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Abstract

We study the backward compatible problem for person re-identification (Re-ID), which aims to constrain the features of an updated
new model to be comparable with the existing features from the old model in galleries. Most of the existing works adopt distillation-
based methods, which focus on pushing new features to imitate the distribution of the old ones. However, the distillation-based
methods are intrinsically sub-optimal since it forces the new feature space to imitate the inferior old feature space. To address
this issue, we propose the Ranking-based Backward Compatible Learning (RBCL), which directly optimizes the ranking metric
between new features and old features. Different from previous methods, RBCL only pushes the new features to find best-ranking
positions in the old feature space instead of strictly alignment, and is in line with the ultimate goal of backward retrieval. However,
the sharp sigmoid function used to make the ranking metric differentiable also incurs the gradient vanish issue, therefore stems the
ranking refinement during the later period of training. To address this issue, we propose the Dynamic Gradient Reactivation (DGR),
which can reactivate the suppressed gradients by adding dynamic computed constant during forward step. To further help targeting
the best-ranking positions, we include the Neighbor Context Agents (NCAs) to approximate the entire old feature space during
training. Unlike previous works which only test on the in-domain settings, we make the first attempt to introduce the cross-domain
settings (including both supervised and unsupervised), which are more meaningful and difficult. The experimental results on all
five settings show that the proposed RBCL outperforms previous state-of-the-art methods by large margins under all settings.
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1. Introduction

Given an query image of a person, person re-identification
(Re-ID) retrieves images of the same person from a large gallery
of images collected across multiple cameras. In real-world ap-
plications, such a gallery is often accumulated over time through
pedestrian detection in real-time video streams, with person im-
ages represented by learned high-dimensional features. In prac-
tice, as the performance of old model becomes worse due to the
enlarged gallery, model update is needed. However, it is in-
tractable to recompute the features for all existing images given
the sheer size of galleries (billions of images at least), while
without recomputing the features, features from different ver-
sions of model are in different feature spaces, leading to poor
retrieval performance.

To tackle this problem, the ideal solution is to perform Back-
ward Compatible Training (BCT) [1] for the new model, which
targets at making the new features comparable with the exist-
ing old features via adding specially designed losses during the

∗Corresponding author.
Email addresses: xiaopan@zju.edu.cn (Xiao Pan),

haoluocsc@zju.edu.cn ( Hao Luo),
kugang.cwh@alibaba-inc.com (Weihua Chen),
fan.w@alibaba-inc.com (Fan Wang),
lihao.lh@alibaba-inc.com (Hao Li),
jiangweizju@zju.edu.cn ( Wei Jiang), ncsl@zju.edu.cn (
Jianming Zhang), gujianyang@zju.edu.cn ( Jianyang Gu),
peike.li@student.uts.edu.au (Peike Li)

RBCL (Ours) 

New Features (Class A)

Old Features (Class A)

Mis-ranked Features 

Old Features (Class B)

 Distillation-Based

Figure 1: Illustration of the difference between the previous distillation-based
methods and RBCL (ours). Squares and circles represent the new features and
the old features, respectively. Different colors represent different IDs and the ar-
rows represent the optimization direction. The distillation-based methods lead
to some mis-ranked new features after BCT due to the entangled old feature
clusters. With the help of RBCL, the new features are pushed into proper rank-
ing positions.

training of new model. There has been some works along this
direction [1, 2, 3]. For example, the Influence Loss [1] conducts
the distillation between the new features and the old ones with
the help of the old classifier. RBT [2] first maps new features
and old ones into a common feature space and then conduct
distillation. R3AN [3] transforms the new features into the old
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feature spaces with the reconstruction of the face image.
To our best knowledge, the existing methods are mainly

distillation-based. Such methods aim to imitate the distribution
of the old model that is less discriminative. However, we argue
that they are intrinsically sub-optimal for BCT Re-ID due to the
following two disadvantages: (1) Forcing the new model to im-
itate the old model would be harmful to the performance of new
model itself, especially for the cross-domain setting where the
performance of old model on new domain is extremely poor.
(2) Due to the low performance of old model, there may exist
entangled clusters in the old feature space. The roughly align-
ment will lead to mis-ranked new features, which will damage
the ultimate cross-model retrieval performance.

To address these issues, we propose the Ranking-based
Backward Compatible Lraining (RBCL), which directly op-
timizes the ranking metric between new features and old fea-
tures. As illustrated in Fig. 1, RBCL aims to push new features
into best-ranking positions in the old feature space, instead of
aligned strictly with it. In this case, the new feature space will
not be damaged too much, and the optimization is consistent
with the optimal goal of BCT Re-ID, which is to perform re-
trieval between new features and old features. However, to
make the discrete ranking metric differentiable, the sharp sig-
moid function is needed to smooth the indication function, yet
also incurs the gradient vanish issue of triplets due to its narrow
gradient-effective interval, and therefore stems the refinement
of ranking positions during the later period of training. To re-
lieve this issue, we propose the Dynamic Gradient Reactiva-
tion (DGR), which can reactivate the suppressed gradients via
adding dynamic computed compensate constant during the for-
ward step. With DGR, the gradients for ranking optimization
are exponentially enlarged, so that the new features are refined
to better-ranking positions. To further target the best-ranking
positions, we propose to include the Neighbor Context Agents
(NCAs) during optimization. NCAs can approximate the entire
old feature space with several representative samples, and can
provide more triplets for DGR to reactivate.

