the Jacobian
norm ∥ d f (γ(t))

dt ∥2 via the path length equation

length( f◦γ) =
∫ 1

0

∥∥∥∥∥d f (γ(t))
dt

∥∥∥∥∥
2

dt. (1)

Accordingly, we expect that intra-class distance minimization
minimizes the Jacobian norm over the known class intersecting
path. In contrast, inter-class distance maximization increases
the Jacobian norm over the open set intersecting path. This
description, however, is constrained to the local paths. The
following theorem assures that this phenomenon is extendible
from the local path to the global region. In other words, the
closed-set metric learning minimizes the Jacobian norm over
the known classes and increases the Jacobian norm over the
open set O.

Theorem 2. Let Ci, C j, and Ck be different known classes.

(a) Minimizing intra-class distances D( f (x),wk) for all x ∈
Ck minimizes ∥ ∂ f (x)

∂x ∥F over Ck.
(b) Maximizing inter-class distances D( f (x), f (x′)) for all

x ∈ Ci and x′ ∈ C j strictly increases
∫
O
∥
∂ f (x)
∂x ∥F dx.

Theorem 2b indicates that the length of the projected path
can be accessed from the global integral of the Jacobian norm.
Thereby, we find that the strictly increasing trend of Jacobian
norm integral is positively correlated to the strictly increasing
trend of the projected inter-class path length. Based on our
overall observations, we deduct the below corollaries:

Corollary 3. Minimizing the intra-class distances minimizes
the Jacobian norm ∥ ∂ f (x)

∂x ∥F over the known classes K .

Corollary 4. Maximizing the inter-class distances strictly in-
creases strictly increases

Vol(S ) and/or Ex∼S [∥ ∂ f
∂x ∥F] (2)

where S is the support of Jacobian norm

S := {x ∈ O : ∥ ∂ f (x)
∂x ∥F > 0}, (3)
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whose Jacobian norm is greater than 0, and Vol(S ) is the vol-
ume of S . Hence, if S ∩ U , ∅, then the inter-class maxi-
mization enlarges the volume Vol(U ∩ S ) and/or increases the
Jacobian norm of unknown class samples x ∈ U ∩ S .

Hence, maximizing the inter-class distances between the
known classes access to the unknown class samples indirectly
via the region S of high Jacobian norm, and increases the Jaco-
bian norm of unknown class representations.

Overall, by metric learning, the model increases the expected
Jacobian norm difference between the known and unknown

E
x∼U

[∥ ∂ f (x)
∂x ∥F] − E

x∼K
[∥ ∂ f (x)
∂x ∥F]. (4)

The increased Jacobian norm difference then separates the
known classes from the unknown class in the representation
space:

Corollary 5. The inter/intra-class learning separates the un-
known class from known classes in the representation space by
inducing the Jacobian norm difference between the known and
unknown.

3.3. Limitation of the Theory on Jacobian Norm

We highlight that the Jacobian norm characteristic is only
one of the many explanatory factors that demystifies how
closed-set metric learning derives OSR; our analysis does not
fully characterize all connections between closed-set metric
learning and OSR. One apparent phenomenon our theory does
not explain is that known and unknown representations can be
separated in the metric space with having the same Jacobian
norm value. Moreover, our theory is limited in characterizing
the support set S . As the support set does not include the whole
part of the open set, there would be some unknown class that
is not included in the support. In this case, the Jacobian norm
difference indicated in Eq. (4) would not be explanatory.

3.4. Summary of Theory

Training a discriminative model over the known classes re-
duces the Jacobian norm over known class samples, while in-
creasing the volume of region of high Jacobian norm in the open
set. Due to the increased volume of high Jcaobian norm re-
gion, the unknown class samples likely fall into this region, and
thus involve high Jacobian norm values. Overall, the embed-
ding representations of known classes are separated from those
of unknown class because the Jacobian norms of known classes
are low while the Jacobian norms of unknown class are high.
Our theoretical finding is summarized in Fig. 2.

4. Empirical Verification of the Theory

In this section, we empirically verify the theory developed in
Sec. 3 in multiple aspects.

4.1. Experiment Setup

We empirically analyze the relationship between the Jaco-
bian norm difference and the unknown class detection to evi-
dence our theoretical analysis. To this end, we train our pro-
posed model as described in Sec. 5 and 6, and evaluate over the
standard OSR benchmark datasets [14]. To compute the degree
of separation between known and unknown, we use the detec-
tion score provided in Sec. 5.3 and evaluate the area under the
receiver-operating-characteristic curve (AUC) metric [32]. The
discriminative (cluster) quality of known class representations
is measured in Davies-Bouldin Index (DBI) [33], which mea-
sures the ratio of intra-class distance to inter-class distance. All
experiments are conducted with one 12GB GPU RTX 2080-ti.
Due to resource limitations, empirical observations are made
on standard OSR datasets rather than recently proposed high-
resolution OSR datasets [15].
Datasets. For the empirical analysis, we test on the standard
OSR datasets as described in Protocol A of Sec. 6.1. Each
dataset consists the K number of known classes and 1 unknown
class, overall constituting K+1 semantic classes. The unknown
class can be constituted by a diverse set of semantic classes, but
is regarded as a single chunk. The known classes must have no
semantic overlap with the unknown class.

4.2. Empirical Observations

Jacobian norm before and after training. Fig. 3 demonstrate
that the gradient norm separates the representations only after
training. Fig. 4 displays the gradient norm over the linearly in-
terpolated data samples xt for t ∈ [0, 1] between two different
class samples x0 ∈ Ci and x1 ∈ C j. It shows that the interpo-
lated samples inside the open region have a larger gradient norm
than those in the known classes. These empirical observations
support our theory.

In practice, however, the inter/intra-class distance optimiza-
tions conflict; thus, the overall gradient norm increases for both
the known and unknown.

