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Abstract

Generative adversarial network (GAN) is a framework for generating fake data

using a set of real examples. However, GAN is unstable in the training stage.

In order to stabilize GANs, the noise injection has been used to enlarge the

overlap of the real and fake distributions at the cost of increasing variance. The

diffusion (or smoothing) may reduce the intrinsic underlying dimensionality of

data but it suppresses the capability of GANs to learn high-frequency infor-

mation in the training procedure. Based on these observations, we propose a

data representation for the GAN training, called noisy scale-space (NSS), that

recursively applies the smoothing with a balanced noise to data in order to

replace the high-frequency information by random data, leading to a coarse-to-

fine training of GANs. We experiment with NSS using DCGAN and StyleGAN2

based on benchmark datasets in which the NSS-based GANs outperforms the

state-of-the-arts in most cases.
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1. Introduction

Generative adversarial network (GAN) [1] is a machine learning framework

to generate realistic fake data. GAN learns the probabilistic distribution of the

training (real) data using two adversarial networks: the generator that is trained

to create realistic fake data from a random seed called the latent vector, and

the discriminator that is dedicated to distinguish the reals against fake data.

GAN has been studied extensively in the several past years and currently is an

essential tool for a wide variety of applications.

However, the training procedure is prone to numerical unstability in GANs [2,

3, 4, 5, 6]. Since it is a two-player game between the generator and discrimi-

nator [4], the optimization can fall into a local minima where the discriminator

reaches a perfect solution first and the generator cannot be trained anymore.

This failure of GAN severely limits the quality of fake data, resulting in the mode

collapse. The failure of GAN occurs when there is almost no overlap between

the real distribution with fake distribution [7], in particular, in the beginning of

training when the discriminator can reject fake data with a high confidence [1].

Therefore, GANs require stabilization methods in the optimization process in

order to obtain better fake data.

The stabilization methods of GAN are different with those for the feed-

forward deep networks, e.g., weight-decay [8] and the momentum [9], due to

the dynamics of the discriminator with generator. Since the failure of GAN can

arise from the use of KL-divergence in loss, a variety of the discrepancy measures

have been studied, e.g., [10, 11, 12], including Wasserstein distance [7, 13]

that provides gradients to the generator even with a small overlap of the two

distributions. Albeit, the Wasserstein loss is often inferior to the original loss

in the quality of fake data [3, 5]. Another strategy is to inhibit discriminator

training based on the loss. To this aim, the gradient regularization penalizes

gradients of the discriminator. However, it depends on the model that varies

during the training [5].

This paper focuses on data-based stabilization of the GAN training that
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manipulates only the real and fake data independent of the model architecture.

For instance, the repetition of noise injection to both real and fake data (namely

noise-space) enlarges the overlap between probability distributions [14]. How-

ever, the noise increases the variance of data inevitably. The repetition of data

smoothing based on Gaussian kernels, or the scale-space, is a general technique

in machine learning that suppresses the high frequency features such as textures

and details in the image so as to make each data more simple to learn by al-

gorithms. In the case of GAN, it is expected that the diffusion makes the real

data easy to mimic by the generator. However, we have found that it limits the

learning capability of the generator to learn high-frequency information.

Based on these observations, we propose an algorithm for stabilizing the

optimization of GANs based on a noisy scale-space (NSS) that continuously

removes high-frequency information in image while adding noise. The proposed

noisy scale-space enables a coarse-to-fine training of GANs in which we can

train a generative model using low-level information in data with noise without

the increment of data variance, while keeping the current model capable of

learning the high-level information. We also present a synthetic dataset using

the Hadamard bases [15] that can visualize the true distributions of real and

fake data in order to characterize the drawback of the conventional scale-space in

GAN optimization. Then, we perform experiments with the proposed NSS using

DCGAN [16]. The experimental results based on the major datasets show that

the proposed NSS-GAN outperforms other methods in most cases irrespective of

the image generation tasks. Specifically, it is shown that the stabilization effect

by our method is not the simple summation of the noise-space with the scale-

space but due to the use of their mutually complementary relationship. We also

demonstrate that the proposed NSS can improve the accuracy of StyleGAN2 [17]

for high-resolution images.