We evaluate our method under five challenging settings. In
contrast to previous works which only test on in-domain set-
tings, we make the first attempt to study BCT under cross-
domain settings, including supervised and unsupervised for
Re-ID. We emphasize that cross-domain Re-ID [4, 5, 6, 7, 8]
is important for real-world applications but has not been taken
into discussion in previous BCT works due to its challenging
nature. The experimental results show that our method can
achieve superior performance than the existing methods under
both in-domain and cross-domain settings.

The main contributions of this paper can be summarized
into the following aspects:

• To the best of our knowledge, we are the first work to
study the backward compatible training for person Re-ID
under both in-domain and cross-domain settings (includ-
ing both supervised and unsupervised).

• Unlike previous distillation-based methods, we propose
the RBCL to fully optimize the ranking metric between

new features and old features, which leverages DGR to
reactivate the suppressed gradients and includes NCAs
to further target the best-ranking positions.

• We perform extensive experiments to demonstrate the ef-
fectiveness and superiority of our proposed RBCL.

2. Related Work

2.1. Optimizing Ranking for Re-ID

Multiple works in this community [9, 10, 11, 12] have proved
that ranking information is important for Re-ID as a retrieval
task. The typical methods for optimizing the ranking for Re-
ID are Deep Metric Learning (DML) methods, which intend to
optimize the distance metric. Generally, the DML methods can
be further divided into pairwise [13, 14] and triplet-wise meth-
ods [10, 15, 16, 17, 11, 12]. To better exploit the information
when comparing features in a mini-batch, hard example mining
is first combined with Triplet loss by [10] and achieves signif-
icant improvement. To get richer pairwise information beyond
a mini-batch, Wang et al. [12] propose the cross-batch memory
(XBM) mechanism which memorizes the features of the past
iterations.

Another line of works for the ranking optimization is to di-
rectly optimize the Average Precision (AP), which belongs to
the ranking metric optimization. Average Precision (AP) is an
important metric for person Re-ID. The main problem for di-
rectly optimizing AP is that the calculation of AP includes a
discrete ranking function, which is neither differentiable nor de-
composable. Brown et al. [18] propose the Smooth-AP which
optimizes a smoothed approximation of AP and show its satis-
factory performance on large-scale datasets.

The improvement from these ranking-motivated loss func-
tions shows that exploiting the ranking is crucial for the Re-ID
task. Our proposed RBCL also takes the ranking into consid-
eration, which has been ignored in previous works for BCT.
We follow the ranking metric optimization [18] since the dis-
tance metric optimization is sub-optimal when evaluating using
a ranking metric.

2.2. Backward Compatible Training

Chen et al. [3] first formalize the cross-model face recogni-
tion task and propose the R3AN to transfer the features of the
query model to the feature space of the gallery model. R3AN
is specialized for the face recognition task and requires the two
models to be similar, which is not applicable in some real-world
model upgrade scenario. Wang et al. [2] propose to map the
features of the two models into a unified feature space through
the proposed Residual Bottleneck Transformation (RBT) blocks.
Then, several distillation (imitation)-style losses are applied in
the unified feature space. Both R3AN and RBT require extra
transformations on features, which brings about extra computa-
tion and is intractable in real-world applications. Shen et al. [1]
bring up the term of Backward Compatible Training (BCT) for
the first time, which focus more on the model upgrade scenario
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Figure 2: The training pipeline of RBCL. The fixed old features space is pre-computed before iteration. Then, during each iteration, the mini-batch is sent to the new
model to get the corresponding new features. After that, the new features are taken as query features and their corresponding NCAs are taken as gallery features for
ranking metric optimization. DGR is added during ranking metric optimization to refine the ranking positions. During inference stage, the query features extracted
by the new model are retrieved directly with the gallery features from the old model.

compared with the above mentioned two methods. They pro-
pose the Influence Loss, which performs distillation between
the logits of new features and old ones through the classifier
of the old model, and the classification loss of the new model is
combined with the Influence Loss when training the new model.
This form of combination is similar to Learning Without For-
getting (LWF) [19] which is the typical solution of incremental
learning, but differs in that the classifier of the old model is
fixed here. Meng et al. [20] propose LCE, which aligns the
centers between new features and old features, and then restrict
more compact intra-class distributions for new features. Al-
though LCE won’t distill the new feature distribution to the old
one strictly in instance-level, it still aligns these two distribu-
tions, which is ineffective for handling the entangled old clus-
ters. Different from the previous methods, our proposed RBCL
directly optimizes the ranking metric between new features and
old features.