Moreover, on some datasets (SVHN and TinyImageNet), the
inter-class separation may not be substantial due to innate data
characteristics such as small inter-class data variance. Accord-
ingly, based on Theorem 2b, the weak inter-class separation in-
duces relatively smaller difference in Jacobian norm between
the known and unknown, resulting a larger overlap between
them.
The dynamics of the Jacobian norm during training. Fig. 5
shows the dynamics of different quantities during training.
The intra/inter-class distance optimization increases the qual-
ity of cluster separation measured by DBI. Accordingly, the
linear projected path length between different known classes
in the representation space increases (Fig. 5b). As a result, the
model increases both the Jacobian norm difference (Fig. 5c) and
the degree of separation between known and unknown classes
(Fig. 5d) as claimed by the theory.

Although the global trend has a simple correspondence be-
tween these metrics, a more careful look at the graphs of Fig. 5
shows that the metrics involve different phases during training.
Specifically, the intra/inter ratio is stable at the early stage of
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Closed-set metric learning:

intra-class distance minimization

inter-class distance maximization

Jacobian norm:

decreases over the known 

increases over the unknown
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the known and unknown
in the representation space

Other factorsOther factors

(e.g., weight decay and self-supervision)
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Cor. 4

(e.g., m-OvR and data augmentation)

main theoretical and empirical finding

additional empirical finding

Figure 2: The summary of our theory on how a model becomes aware of the unknown by the closed-set metric learning over the known classes.

CIFAR10 CIFAR10+ CIFAR50+ SVHN TinyImageNet

Figure 3: The distribution of Jacobian norms of representations before and after training. Although the model is trained only on the known class data, the model
learns to increase the Jacobian norm of unknown class representation, while lowering the Jacobian norm of the known class representation.
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CIFAR10 TinyImageNet

Figure 4: Given known class samples x0 ∈ Ci and x1 ∈ C2 from two different
classes Ci and C j, we linearly interpolate between x0 and x1 by xt := (1 −
t)x0 + tx1. Then, we measure the Jacobian norm of the representation f (xt).
When t ≈ 0.5, the interpolated sample xt passes through the open set, where
unknown class samples arise.

training. On the other hand, the inter-class distance is still in-
creasing even at a later stage. The Jacobian norm difference
rises more gradually, and the rate of increase becomes large at
the last stage. The separation between the known and unknown
also increases largely at the early stage but continues to improve
even later in training. These observations show that the known
and unknown class representations are separated as the model
makes their Jacobian norm different. Still, the Jacobian norm is
not the only factor contributing to their separation.

The correlation between Jacobian norm and discriminative
metrics. For each dataset, we measure the following three met-
rics during different training iterations: the discriminatory qual-

ity of known class representations (DBI), the unknown class
detection performance (AUC), and the averaged Jacobian norm
difference between known and unknown classes.

Fig. 6(1st row) shows that the degree of separation between
the known and unknown strongly correlates to the Jacobian
norm difference. This observation evidences our theoretical
claim that the closed-set metric learning separates the unknown
by increasing their Jacobian norm difference during training.
There is, however, nonlinearity between these two metrics,
showing that the Jacobian norm difference is not the only factor
contributing to the separation of unknown class representation.

Fig. 6(2nd row) shows a similar correlation trend between
the intra/inter-class distance ratio (DBI) and the Jacobian norm
difference. However, the nonlinearity between them is severe.
The plot indicates that the Jacobian norm difference abruptly
increases at a later stage of training where the intra/inter ratio is
already small and stable.
The relation between the Jacobian norm difference and the
number of discriminative classes. Theorem 2 states that the
inter-class distance maximization between a single pair of in-
ter classes (Ci,C j) can cause to increase in the Jacobian norm
difference. Therefore, we hypothesize that a larger number
of inter-class pairs would improve the Jacobian norm differ-
ence, contributing to better separation between known and un-
known class representations. The results are given in Fig. 7 sup-
ports the hypothesis by showing that the Jacobian norm differ-
ence tends to become larger with a larger number K of known
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(a) (b) (c) (d)

Figure 5: Several metrics are measured while a discriminative model (ours) is trained. (a) The discriminative quality of known class representations is measured in
DBI. (b) The averaged inter-class distances between known classes. (c) The Jacobian norm difference between the known and unknown classes. (d) The degree of
separation between known and unknown class representations. All metrics are improved as the discriminative model learns.

Jacobian Norm Di�erence Jacobian Norm Di�erence Jacobian Norm Di�erence Jacobian Norm Di�erence Jacobian Norm Di�erence

D
BI

AU
C

CIFAR10 CIFAR10+ CIFAR50+ SVHN TinyImageNet

Figure 6: We measure the detection performance (in AUC), the discriminative quality of known classes (in DBI), and the averaged Jacobian norm difference for a
single model during different training iterations, indicating a strong correlation between these metrics.

classes. We note that the exceptions may occur as some known
classes are more similar to the unknown class examples; adding
to the train data a known class that is similar to the unknown
may slightly reduce the Jacobian norm difference.

5. Method

We develop an effective OSR method based on our theoret-
ical finding given in Fig. 2. Firstly, we devise a margin-based
one-vs-rest that can induce powerful inter-class separation be-
tween different known classes. Then, we integrate the loss term
with other regularizers that enhance the separation of the un-
known via the Jacobian norm difference. Finally, for the un-
known class detection in the inference stage, we utilize the
sample-wise loss function as it is aware of both the Jacobian
norm difference and proximity to the known class prototypes.

5.1. Training: marginal One-vs-Rest Loss (m-OvR)

Our analysis indicates that the powerful inter-class separa-
tion is the key to separate the known from the unknown in the
Jacobian norm and therefore in the representation space. Mo-
tivated upon this theory, we devise a marginal one-vs-rest (m-
OvR) loss that induces powerful inter-class separation by pre-
venting the collapse between inter-class prototypes wk and ef-

fective inter-class gradients. The m-OvR loss is given by

L(x, y) = −
K∑

k=1

1{y = k} log p(k|x) + 1{y = k} log (1 − p(k|x))

(5)
where (x, y) is a labeled sample, and 1{·} is an indicator func-
tion. The class probability p(k|x) is given by σ(T sk) where σ
is the sigmoid activation, sk is the cosine similarity between the
representation f (x) and the k-th class proxy prototype wk, and
T is a scale term to calibrate the sigmoid probability.