We relate our method to prior works in Section 2. Then we consider a

data-based stabilization of GAN training in Section 3, followed by the proposed

noisy scale-space in Section 4. The effectiveness of our method is demonstrated

experimentally in Section 5 and we conclude in Section 6.
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2. Related works

Loss-based GAN stabilization: The regularization term in the loss has

been studied to restrict the update of discriminator. In a related context,

Wasserstein-GAN (WGAN) uses a weight clipping [13] to guarantee the Lip-

schitz constraint. WGAN-gp uses a gradient penalty [18] that can improve

the quality of fakes in practice. The spectral normalization [19] is an efficient

variant of the gradient-penalty. Dragan [20] penalizes the sharp gradient of

discriminator to real data. We will use the non-saturating loss [1] based on

the KL-divergence that is known to be the best choice in practice. The non-

saturating loss can be further improved using the gradient regularization [3] that

penalizes the gradient norm of the discriminator. It is shown that the penalty

based on the gradient-norm of the discriminator is equivalent to adding input

noise in GAN using f -divergence [21]. The drawback of gradient regularization

is that it depends on the distribution of fakes determined by the generator which

changes during training [5].

Procedure-based GAN stabilization: The two time-scale update rule [22]

is a method of using different annealings for discriminator and generator in

order to slow the convergence of the discriminator. The simultaneous update

of the two networks was studied in [23]. Progressive augmentation of GAN [24]

extends the label noise [25] into the GAN framework to perturb the real and

fake labels. The one-sided label smoothing replaces the 0 and 1 target labels

for the discriminator with smoothed values, like 0.9 or 0.1 [18, 26].

Data-based GAN stabilization: The proposed method can be categorized

in data-based methods that manipulate only data. Lens-GAN [27] introduces

a filtering network that transforms the real data against the discriminator, and

therefore it still depends on the networks.

The multi-resolution training of GAN is a topic studied in, e.g., Progressive-

GAN [28] and MSG-GAN [29], for generating high-resolution images. It trains a

shallow network first using low-resolution images, and gradually increases both

the number of network layers and the resolution of data. The drawback of the
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multi-resolution training is that it strongly limits the architecture.

The data augmentation is another recent topic in GAN training [30, 17, 31]

in which a multitude of data transformations, typically consist of spatial trans-

formations (e.g., image rotation, flipping, and cropping) with color transforma-

tions (e.g., channel permutation and hue rotation) are combined and applied

to both real and fake data in order to enlarge the variation of data. The early

works [30, 17] are oriented to avoid over-fitting of GANs to a small set of train-

ing examples while the recent works aim to improve the accuracy as we do. Also

DistAug [32] has considered a mixture of data transformations in a contrastive

training of GANs [33]. However, the mixture of transformations in these studies

is a black-box. In contrast, we present a deep understanding of the noise injec-

tion and the image diffusion in GAN optimization and then propose a better

use of their mutually complementary relationship.

Our method is closely related to the noise injection and the data smoothing.

On one hand, the noise injection flattens the probability distribution of data.

Thus imposing noise to the real data [34, 7] or both the real and fake data [14]

enlarges the overlap of the two distributions. However, adding high-dimensional

noise introduces significant variance in the parameter estimation, slowing down

the training and requiring multiple samples for counteraction [21, 24]. On the

other hand, the scale-space decreases the dimensionality of data by removing

high-frequency information and makes data easy to learn by algorithms [35,

36]. However, the conventional scale-space has a critical side-effect in GAN

optimization. Different from these baselines, we present a data representation

that mitigates the side effects of the noise injection and the data smoothing.

Our algorithm also relates to Ambient-GAN [37] that considers a problem

in which incomplete real data containing a Gaussian blurring with additive

noise are given. However, Ambient-GAN aims to approximate the original dis-

tribution from the incomplete measurements using a conditional network, and

created fake images are degenerated by the noise and smoothing. In contrast,

we propose a continuous data representation to train GANs, achieving a better

quality of fake data than the baseline method using the complete examples.
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3. Preliminary

3.1. Generative adversarial networks

Let us begin with a technical introduction to the generative adversarial net-

works (GAN). Given a set of real data (x), GAN aims to generate new data

with similar statistics as the real data. GAN consists of the two networks: the

generator (G) that creates fake data (G(z)) from a random latent vector (z),

and the discriminator (D) that distinguishes the real data against the fake data.