3. Methodology

In this section, we first introduce the backward compatible
training in formula and then introduce our proposed Ranking-
based Backward Compatible Learning (RBCL).

3.1. Problem Formalization

Assuming that a new model trained without any consider-
ation of BCT is denoted as φnew, and the fixed old model is
denoted as φold. To improve the backward compatibility, we
design a method L and integrate it into the training process of
φnew. We then name the new model trained with the help of
method L as φnew−L.

For a test setDtest, its evaluation metric (e.g., mAP or Rank-
1) is represented as M(φq, φg;Dtest), where the query features
are extracted by φq, and gallery features are extracted by φg.
Since φnew and φold are in different feature spaces, directly eval-
uating between φnew and φold, i.e., M(φnew, φold;Dtest), gives

unsatisfactory performance. Therefore, our goal is to de-
sign a method L, which can make M(φnew−L, φold;Dtest) >
M(φold, φold;Dtest) as much as possible.

3.2. Ranking-based Backward Compatible Learning
The pipeline of our RBCL is illustrated in Fig. 2. Before

iteration, the training set of the new model is first sent to the old
model to get the fixed old feature space. Then, during each it-
eration, a mini-batch is sampled from the training set, and then
sent to the new model to get the corresponding new features.
After that, the new features are taken as the query features
and their corresponding NCAs (indexed by IDs from the pre-
computed old feature space) are taken as the gallery features.
Finally, the metric optimization is conducted between query
features and gallery features with the help of DGR, and the new
features are sent to Re-ID losses for discriminative learning.
During inference, the the query features are extracted by the
new model, and then directly retrieved (cosine similarity) with
the old gallery features.

3.2.1. Ranking Metric Optimization
Inspired by [18], we use the smoothed mean Average Pre-

cision (mAP) metric to optimize the ranking between new fea-
tures and old features during training. Given a query feature fi
from query feature set Fq, which is extracted by the new model,
the gallery feature set Fg extracted by the old model is split into
positive set Pi and negative setNi, which are formed by all in-
stances of the same class and of different classes, respectively.
Then, the smoothed AP for query i becomes:

APi=
1
|Pi|

∑
j∈Pi

1+
∑

p∈Pi\{ j} σ(di
p j)

1 +
∑

p∈Pi\{ j} σ(di
p j)+
∑

n∈Ni
σ(di

n j)
, (1)

where di
p j = sip − si j and di

n j = sin − si j, in which si j represents
for the cosine similarity between fi and f j; and σ(·) represents
for the sigmoid function:

σ =
1

1 + e−x/τ . (2)
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Figure 3: (a) The derivative of σ(·) when τ = 0.01. (b) The influence of α to
the compression function (Eq. 5).

which is the relaxed form of indication function to make AP dif-
ferentiable [18]. Then, the final smoothed mean Average Preci-
sion (mAP) loss is:

Lm = 1 −
1
|Fq|

∑
i∈|Fq |

APi. (3)

3.2.2. Dynamic Gradient Reactivation
The main goal of optimizing Lm is to make APi close to 1,

thus, although not completely equivalent, the key is to minimize
the
∑

n∈Ni
σ(di

n j) term in the denominator of Eq. 1. di
n j = sin−si j

is a triplet composed of an anchor i, a positive sample j, and
a negative sample n. Minimizing

∑
n∈Ni

σ(di
n j) means to de-

crease the similarity of negative pairs and increase the simi-
larity of positive pairs, i.e., to optimize the ranking. There-
fore, the gradient of each triplet di

n j plays an important role in
the ranking optimization. However, di

n j is wrapped by the sig-
moid function σ′(·), whose gradient-effective interval is quite
narrow since the derivative decreases exponentially as the dis-
tance from 0 becomes larger (see Fig. 3a), especially when τ
is small (τ = 0.01 performs best as mentioned in [18]). In this
case, only the triplets close to 0 can achieve effective gradients,
while for those away from 0 with certain distance, the gradients
are extremely small, i.e., vanished.

On the other hand, during the later period of training, we
have two observations about the distribution of di

n j (see the
green line in the upper right corner of Fig. 2): (1) Most of
the triplets are in proper ranking order after considerable time
of optimization, i.e., the majority of di

n j are smaller than 0 with
certain distance, and therefore achieve extremely small gradi-
ents. However, we propose that there still exists valuable infor-
mation among them which can further help refining the rank-
ing positions. Intuitively, the best-ranking positions in the fixed
old feature space are more likely to be achieved when more
triplets (ranking relations) are considered. (2) There still exist
several extremely hard negative samples which are closer to the
anchors than the positive samples with certain distance due to
the entangled clusters in the old feature space, i.e., several di

n j
are still larger than 0 with certain distance. However, such ex-
tremely hard negative samples can hardly be optimized due to
the vanished gradients. Therefore, their gradients should also
be enhanced. Based on (1) and (2), we conclude that the gradi-
ent vanish issue stems the further ranking optimization during
the later period of training.