During training, the bare minimization of the loss in Eq. (5)
involves a harmful behavior; particularly, minimizing the loss
in Eq. (5) collapses the inter-class prototypes as observed by
below proposition:

Proposition 6. The minimum OvR loss collapses all prototypes
wk = wk′ except wy.

This inter-class collapse weakens the inter-class separation.
We mitigate this situation by inserting a margin in the similarity
computation; namely, during the training of the OvR metric-
learning loss, the similarity is computed by

sk = cos(arccos(wk · f (x)) + m) (6)

where m > 0 is the margin. The margin ensures an angular gap
of degree 2m between inter-class prototypes, thus preventing
their collapse:
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Figure 7: Increasing the number K of known classes increases the Jacobian norm difference between the known and unknown classes.

(a) (b) (c) (d)

Figure 8: Comparison of the loss functions (SCE and m-OvR) with respect to (a) the discriminative quality in DBI, (b) the average of the pairwise distance between
class-wise mean features, (c) Jacobian norm difference, and (d) unknown class detection performance in AUC.

Proposition 7. For the nonzero margin m > 0, however,
the angle gap can be assured between different prototypes
∡(wk1 ,wk2 )≥2m.

In addition, the proposed m-OvR induces more powerful
inter-class separation than the standard softmax cross-entropy
(SCE) loss:

Proposition 8. Assume sy > 0. Then, the inter-class gradient

for the m-OvR ∂sm-OvR
k
∂θ

is greater than that for the SCE ∂sSCE
k
∂θ

.

Therefore, m-OvR is more effective at increasing the Jaco-
bian norm difference and, hence, the unknown class detection
performance accordingly.

The empirical observations given in Fig. 8 indicate the effec-
tiveness of m-OvR compared to the SCE loss in terms of Ja-
cobian norm difference, discriminative quality of known class
representations, and the unknown class detection performance
based on the detector in Sec. 5.3.

5.2. Training: Subsidiary Techniques to Improve OSR
Using the Jacobian norm principle from Sec. 3, we ex-

plain how the standard techniques (weight decay, auxiliary self-
supervision, and data augmentation) improve the separation be-
tween known and unknown class representations, thereby im-
proving the OSR performance. Our final model is combined
with these techniques.
Data Augmentation. The training data is usually limited.
Hence, directly applying metric learning to the raw data without
augmentation results in suboptimal inter-class separation and
intra-class compactness. The Jacobian norm difference between
known and unknown class representations would be negligible
in this case. Applying data augmentation resolves this issue
by expanding the training set size based on the prior human
knowledge of the data. Furthermore, the improved Jacobian
norm difference by data augmentation enhances the unknown
class detection (Fig. 10).

Weight Decay. Based on [34], the embedding similarity sk is
optimized based on the gradient

∂sk/∂ f̂ = (wk − sk f ) · ∥ f̂∥−1
2 . (7)

Thus, the small norm ∥ f̂∥2 of the (unnormalized) representa-
tion can incite stronger inter-class separation. The weight de-
cay decreases this norm by decreasing the values of the network
parameters in f̂ [31]. Based on our theory, the enhanced inter-
class separation results in higher Jacobian norm values of the
unknown class representation, resulting in better separation be-
tween the known and unknown in the representation space. The
experimental results in Fig. 11 precisely verify this theoretical
observation.

Auxiliary Self-Supervision. To improve the unknown class
detection performance, several works [35, 36] employ an auxil-
iary supervision task to predict the degree of rotation (either 0,
90, 180, or 270) on the rotated images. This extra discrimina-
tive task poses additional inter-class separation learning on the
model. Based on our observations in Sec. 3 and 4 and Fig. 7,
posing additional inter-class separation increases the Jacobian
norm of the unknown, thereby improving the separation be-
tween the known and unknown class representations (Fig. 12).
We note, however, that the auxiliary self-supervision should be
accompanied with care; predicting rotation in a standard man-
ner may collapse the original class prototypes wk as the rotation
prediction head regards the original classes as a single 0-degree
class. Hence, we add the auxiliary self-supervision loss Lsel f

with a small coefficient λsel f = 0.1.

Our final metric-learning objective is to minimize the com-
bined loss L + λsel fLsel f with data augmentation and weight
decay.
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Figure 9: The correlation between sample-wise losses and the Jacobian norm of the corresponding representations.

(a) (b) (c)

Figure 10: The effect of data augmentation with respect to (a) the discriminative quality in DBI, (b) Jacobian norm difference, and (c) unknown class detection
performance in AUC.

5.3. Inference: Unknown Class Detection by the Sample-Wise
Loss Function

To effectively detect unknown class samples during the in-
ference stage, we utilize the sample-wise loss function. Based
on our theoretical finding, the loss function is aware of both the
Jacobian norm difference and the closeness to the known class
prototype:

L(x) low/high⇐⇒Exu∼U

[∥∥∥∥∥∂ f
∂x

(xu)
∥∥∥∥∥

2

]
−

∥∥∥∥∥∂ f
∂x

(x)
∥∥∥∥∥

2
low/high

(8)

and min
k
D( f (x),wk) low/high

Hence, the loss function (1) differentiates the the known class
representations in the low Jacobian norm region from the un-
known class representations residing in the region of high Ja-
cobian norm, and (2) separates the known class close to the
prototypes wk from the unknown class instances. The positive
correlation indicated in Fig. 9 vindicates the property of loss
function described in Eq. (8).