To address this issue, we propose to reactivate these triplets
by compressing their distribution toward the gradient-effective
interval of σ′(·) via adding a reactivation constant ci

n j during the
forward step:

di
n j ←− di

n j + ci
n j,

ci
n j = f (di

n j;α) − di
n j,

(4)

where f (di
n j;α) is a compression function, and α controls the

degree of compression. Specifically, we choose f (di
n j;α) as:

f (di
n j;α) = σ(di

n j;α) − 0.5, (5)

where α is the anneal of sigmoid function. The influence of α
is illustrated in Fig. 3b. The larger the α is, the greater com-
pression is. Note that ci

n j is a constant without gradient, and is
customized for each di

n j, therefore we term it as “dynamic”.
As illustrated in the bottom right corner of Fig. 2, the distri-

bution of the triplets (di
n j) is compressed toward 0 after adding

DGR, therefore their gradients are exponentially enhanced in
general, which promotes refining the ranking positions.

3.2.3. Neighbor Context Agents
Although DGR can refine the ranking positions by enhanc-

ing gradients, the ranking optimization still lacks the global per-
spective for targeting the best-ranking positions. Intuitively, the
global best-ranking positions can be achieved only when the
model sees the entire old feature space. However, the compu-
tation overhead will be extremely expensive, especially when
the training set is large. Thus, we propose to include Neighbor
Context Agents (NCAs) during training to approximate the en-
tire old feature space. As illustrated in the middle of Fig. 2,
NCAs are composed of random agents from each class in the
neighbor area of current mini-batch. More concretely, we pre-
compute the old features of the training set, and then build an
adjacency matrix based on the euclidean distance between clus-
ter centroids. Then, during each iteration, given the samples
from the c-th class in the mini-batch, we choose the K classes
closest to the c-th class in the old feature space as its neighbor
setNc. For each class inNc∪{c}, we randomly pick one sample
as the agent at each iteration:

Ac
old = {Rand(Fk

old)|k ∈ Nc ∪ {c}}, (6)

where Rand(·) represents for the operation of randomly select-
ing one feature, Fk

old represents the set of old features for k-th
class, and Ac

old represents the set of the selected agents for c-th
class. Assuming that there are totally B classes in a mini-batch
({k1, k2, ..., kB}), all the gallery features picked at each iteration
are:

Fg = Ak1
old ∪ Ak2

old ∪ ... ∪ AkB
old. (7)

After training with abundant iterations, the NCAs will walk
through the entire old feature space, which can help target-
ing the best-ranking positions. Also, NCAs can provide more
triplets for DGR to reactivate.

4



Told Bold Tnew Bnew Dtest Sup CD NS

ID-S-1 M2M TM0.1 R50 TM R50 DM 3 5 5D2D TD0.1 R50 TD R50 DD

ID-S-2 M2M TM0.1 R50 TM R101ibn DM 3 5 3D2D TD0.1 R50 TD R101ibn DD

CD-S-1 M2D TM R50 TD R50 DD 3 3 5D2M TD R50 TM R50 DM

CD-S-2 M2D TM R50 TD R101ibn DD 3 3 3D2M TD R50 TM R101ibn DM

CD-US M2D TM R50 T u
D R50 DD 5 3 5D2M TD R50 T u
M R50 DM

Table 1: The detailed configurations of each setting. “Sup”, “CD”, and “NS”
represent for “Supervised”, “Cross Domain”, and “New Structure”, separately.
TM0.1 and TD0.1 represent for 10% of the training set (randomly split by iden-
tities). T u

M and T u
D represent for the unlabelled training set.

3.2.4. Overall Losses
We train Lm together with the Re-ID losses. Formally, the

final loss function for backward compatible training is:

Ltotal = Ltri +Lid +Lm, (8)

where Ltri and Lid represent for the Hard Mining Triplet Loss
[10] and ID Loss [21], which are commonly used losses in Re-
ID for discriminative learning.

4. Experimental Setting Formalization

As the backward compatible training for person Re-ID is
a relatively new topic, we would like to first formalize the ex-
perimental setup in this section before describing the details of
experimental results.

4.1. Datasets and Backbones

We conduct experiments on Market-1501 [22] and
DukeMTMC-reID [23, 24]. Market-1501 contains 12,936 im-
ages from 751 identities for training and 19,732 images from
750 identities for testing. The images are captured from 6 cam-
eras. DukeMTMC-reID contains 16,522 images from 702 iden-
tities for training and the rest images from 702 identities for
testing. ResNet-50 [25] and IBN-ResNet-101 [26] are used as
the backbones.

4.2. Setting Types

Notations. Formally, we represent the different backbones as
B = {R50,R101ibn}, where R50 and R101ibn represent for ResNet-
50 and IBN-ResNet-101, respectively. The training sets are rep-
resented as T = {TM ,TD}, where TM represents for the training
set of Market1501, and TD for DukeMTMC-reID. Similarly,
their test sets are denoted asD = {DM ,DD}. The detailed con-
figurations of all the settings below are illustrated in Table. 1.

4.2.1. In-Domain Settings
We first test the BCT performance under the basic in-

domain settings. For each in-domain setting, we test on both
Market1501 (M2M) and DukeMTMC-reID (D2D).
In-Domain Supervised Setting 1 (ID-S-1): Under this setting,
we randomly split 10% IDs from the original training set for the

training of old model, and train the new model with the entire
training set.
In-Domain Supervised Setting 2 (ID-S-2): To verify the ro-
bustness of the methods to the structure variance, under this
setting, we replace the backbone of the new model in ID-S-1
with IBN-ResNet-101.

4.2.2. Cross-Domain Settings
Aside from the basic in-domain settings, we also test our

methods under challenging cross-domain settings targeting sev-
eral real-world scenarios. For each cross-domain setting, we
test on two directions, i.e., from Market1501 to DukeMTMC-
reID (M2D) and from DukeMTMC-reID to Market1501 (D2M).
Cross-Domain Supervised Setting 1 (CD-S-1): In real-world
applications, the poor performance of the old model may be
caused by the domain bias between the training set and the ap-
plication scenario (test set). To improve the performance, new
training set from the target domain is collected for model up-
grade. Moreover, training set for the old model is not accessi-
ble any more due to the expensive storage overhead and privacy
issue. This setup is challenging due to the domain gap and the
poor performance of the old model.
Cross-Domain Supervised Setting 2 (CD-S-2): Similar to ID-
S-2, we use IBN-ResNet-101 as the backbone of new model,
while ResNet-50 for the old model under this setting.
Cross-Domain Unsupervised Setting (CD-US): In real-world
applications, achieving the large-scale labelled training set is
expensive, thus unsupervised domain adaption (UDA) is exten-
sively studied [4, 5, 6, 7, 8]. We also prove the effectiveness of
our method under this challenging setting. We conduct UDA
from the domain of old model to the domain of new model.

5. Experimental Results

In this section, we first complement some experimental de-
tails. Then, we conduct primary experiments for all the set-
tings. After that, we compare RBCL with baseline methods in
the above mentioned five setting types. Finally, we analyze the
effectiveness of RBCL with the ablation study and visualiza-
tion.

5.1. Experimental Details
For all the supervised learning settings, we conduct exper-

iments based on BoT baseline [28, 29], and all the tricks and
hyper-parameters are kept except that we remove the Center
Loss [30].

For the unsupervised setting (CD-US), we use the baseline
modified based on the open sourced UDA strong baseline 1.
To be consistent with BoT, we remove the non-local block and
generalized mean pooling from the default setting and use the
basic ResNet-50 as the backbone. We conduct the backward
compatible training together with the UDA iteration. We update
the labels of old features with the pseudo labels after each time
of clustering.

1https://github.com/zkcys001/UDAStrongBaseline
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ID-S-1 ID-S-2 CD-S-1 CD-S-2 CD-US

Method M2M D2D M2M D2D M2D D2M M2D D2M M2D D2M
mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1

Direct 37.5 61.0 36.5 56.4 37.5 61.0 36.5 56.4 17.9 31.9 22.4 49.2 17.9 31.9 22.4 49.2 28.7 44.5 30.0 58.8
LB 50.0 74.1 43.6 66.2 0.2 0.1 0.2 0.1 32.2 54.5 33.0 57.5 0.2 0.0 0.2 0.1 0.4 0.3 0.2 0.1
UB 85.8 93.8 76.6 86.3 89.1 95.7 81.0 90.6 76.6 86.3 85.8 93.8 81.0 90.6 89.1 95.7 58.7 74.5 67.6 85.0

Table 2: The primary experiments of BCT under all the settings. No additional loss for improving the backward compatibility is used. “Direct”, “LB” and “UB”
represent for M(φold , φold), M(φnew, φold), and M(φnew, φnew) (defined in Sec. 3.1), separately.

ID-S-1 ID-S-2 CD-S-1 CD-S-2 CD-US

Method M2M D2D M2M D2D M2D D2M M2D D2M M2D D2M
mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1

baseline 50.0 74.1 43.6 66.2 0.2 0.1 0.2 0.1 32.2 54.5 33.0 57.5 0.2 0.0 0.2 0.1 0.4 0.3 0.2 0.1

L2
51.1

(77.0)
74.8

(89.5)
46.1

(68.9)
67.3

(80.7)
49.8

(81.4)
73.9

(92.0)
45.9

(73.9)
67.6

(86.1)
29.8

(64.2)
47.9

(75.7)
40.1

(79.6)
69.1

(90.6)
23.0

(64.6)
39.5

(76.9)
31.7

(83.0)
58.0

(92.4)
24.3

(47.1)
40.2

(63.0)
22.2

(50.1)
41.0

(74.0)