6. Experiments for Comparison

The experiment section is outlined as follows: (1) We com-
pare our method with other baseline OSR models for the un-
known class detection task under two different widely-used pro-
tocols, Protocol A [14] and Protocol B [39]. (2) We conduct a
careful ablation study of our method, analyzing each compo-
nent in terms of the unknown class detection performance and
the Jacobian norm. (3) We visualize and analyze the Jacobian
norm of representation with respect to the metric distances in
the representation space. To this end, we compare our proposed
model with a baseline model trained with the bare SCE loss.

Our proposed model is trained with the m-OvR loss in all ex-
periments below. Unless specified, we always include weight
decay, data augmentation, and auxiliary self-supervision in our
model. The default model hyperparameters are as follows:
the scale term T = 32, margin m = 0.5, the auxiliary self-
supervision coefficient 0.1, and the weight decay 1e−3.

We consider three backbones to extract the representation:
WRN-16-4 [41], VGG [14], and ResNet-18. For WRN-16-4
and VGG, our model is trained by SGD with 20k training iter-
ations unless specified otherwise. Its learning rate is regulated
under a cosine scheduler, initiating from 0.1 and decaying to
1e−5. The batch size is 128. In the case of the ResNet-18 back-
bone, on the other hand, the model is trained for 200 epochs un-
der the SGD optimizer with a momentum of 0.9 and a learning
rate of 0.06 that decays to 0 by the cosine learning scheduler.

In all experiments, the model is trained only with known
classes so that the model never sees any unknown class sam-
ple during training.

6.1. Performance Comparison - Protocol A

Datasets-Protocol A. In this protocol [14], we use five different
OSR datasets to compare different OSR methods in terms of the
closed-set classification accuracy and unknown class detection
performance.

Our method is evaluated for unknown class detection per-
formance (AUC) and closed-set accuracy (ACC). The protocol
used in [14] is adopted with the following benchmark datasets:

• CIFAR10 and SVHN: Among the total ten classes, K=6
classes are chosen as the known ones, regarding the rest as
a single unknown class. CIFAR10 [42] consists of generic
object images while SVHN [43] of street view numbers.

• CIFAR10+ and CIFAR50+: To make CIFAR10 more
challenging, CIFAR10+ and CIFAR50+ are considered,
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(a) (b) (c)

Figure 11: The effect of weight decay (WD) with respect to (a) averaged inter-class distance, (b) Jacobian norm difference, and (c) unknown class detection
performance in AUC.

(a) (b) (c)

Figure 12: The effect of auxiliary self-supervision (S) with respect to (a) Jacobian norm difference, (b) Jacobian norm of unknown class, and (c) unknown class
detection performance in AUC.

Table 1: Unknown class detection performance (in AUC) and closed-set accuracy (ACC) for OSR where the unknown class is derived from the same distribution.
The results are the averages from 5 random splits. * indicates that the values are taken from the references. ‘Arch.’ denotes the backbone network used.

Method Arch. CIFAR10 CIFAR10+ CIFAR50+ SVHN TinyImageNet

ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

SCE* [1] (ICLR’17) VGG - 67.7 - 81.6 - 80.5 - 88.6 - 57.7
OpenMax* [16] (CVPR’16) VGG 80.1 69.5 - 81.7 - 79.6 94.7 89.4 - 57.6
RPL* [18] (ECCV’20) VGG - 82.7 - 84.2 - 83.2 - 93.4 - 68.8
PROSER* [21] (CVPR’21) VGG 92.6 89.1 - 96.0 - 95.3 96.4 94.3 52.1 69.3
CPN* [20] (TPAMI’22) VGG 92.9 82.8 - 88.1 - 87.9 96.4 92.7 - 63.9
ODL* [37] (TPAMI’22) VGG - 88.5 - 91.1 - 90.6 - 95.4 - 74.6
Ours (combined) VGG 96.4 89.5 96.3 96.2 96.5 95.7 97.4 95.7 78.2 75.3

SCE (ICLR’17) WRN 92.1 76.5 94.0 84.7 94.0 83.8 97.0 92.1 65.8 66.1
N-SCE WRN 93.7 76.8 93.7 85.3 93.7 84.4 97.1 91.8 64.5 66.4
DOC [17] (EMNLP’17) WRN 91.6 78.0 93.9 88.2 93.9 88.1 97.0 93.5 59.6 65.5
RPL (ECCV’20) WRN 94.7 82.0 95.9 91.1 96.1 90.9 97.5 93.4 71.4 70.4
CPN (TPAMI’22) WRN 91.2 76.2 93.7 84.6 93.7 83.2 96.7 92.3 59.7 64.6
Ours (combined) WRN 97.0 89.0 97.7 96.6 97.6 96.0 98.0 97.0 79.1 77.0

CSSR* [38] (TPAMI’22) ResNet-18 - 91.3 - 96.3 - 96.2 - 97.9 - 82.3
GoodOSR [15] (ICLR’22) ResNet-18 96.3 91.4 97.4 96.0 97.4 94.2 96.6 97.5 83.1 82.2
Ours ResNet-18 96.0 92.9 97.3 98.0 97.3 96.5 96.8 98.2 83.2 82.9

in which K=4 known classes are selected from CIFAR10
while 10 (or 50) classes from CIFAR100 [42] constitute a
single unknown class.

• TinyImageNet: In TinyImagenet (TIN) [44] with more
diverse categories, K=20 classes constitutes the known,
while the other 180 remaining ones form a single unknown
class.

Results-Protocol A. The comparison results are given in Table
1, which indicate that our proposed methodology is effective for
OSR across different backbone architectures, including VGG,
WRN, and ResNet-18.

A significant attribute of our methodology lies in the em-
ployment of our margin-based loss, m-OvR, which not only
optimizes intra-class compactness but also ensures inter-class
separation by circumventing inter-class collapse, as detailed in
Prop. 7. This aspect renders our work as an improvement over
the prevailing techniques such as RPL, CPN, and OvRN-CD,
which predominantly focus on the inter-class aspects alone.
Furthermore, our methodology incorporates carefully chosen
subsidiary techniques, including weight decay, representation
unit-normalization, and self-supervision through rotation pre-
diction, which can efficaciously enhance OSR.
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Table 2: OSR performance under macro-averaged F1-score. * indicates that the values are taken from the references. ‘Arch.’ states the backbone network used. The
weight decay is applied in default.