Influence [1]
46.7

(81.9)
71.8

(92.8)
41.7

(70.9)
64.8

(83.7)
32.5

(82.3)
53.8

(92.6)
25.9

(64.8)
48.4

(85.4)
32.9

(70.8)
56.8

(82.0)
39.5

(79.9)
67.5

(91.9)
28.5

(75.6)
52.0

(87.2)
35.3

(85.3)
61.7

(94.4)
34.5

(55.8)
53.9

(71.0)
34.5

(59.9)
56.7

(79.4)

MMD [27]
42.5

(59.8)
74.6

(78.5)
42.9

(36.2)
66.0

(52.3)
49.0

(57.5)
73.1

(74.6)
42.9

(37.7)
66.1

(55.0)
37.7

(46.6)
64.0

(60.7)
42.5

(61.7)
74.6

(79.9)
36.6

(48.3)
64.1

(64.8)
37.4

(59.1)
67.4

(77.7)
16.2

(38.0)
27.4

(52.9)
15.5

(35.1)
27.0

(59.6)

Triplet [10]
53.1

(82.6)
75.4

(92.8)
44.2

(71.9)
64.8

(84.4)
51.4

(86.1)
73.8

(93.9)
44.8

(76.4)
66.2

(87.5)
40.5

(71.8)
62.1

(83.9)
48.6

(84.5)
70.5

(93.5)
39.8

(77.6)
61.1

(88.6)
46.1

(87.8)
67.1

(94.8)
29.0

(48.8)
47.3

(65.2)
27.5

(50.3)
50.1

(74.6)

RBCL (ours)
61.3

(85.0)
82.7

(93.7)
53.2

(74.3)
75.0

(85.5)
60.8

(88.0)
82.8

(95.0)
54.0

(79.5)
75.3

(89.8)
51.2

(75.6)
73.5

(86.4)
58.4

(85.4)
81.6

(93.8)
50.6

(79.7)
73.7

(90.2)
58.0

(88.5)
80.2

(95.4)
40.5

(60.6)
63.0

(75.5)
39.5

(64.9)
64.8

(83.6)
UB 85.8 93.8 76.6 86.3 89.1 95.7 81.0 90.6 76.6 86.3 85.8 93.8 81.0 90.6 89.1 95.7 58.7 74.5 67.6 85.0

Table 3: The experimental results for the comparison between our proposed RBCL and other methods. The gray number in between “()” is the performance of the
self-test retrieval. Our RBCL outperforms others in both cross-model and self-test retrieval by large margins. The best and second best performance for cross-model
and self-test retrieval are in bold and underlined, respectively.

The new model is initialized with the parameters of old
model by default for all the reported results, except when the
network structure changes (i.e., ID-S-2 and CD-S-2). We calcu-
late Lm on the features before classifier with cosine similarity.
We add the DGR after the convergence of training loss. The
mAP and Rank-1 accuracy are reported as evaluation metrics.
Considering the variance between supervised and unsupervised
learning, we set K = 100, α = 0.5 for supervised settings and
K = 40, α = 0.3 for the unsupervised setting.

5.2. Primary Experiment
We first conduct primary experiments under all the settings

without adding any loss for improving the backward compati-
bility. The results are illustrated in Table. 2. By observing the
table, we summarize the conclusions as follows:

(1) The extended cross-domain settings are more challeng-
ing than the in-domain settings. The performance of Direct un-
der the cross-domain settings is significantly lower than that of
the in-domain settings. For example, the mAP of Direct in ID-
S-1-M2M is 37.5%, whilst only 17.9% for CD-S-1-M2D. This
is caused by the domain gap between source domain and target
domain, and achieving backward compatibility in such a chaos
old feature space is rather challenging.

(2) The unsupervised setting is more difficult than the super-
vised settings. This can be observed by comparing between the
LB of CD-US and CD-S-1. For the supervised setting CD-S-1-
M2D, it can achieve 32.2% mAP in LB, whilst the unsupervised
setting CD-US-M2D only achieves 0.4% mAP. This decrement
may be caused by the unstable pseudo labeling process in UDA
iterations. The label space is different after each time of clus-
tering, therefore the current feature space is gradually shifted
away from the old feature space.
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Figure 4: (a) The influence of hyper-parameter K in NCAs under CD-S-1-M2D.
(b) The influence of hyper-parameter α in DGR under CD-S-1-M2D.

(3) The structure variation will increase the difficulty of
achieving backward compatibility. By comparing the perfor-
mance between ID-S-1 and ID-S-2, CD-S-1 and CD-S-2, we
find that the performance of new model itself (UB) is improved,
while the cross-model retrieval performance (LB) is decreased
a lot, e.g., the mAP decreases from 50.0% in ID-S-1-M2M to
0.2% in ID-S-2-M2M. Intuitively, different structures have dif-
ferent capacities and parameters, thus the final feature spaces
are different.

5.3. Comparison with Baseline Methods

5.3.1. Baseline Methods
The comparison between RBCL and baseline methods un-

der all the settings is illustrated in Table. 3. The performance
of cross-model retrieval without additional loss for improving
the backward compatibility is reported as the baseline. Aside
from the cross-model retrieval performance, we also report the
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ID-S-1 ID-S-2 CD-S-1 CD-S-2 CD-US

Method M2M D2D M2M D2D M2D D2M M2D D2M M2D D2M
mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1

baseline 57.0 79.5 50.2 72.0 53.4 77.1 46.7 69.1 44.6 67.0 52.4 76.2 42.8 65.8 50.1 73.5 36.5 57.6 35.0 59.6
+ DGR 57.5 79.9 50.6 72.9 55.2 78.5 48.8 71.3 45.2 67.7 52.8 76.6 44.0 66.8 51.6 75.3 37.8 58.9 36.8 62.7
+ NCAs 60.4 81.9 52.1 73.7 59.4 81.7 52.2 73.6 49.7 72.0 57.6 80.3 49.4 71.6 56.6 79.1 39.6 62.0 38.9 63.4
+ NCAs + DGR (ours) 61.3 82.7 53.2 75.0 60.8 82.8 54.0 75.3 51.2 73.5 58.4 81.6 50.6 73.7 58.0 80.2 40.5 63.0 39.5 64.8

Table 4: The ablation of NCAs and DGR in RBCL. Cross-model retrieval performance is reported.

Enhanced
Enhanced

DGR

+ DGR

(a) Distribution of triplets (di
n j).

Enhanced
Enhanced

DGR

+ DGR

(b) Gradient of triplets (di
n j).

Enhanced
Enhanced

DGR

+ DGR

(c) Loss curve of Lm after adding DGR.

Figure 5: The visualization of distribution and gradient change of triplets (di
n j) in a mini-batch, and the loss curve of Lm (with NCAs) after adding DGR. We add

DGR after the convergence of Lm under the CD-S-1-M2D setting and α is set as 0.5. (a) The distribution of triplets before (red) and after (blue) adding DGR, and
the derivative of sigmoid function when τ = 0.01. (b) The average gradients in each interval before (red) and after (blue) adding DGR. We split the range of di

n j into
several intervals, and then report the average gradients for each interval. Note that the y axis is logarithmic. (c) The loss curve of Lm under CD-S-1-M2D. DGR is
added after epoch 80.

self-test performance of new model to illustrate the superiority
of our RBCL.

We compare our proposed RBCL with three distillation-
based methods and one . The first one is to optimize the L2
Loss between new features and the corresponding old ones in a
mini-batch. The second one is the Influence Loss proposed in
[1]. The third one is the Maximum Mean Discrepancy (MMD)
loss proposed in [27] which can make the distribution of new
and old features in a mini-batch close to each other. The last
one is Hard Mining Triplet Loss [10], which is also a typical
ranking-based loss but belongs to the distance metric optimiza-
tion.

5.3.2. Analysis of Cross-model Performance
The cross-model retrieval performance of our RBCL out-

performs other methods by large margins under all the settings.
Compared with the distillation-based losses, in ID-S-1-D2D,

RBCL outperforms Influence Loss by 11.7% and 10.2% in mAP
and Rank-1, separately. For Influence Loss and MMD Loss,
their performance in ID-S-1 is even lower than the baseline,
which significantly shows the inferiority of the distillation-based
methods. They only push the new features to be close the old
features, which will lead to mis-ranked new features, therefore
the cross-model retrieval performance is inferior.

Compared with another ranking-based method, in ID-S-2-
M2M, RBCL surpasses Triplet Loss by 9.4% and 9.0% in mAP
and Rank-1, respectively. In CD-S-1-M2D, RBCL surpasses it
by 10.7% and 11.3% in mAP and Rank-1, respectively. The
significant improvement shows that optimizing ranking metric
is better than distance metric for BCT, and the proposed DGR

and NCAs can help the new features achieve better ranking po-
sitions than the basic Triplet Loss.

5.3.3. Analysis of Self-test Performance
The self-test performance of RBCL is the closest one to the

upper bound. By comparing the self-test performance of RBCL
with the upper bound, we find that the backward compatible
training process of RBCL has little impact on the performance
of new model itself. For example, the Rank-1 in ID-S-1-M2M
only decreases from 93.8% to 93.7%, and the mAP and Rank-
1 in CD-US-M2D even outperform the upper bound by 1.9%
and 1.0%, respectively. This superiority is attributed to that
RBCL only adjust the absolute position of each cluster toward
a best-ranking position, whilst the relative distribution between
clusters are maintained, therefore the self-test performance will
not decrease too much.