Method Arch. Param.
ImageNet-

crop
ImageNet-

resize
LSUN-

crop
LSUN-
resize Avg.

SCE* [1] (ICLR’17) VGG 1.1M 63.9 65.3 64.2 64.7 64.5
OpenMax* [16] (CVPR’16) VGG 1.1M 66.0 68.4 65.7 66.8 66.7
CROSR* [39] (CVPR’19) VGG 1.1M 72.1 73.5 72.0 74.9 73.1
GFROSR* [40] (CVPR’20) VGG 1.1M 75.7 79.2 75.1 80.5 77.6
PROSER* [21] (CVPR’21) VGG 1.1M 84.9 82.4 86.7 85.6 84.9
OvRN-CD* [24] (TNNLS’22) VGG 1.1M 83.5 82.5 84.6 83.9 83.6
Ours VGG 1.1M 84.2 88.4 85.1 88.1 86.5

SCE WRN-16-4 2.7M 79.1 79.2 80.3 80.8 79.9
m-OvR WRN-16-4 2.7M 80.5 79.8 79.2 81.2 80.2
SCE + A WRN-16-4 2.7M 84.5 88.5 87.0 88.8 87.2
m-OvR + A WRN-16-4 2.7M 87.4 89.0 89.0 90.0 88.9
SCE + A + S WRN-16-4 2.7M 84.6 87.5 87.5 87.5 86.8
m-OvR + A + S WRN-16-4 2.7M 89.1 90.5 90.4 90.9 90.2

Table 3: Ablation of our proposed model by analyzing its training components: the m-OvR loss, unit-normalization (N) of representations, the margin m in the
similarity computation, weight decay (W), data augmentation (A), and auxiliary self-supervision (S). Models are evaluated in terms of unknown class detection
performance (AUC), closed-set accuracy (ACC), and detection accuracy (DetACC). SCE substitutes in the absence of m-OvR.

Model OvR N m W A S
CIFAR10

AUC/ACC/DetACC
CIFAR10+

AUC/ACC/DetACC
CIFAR50+

AUC/ACC/DetACC
SVHN

AUC/ACC/DetACC
TIN

AUC/ACC/DetACC
Avg.

AUC/ACC/DetACC
Baseline 76.5/92.1/70.8 84.7/94.1/78.9 83.9/94.1/78.1 92.1/97.1/86.1 66.1/65.8/62.8 80.7/88.6/75.3
m-OvR ✓ ✓ ✓ 79.3/91.6/72.8 90.1/93.9/82.6 89.8/94.1/82.1 93.8/97.1/87.6 66.2/62.3/62.7 83.9/87.8/77.6

one
out

a ✓ ✓ ✓ 85.0/96.1/78.1 90.4/96.8/84.1 89.3/96.9/82.6 94.4/97.7/88.7 74.7/77.8/70.0 86.7/93.1/80.7
b ✓ ✓ ✓ ✓ 83.9/95.9/77.0 92.9/97.0/85.8 91.7/97.1/85.0 95.6/97.7/88.6 75.0/77.0/69.8 87.8/92.9/81.2
c ✓ ✓ ✓ ✓ ✓ 79.2/93.1/63.7 95.7/95.6/89.0 94.5/95.5/86.8 95.5/97.1/88.3 66.1/67.0/62.8 86.2/89.7/78.1
d ✓ ✓ ✓ ✓ ✓ 81.7/95.1/77.5 92.2/95.7/86.5 90.6/95.7/85.1 87.1/97.6/88.4 65.6/66.4/63.8 83.4/90.1/80.3

w/o
A+S

e ✓ 81.6/94.1/75.7 87.7/95.6/81.3 87.1/95.8/80.7 94.4/97.7/89.3 70.1/67.8/65.4 84.3/90.2/78.5
f ✓ ✓ 79.9/93.4/73.8 86.8/95.0/80.7 85.0/94.9/78.7 92.7/97.3/87.0 67.3/67.0/63.6 82.3/89.6/76.7
g ✓ ✓ ✓ ✓ 80.3/93.8/74.1 89.6/95.2/82.8 88.6/95.0/81.4 92.8/97.4/86.3 68.9/65.4/64.7 84.0/89.4/77.9

w/o
S

h ✓ ✓ 83.2/95.9/76.5 91.1/97.1/84.6 90.6/97.0/84.1 94.1/97.5/87.7 75.6/76.5/69.9 86.9/92.8/80.5
i ✓ ✓ ✓ 84.6/96.1/77.0 95.6/97.2/88.8 94.6/97.2/86.2 96.6/97.9/90.5 76.8/77.8/70.8 89.6/93.2/82.7
j ✓ ✓ ✓ ✓ ✓ 84.6/96.1/77.0 95.6/97.2/88.8 94.6/97.2/86.2 96.6/97.9/90.5 76.8/77.8/70.8 89.6/93.2/82.7

on
m

k ✓ ✓ ✓ ✓ ✓ 85.0/96.4/78.6 92.9/97.2/86.3 92.4/97.2/85.4 95.8/98.0/89.9 76.8/79.2/71.3 88.6/93.6/82.3
Ours ✓ ✓ ✓ ✓ ✓ ✓ 87.7/97.2/80.0 96.6/97.8/89.6 96.0/97.6/88.1 97.0/98.0/91.5 77.0/79.1/71.0 90.9/93.9/84.0

We note that our approach, even without the use of complex
training tricks but solely utilizing the m-OvR loss, is compara-
ble to the state-of-the-art GoodOSR. The pivotal differentiation
lies in that GoodOSR boosts the OSR performance by excessive
hyperparameter tuning and various cutting-edge training tricks,
while ours is simply based on the loss function design.