5.3.4. Robustness to Structure Variation
By comparing the performance between ID-S-1 and ID-S-

2, CD-S-1 and CD-S-2, we observe that the performance of
RBCL is both high and robust in self-test and cross-model per-
formance. For the cross-model performance, the mAP differ-
ence and Rank-1 difference of RBCL between CD-S-1-M2D
and CD-S-2-M2D are 0.6% and 0.2%, while for L2 Loss, the
differences become 6.8% and 8.4%. As to the self-test per-
formance, the difference between RBCL and upper bound is
consistently small. For example, the Rank-1 difference in CD-
S-1-D2M is 0.0%. After the change of new model structure in
CD-S-2-D2M, the difference merely increases by 0.3%. When
the structure changes, the gap between the new feature space
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Figure 6: The visualization of feature distributions for different methods under
CD-US-M2D by t-SNE. The features of the first 10 IDs of DD are illustrated.
Triangles and circles represent for new query features and old gallery features,
separately. Different colors denote for different IDs. Best view in color and
zoom in.

and the old one becomes larger. Distillation-based methods in-
tend to roughly diminish the gap, whilst RBCL only tries to
find better ranking order of samples, therefore the impact on
self-test performance is smaller.

5.4. Effectiveness of RBCL

5.4.1. Influence of K and α
For supervised settings, we choose the hyper-parameters

under CD-S-1-M2D, then adopt it for all the supervised set-
tings.

For the choice of K (Fig. 4a), we change K sequentially
from 10 to 120 with 10 as the step size. In general, the perfor-
mance increases as K becomes larger (with slight oscillation),
which proves the effectiveness of NCAs. We set K = 100 for
all the supervised settings due to its best performance.

For the ablation of α (Fig. 4b), we add DGR after the con-
vergence of using NCAs (K = 100), and then adjust α from 0.3
to 0.9 with 0.1 as the step size. Obviously, α = 0.5 gives the
best performance because it provides the moderate gradients.

The similar ablation for unsupervised settings is conducted
the same way, and we find that K = 40, α = 0.3 works well.

5.4.2. Ablation of DGR and NCAs
The ablation of DGR and NCAs is illustrated in Table. 4.

The ranking metric optimization between new features and the
corresponding old features without DGR and NCAs is used as
the baseline. We have the following important observations:

(1) DGR can boost the performance of both baseline method
and the baseline+NCAs method under all the challenging set-
tings. For example, for the unsupervised setting CD-US-D2M,
the Rank-1 increments are 3.1% and 2.4%, respectively. DGR
solves the gradient vanish issue, which can refine the ranking
positions and optimize the extremely hard negative samples,
thus the performance is improved.

(2) With the help of NCAs, the performance is largely boosted.
After adding the NCAs to the baseline, for the in-domain setting
ID-S-2-M2M, the mAP is increased by 6.0%. For the cross-
domain settings CD-S-2-M2D and CD-S-2-D2M, the mAP are
increased by 6.6% and 6.5%, separately. This strongly proves
the effectiveness of our proposed NCAs, which successfully
approximates the entire ole features space and brings the op-
timization with global perspective.

(3) The combination of NCAs and DGR gives the best per-
formance. For example, the mAP and Rank-1 achieve incre-
ments of 7.8% and 7.9% in CD-S-2-M2D, separately. For the
challenging unsupervised setting CD-US-M2D, the mAP and
Rank-1 are also increased by 4.0% and 5.4%, separately.

In summary, both NCAs and DGR can boost the perfor-
mance for all the challenging settings.

5.4.3. Visualization of DGR
We visualize the distribution and gradient changes in a mini-

batch in Fig. 5a and Fig. 5b. After adding DGR, the distribution
is closer to the gradient-effective interval of sigmoid function
(Fig. 5a), therefore the gradients of the majority of triplets are
exponentially enhanced (Fig. 5b). We also illustrate the loss
curve of Lm during the training of CD-S-1-M2D in Fig. 5c. We
add DGR after epoch 80. Obviously, the loss is enlarged after
adding DGR, which means more ranking information is mined.

5.4.4. Visualization of Feature Space
To intuitively illustrate the principle difference between our

RBCL and the existing distillation-based methods, we visual-
ize the feature distributions in Fig. 6. We choose the Influence
Loss as the representation of the distillation-based methods. We
can easily observe that: (1) The old feature clusters are highly
entangled with each other, which is due to the poor representa-
tion ability of the old model. (2) For the Influence Loss, there
exist quite a lot of mis-ranked new query features, while for our
RBCL, most of the new query features are in proper-ranking
positions.
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6. Conclusion

In this paper, we propose the effective RBCL for BCT task
in person Re-ID. Different from the existing distillation-based
methods, our proposed RBCL optimizes the ranking metric be-
tween new features and old features, which is superior in prin-
ciple. To relieve the gradient vanish issue incurred by the sharp
sigmoid function, we propose the DGR, which can reactivate
the suppressed gradients. To further help targeting the global
best-ranking positions, we propose to include NCAs during train-
ing, which can approximate the entire old feature space. RBCL
outperforms other methods by a large margin under both in-
domain and challenging cross-domain settings. In the future,
we will study this problem on more retrieval tasks.
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