6.2. Performance Comparison - Protocol B

Datasets-Protocol B. In this experiment, the model is trained
over K known classes and classifies K+1 where the K + 1-
th class is the unknown class. The protocol given in [39]
is adopted. For benchmarking, we use CIFAR10 classes as
the known with K=10. The unknown class is either Ima-
geNet [45] or LSUN [46] that comprises scenery images. They
are resized or cropped, constituting ImageNet-crop, ImageNet-
resize, LSUN-crop, or LSUN-resize. Following the convention
given in [21, 39], we choose the threshold τ for the inference
score in Sec. 5.3 so that 10% of the validation set is detected
as unknown class samples. The performance is evaluated using
macro-averaged F1-score [47].
Results-Protocol B. The result in Table 2 shows that our
proposed method outperforms all other baselines in the aver-
age performance. Under the WRN-16-4 architecture, m-OvR
shows superiority over SCE, significantly more effective than

SCE when applied with augmentation (A) and self-supervision
(S). This is mainly due to the large Jacobian norm difference
derived from the highly discriminative representations of the
m-OvR (as observed in Fig. 8) triggers a strong separation be-
tween the known and unknown class representations.

6.3. Ablation Study

Ablation on Training Components. Each component in our
model is more carefully evaluated in this experiment. For this
purpose, we use the standard metrics used in OSR; namely,
AUC for the unknown class detection performance, the closed-
set accuracy (ACC), and detection accuracy (DetACC) [2]. The
second block in the row shows that the m-OvR loss outper-
forms the SCE loss by a large margin, even when there is no
data augmentation (A), weight decay (W), and self-supervision
(S). The representation embedding normalization (N) improves
the performance by preventing trivial increase of the Jacobian
norm. The third block in a row (‘one out’) of Table 3 along
with the model-j compares each component by removing one of
them out, verifying the effectiveness of each in the entire model.
When the standard data augmentation is available (i.e. the fifth
block), m-OvR effectively utilizes the data, thus more effec-
tively separating the known from the unknown than SCE. Fi-
nally, the sixth block analyzes the margin, which improves the
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Figure 13: The plot of Jacobian norm difference versus the unknown class detection performance (AUC). Each point corresponds to a distinct model trained over a
different known set, following the protocol of [14]. Different colors indicate different methods. The plot shows the positive correlation, and the all combined model
has the largest Jacobian norm differnce.
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Figure 14: The 2-dimensional t-SNE [48] visualization of f (x) trained on
MNIST under the protocol of [14]. In the left column, the black color denotes
the unknown class. The temperature in the heat map (right column) indicates
the (min-max normalized) Jacobian norm ∥∂ f/∂x∥F . The figure shows that the
larger the Jacobian norm difference between the known and unknown (i.e., the
color contrast in the right column figures), the better the separation between the
known and unknown.

effectiveness of the loss-based unknown class detector by re-
solving the prototype misalignment issue.
Ablation with Jacobian Norm Difference The scatter plot for
each fixed dataset in Fig. 13 shows that the degree of sepa-
ration between the known and unknown class representations
positively correlates to the Jacobian norm difference. The cor-
relations in CIFAR10 and TinyImageNet are strong, while CI-
FAR10+ and CIFAR50+ exhibit some degree of nonlinearity.
In SVHN, on the other hand, the correlation is comparatively
weak due to the performance saturation. Moreover, this proves
that the large Jacobian norm difference is not the only factor that
captures distance separation between the known and unknown,
as already remarked by Sec. 3.3).
Ablation on Model Hyperparameters. We analyze the hyper-
parameters of our overall model. Fig. 15 shows that the un-
known class detection performance is robust for a sufficiently
large scale term T , and the margin m should not be too large.

On the other hand, if the weight decay coefficient λwd is
overly large, then it collapses the embedding to a constant (i.e.,
zero vector). At the same time, overly small λwd has no impact
as a regularizer. Finally, we remark that selecting a proper coef-
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Figure 15: Unknown class detection performance (AUC) versus (a) the scale T ,
(b) the margin m, (c) the coefficient of the weight decay, and (d) the coefficient
of the auxiliary self-supervision loss.

ficient for the weight decay is not tricky by observing the train
loss dynamic during the early stage.

As already remarked in Sec. 5.2, the rotation-based self-
supervision auxiliary loss contributes positively only when its
coefficient λsel f is small (i.e., smaller than 1). The unknown
class detection performance is robust for the small values of
λsel f .

6.4. Visual Analysis of the Jacobian Norm of Representation

In the 2-dimensional visualization of Fig. 14 obtained by ap-
plying t-SNE on the embedding representations of data sam-
ples, the known classes exhibit small Jacobian norm values
while the unknown samples have larger Jacobian norm values.
Moreover, the degree of distance-wise separation becomes high
when the Jacobian norm contrast between the known and un-
known classes is more vivid.

7. Conclusion

We have demonstrated that closed-set metric learning distin-
guishes the unknown from the known by causing their repre-
sentations’ Jacobian norm values to differ. Crucially, inter-class

11



learning serves as the primary factor in this process, as it mod-
ifies the unknown class samples’ representations without di-
rectly accessing them. Recognizing the significant role of inter-
class learning in OSR, we developed a marginal one-vs-rest loss
function designed to promote robust inter-class separation. By
integrating this loss with other techniques that amplify the Ja-
cobian norm disparity between known and unknown classes,
we have successfully showcased the efficacy of our method on
standard OSR benchmarks.
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Appendix A. Assumptions to the Theory

For technical proofs of the theoretical parts, we assume the
following: Firstly, the known classes Ci in the input space (e.g.,
image pixel space) follow the following regularity:

Assumption 1.

(a) Each known class Ck is a simple smooth, connected com-
pact manifold with a nonzero volume Vol(Ck).

(b) For any linear path γ : [0, 1] → X from C j to Ck, there
exist t1 and t2 such that γ([t1, t2]) ⊆ O with 0 < t1 < t2 < 1

Note that the volume, denoted by Vol, in Assumption 1a is
the Lebesgue measure in the Euclidean space Rd. Assump-
tion 1b indicates that the in-between part of the linear inter-
polation between different known classes is a part of an open
set. This assumption is reasonable since interpolating in a very
high-dimensional space, such as image pixel space, always in-
duces meaningless inputs in the middle part of the interpolation.

Now, as to the representation embedding function f , we re-
strict our consideration to the neural network family with the
following regularity.

Assumption 2.

(a) f is a bounded smooth parametrized neural network (i.e.,
f = f θ with a parameter θ) with a sufficient complexity.

(b) For any linear simple smooth path γ : [0, 1] → Rdz from
x j ∈ C j to xk ∈ Ck, the inter-class distance maximization
strictly increases the length of the path f (γ([0, 1]) ∩ O)
between f (x j) and f (xk).

(c) For any simple smooth path γ : [0, 1] → Rdz from x j ∈

C j to xk ∈ Ck, the inter-class distance maximization does
not decrease the length of any sub-path f (γ([t1, t2]) ∩ O)
between f (x j) and f (xk) for any 0 ≤ t1 < t2 ≤ 1

Assumption 2a is a standard regularity condition. Assump-
tion 2b means that the inter-class separation is effective on the
linear interpolating path γ. Assumption 2b is visualized in
Fig. 1, which indicates that the length of projected (inter-class)
path is strictly increased by metric learning. Assumption 2c
means that the inter-class distance maximization involves no
contradictory behavior when the inter-class path is observed lo-
cally. The assumption is reasonable and based on the empirical
evidence given in Fig. 4.

In the below mathematical derivations, when we say that a
quantity Q( f ) increases with respect to a function f : Rd →

Rdz , it formally means that there is a sequence ( f (n))N
n=0 of func-

tions f (n) : Rd → Rdz with N ≥ 1 such that

Q( f (n)) ≤ Q( f (n+1)) (A.1)

for all 0 ≤ n < N. In the case of a strict increment, the in-
equality is replaced by the strict one. The decrement of Q( f ) is
similarly defined.

Depending on the context, Q may include the vectors wk ∈

Rdz (that serve as representation prototypes in our work): Q =
Q( f , {wk}

K
k=1).

Appendix B. Proofs to the Theory

Proof of Proposition 1. Fix Ck. We prove a stronger result that

∂ f
∂x
→ 0 ∈ Rdz×d (B.1)

for all x∈Ck. In which case, d f (γ(t))
dt → 0 for all t ∈

γ−1(γ([0, 1]) ∩ Ck) since d f j(γ(t))
dt =

∑n
i=1
∂ f j

∂xi
(γ(t)) γ′i (t) for all

j where x = (x1, . . . , xd) and f = ( f1, . . . , fdz ). Then, this impli-
cates that the length of f (γ([0, 1]) ∩ Ck) converges to 0 (as the
pointwise convergence guarantees the Lp convergence when the
functions are bounded).

Let f (n):= f θ(n) be a sequence that minimizes D( f (n)(x),wk)
to 0 as n→N. Let x∈Ck. Since the quantity at hand is a partial
derivative, without loss of generality, assume f (x) = f (x) and
x = x are scalar-valued (and also for wk = wk). Fix ϵ > 0. Then
for some δ > 0, we have∣∣∣∣∣∣ d

dx
f (n)(x) −

(
f (n)(x + h) − f (n)(x)

h

)∣∣∣∣∣∣ < ϵ (B.2)

for all h ∈ [−δ, δ] \ {0}. Taking n→ N, we obtain∣∣∣∣∣ limn→N

d
dx

f (n)(x) − 0
∣∣∣∣∣ < ϵ (B.3)

since f (n) → wk. The arbitrariness of ϵ concludes the proof.

Proof of Theorem 2. The intra-class minimization part is
proved in the proof of Proposition 1.

For the inter-class maximization part, without loss of gener-
ality, redefine f such that f (x) = 0 for all x ∈ X \ O, while to
be the same as the original f over O. Now, it suffices to prove
the strict increment of

∫
X
∥
∂ f (x)
∂x ∥F dx with respect to this f .

Note that Assumption 2c implies that ∥ ∂ f◦γ
∂t ∥2 as a function

of t is non-decreasing with respect to the changing f for any
simple smooth path γ. Hence, ∥ ∂ f

∂xl
(x)∥22 is non-decreasing for

any l = 1, . . . , d. We use this property freely in the following.
Since Vol(Ci) > 0 for all known classes Ci, for any pair of dif-

ferent known classes Ci and C j, we have a (d−1)-dimensional
hyperplane P ⊆ X such that

Vold−1

(
ρ(Ci) ∩ ρ(C j)

)
> 0 (B.4)

where Vold−1 is the (d−1)-dimensional volume, and ρ(Ci) is the
projection of Ci to the hyperplane P. Since a coordinate change
under rotation and translation does not change the volume inte-
gral of a function, we assume without loss of generality that

ek ⊥ P; (B.5)

that is, ek is perpendicular to P where ek is the k-th standard
basis element of Rd.

Now, observe∫
X

∥∥∥∥∥∂ f (x)
∂x

∥∥∥∥∥2

F
dx =

d∑
l=1

∫
X

∥∥∥∥∥∂ f (x)
∂xl

∥∥∥∥∥2

2
dx. (B.6)
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Since
∫
X
∥
∂ f (x)
∂xl
∥22 dx is non-decreasing for l , k, it suffices to

show that
∫
X
∥
∂ f (x)
∂xk
∥22 dx is strictly increasing. Let

R = {̂xk ∈ [−1, 1]d−1 : x ∈ ρ(Ci) ∩ ρ(C j)}. (B.7)

where x̂k denotes x̂k:=(x1, . . . , xk−1, xk+1, . . . , xd) that removes
the k-th element of x. Note that∫

X

∥∥∥∥∥∂ f (x)
∂xk

∥∥∥∥∥2

2
dx =

∫
R

∫ 1

−1

∥∥∥∥∥∂ f (x)
∂xk

∥∥∥∥∥2

2
dxkd x̂k

+

∫
Rc

∫ 1

−1

∥∥∥∥∥∂ f (x)
∂xk

∥∥∥∥∥2

2
dxkd x̂k (B.8)

where d x̂k:=dx1 · · · dxk−1dxk+1 · · · dxd. Since the second term
on the RHS of the above equation is non-decreasing, we con-
sider the first only, whose inner term∫ 1

−1
∥
∂ f (x)
∂xk
∥22 dxk. (B.9)

is decomposed into∫ a

−1
+

∫ b

a
+

∫ 1

b

∥∥∥∥∥∂ f (x)
∂xk

∥∥∥∥∥2

2
dxk (B.10)

where the scalars a = a(̂xk) and b = b(̂xk) are the infimum and
supremum of {xk : x ∈ Ci ∪ C j}, respectively, with x̂k ∈ R. The
first and third terms non-decrease, thus ignored. To compute
the mid term

∫ b
a ∥
∂ f (x)
∂xk
∥22dxk, consider a path

γ(t) = (x1, . . . , xk−1, a + (b − a)t, xk+1, . . . , xd) (B.11)

that depends on x̂k = (x1, . . . , xk−1, xk+1, . . . , xd)∈R. Then, γ is
a path from Ci to C j or the other way, and∫ b

a

∥∥∥∥∥∂ f (x)
∂xk

∥∥∥∥∥2

2
dxk = (b − a)

∫ 1

0

∥∥∥∥∥d f ◦ γ(t)
dt

∥∥∥∥∥2

2
dt (B.12)

= (b − a)ℓ( f ◦ γ) (B.13)

where ℓ( f ◦ γ) =
∫ 1

0 ∥
d f◦γ(t)

dt ∥
2
2dt. In summary,∫

O

∥∥∥∥∥∂ f
∂x

(x)
∥∥∥∥∥2

2
dx = A( f )+

∫
R
[b(̂xk)−a(̂xk)]ℓ( f ◦γ)d x̂k. (B.14)

Here, the inter-class maximization does not change R, x̂k, γ,
a(̂xk), and b(̂xk). On the other hand, the inter-class maximiza-
tion does not decrease the term A( f ). Moreover, note that
γ ∩ O is not empty and contains an interval by Assumption 1b.
Thus, by Assumption 2b, the inter-class maximization strictly
increases the term ℓ( f ◦γ), thereby strictly increasing the global
integral of the Jacobian norm over the open set. This finishes
the proof.

Proof of Corollary 4. By the above theorem, the inter-class dis-
tance maximization increases the integral

∫
O
∥
∂ f (x)
∂x ∥F dx. Now,

the integral
∫
O
∥
∂ f (x)
∂x ∥F dx can be decomposed into∫

O

∥
∂ f
∂x (x)∥F dx = Vol(S ) · E

x∼S
[∥ ∂ f
∂x (x)∥F] (B.15)

where x ∼ S is uniformly sampled is the support set of the Jaco-
bian norm over the open setO. Based on the decomposition, the
inter-class distance maximization increases the volume Vol(S )
of the set S and/or the expected Jacobian norm over S .

Appendix C. Proofs to the Method

Propositions 6 and 7. With the optimal prototypes {wk}
K
k=1 for

a single sample reprsentation f (x) paired with label y, we have
the collapse wk=−wy for all k,y if mn=0, while ∡(wk,−wy)≥mn

with k,y if 0<mn<π/2.

Proof of Propositions 6 and 7. For the optimal prototypes
{wk}

K
k=1, we have sy = maxwy sy and sk = −1. Regardless of

whether mn > 0 or not, we have f (x) = wy. For the negative
pair, if mn = 0, then f (x) = wk, and hence −wy = wk for all
k , y. If mn > 0, then sk = −1 when the angle between wk and
f (x) is π−mn, implying that ∡(wk,−wy) = ∡(wk,− f (x)) = mn,
finishing the proof.

Proof of Proposition 8. Observe that

∂LSCE

∂θ
= −c(

∑
j,y

es j−sy )
∂sy

∂θ
+ c

∑
k,y

esk−sy
∂sk

∂θ
(C.1)

where LSCE = log(1 +
∑

k,y esk−sy ) and c = (1 +
∑

j,y es j−sy )−1.
On the other hand,

Lm-OvR

∂θ
= −[1 + esy ]−1 ∂sy

∂θ
+

∑
k,y

[1 + esk ]−1 ∂sk

∂θ
. (C.2)

Hence, the inter-class gradient ∂s
SCE
k
∂θ

for SCE is

∂sSCE
k

∂θ
= cesk−sy

∂sk

∂θ
, (C.3)

while the inter-class gradient for ∂s
m-OvR
k
∂θ

is

∂sm-OvR
k

∂θ
= [1 + esk ]−1 ∂sk

∂θ
. (C.4)

To prove our claim, it suffices to show that ∂s
m-OvR
k
∂θ
>
∂sSCE

k
∂θ

. To
this end, observe that

esk−sy

1 +
∑

j,y es j−sy
<

1
1 + e−sk

, (C.5)

which is equivalent to

esk + 1 <
∑

j

es j = esk +
∑
j,k,y

es j + esy , (C.6)

which holds if ssy > 0 due to
∑

j,k,y es j ≥ 0. This completes our
proof.

Appendix D. Additional Empirical Results

The results given in D.16 show that the Jacobian norm trend
that we observed in the main sections holds the same way for
the softmax cross entropy models.
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(a)

(b)

(c)

(d)

Figure D.16: Several metrics measured while different discriminative models are begin trained. (a) SCE without data augmentation, (b) SCE with data augmentation,
(c) SCE with normalized embedding but without data augmentation, (d) SCE with normalized embedding and data augmentation.
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