To this aim, a min-max loss (F ) is defined [1] as

FD,G
(
x,G(z)

)
:= Ex∼pdata(x)

[
logD(x)

]
+ Ez∼pz(z)

[
log(1−D(G(z)))

]
, (1)

where pdata(x) is the true distribution of the reals, and pz(z) is a random prob-

ability distribution. GANs are optimized using a stochastic gradient descent,

e.g., Adam [38], in an alternative way such that the generator is updated to

minimize F while the discriminator is trained to maximize F .

3.2. Data-based stabilization of GAN training

We consider a data-based stabilization method, similar to [30, 17, 31], that

projects both the reals and fakes to a data space and feed into the GAN loss as

FD,G
(
Φt(x),Φt(G(z))

)
, (2)

where Φt(x) and Φt(G(z)) are the projected data of reals and fakes using a

function Φ with the time parameter t. Using Eq.(2), the discriminator is trained

to distinguish the projected real against the projected fake while the generator is

trained to create fake data such that the projected fakes Φt(G(z)) are similar to

the projected reals Φt(x). The data-based stabilization effect will be imposed

via a discrete representation of data {ΦT (y),ΦT−1(y), ...,Φ2(y),Φ1(y),Φ0(y)}

where Φt(y) with larger t is expected to have larger effect such that the data

is more easy to learn by GANs, and Φ0(y) = y denotes the original real or

fake data. To this aim, the time parameter (t) should start with a large value

T and shrink to zero during the training, and the choice of Φ determines the

stabilization effect.
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(a) NS

(b) SS

(c) NSS

t = 0 t = 4 t = 16 t = 64 t = 256

Figure 1: A real image in (a) the conventional noise-space (NS) or the repetition of the

Gaussian noise with σ = 0.15, (b) the conventional scale-space (SS) or the repetition of

smoothing, and (c) the proposed noisy scale-space (NSS) (columns) over the time (t).
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Figure 2: (y-axis) The variance of pixel intensities in the noise-space (red line), the scale-space

(blue dashed-line), and the proposed noisy scale-space (magenta dotted-line) over (x-axis) the

time t based on 128 images in CelebA [39], LSUN-Church, LSUN-Conference [40], and Oxford-

Flowers [41] using the noise of σ = 0.15.
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4. Stabilization of GAN training via noisy scale-space

4.1. Proposed noisy scale-space

We present a data representation, namely noisy scale-space (NSS), that is

designed to improve the stability of the optimization for GANs while preserving

characteristic features in the generation process. The presented data represen-

tation is a balanced composition of the noise with the diffusion such that we can

train GANs using the smoothed data that is easy to create by the generator first,

while flattening the fake distribution in the high-frequency domain, making the

current solution be capable of learning the high-frequency information in the

further steps. Formally, the noisy scale-space is given as

Φt(y) := k ∗ Φt−1(y) + εt, (3)

where k is typically the 3× 3 Gaussian kernel, the symbol ∗ denotes the convo-

lution, εt ∼ N(0, σ), Φ0(y) = y, and t ∈ [T ], i.e., we apply the kernel and the

noise to data simultaneously T -times. Figure 1 presents an example of image in

(top) the conventional noise-space, (middle) the conventional scale-space, and

(bottom) the proposed noisy scale-space. Figure 2 shows the image variance of

the three data-spaces.

The noise variance (σ) is the primal hyper-parameter that balances the diffu-

sion with the noise in the proposed data representation. The conventional scale-

space (diffusion) removes high-frequency information in image and decreases the

image variance as shown in Figure 2. We determine σ in the noisy scale-space

such that the image variance is almost preserved over t. The noisy scale-space

is robust to σ for natural images as shown in Figure 2 and we employ σ = 0.15

for 642-pixel images in our experiments. Moreover σ can be determined using

only the real images.

4.2. Comparison to conventional noise-space

Given a constant σ, we can obtain the conventional noise-space as

Φn
t (y) := Φn

t−1(y) + εt, (4)
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with εt ∼ N(0, σ), t ∈ [T ], and Φn
0(y) = y. Equation (4) provides a discrete

representation of data with additive noises. Figure 1 (a) shows an example of

noise-space using a real image. We refer to GAN trained using the noise-space

as Noise-Space (NS) GAN. Considering the sum of normal distributions, the

noise-space defined by Eq.(4) is equivalent to

Φn
t (y) = y + ε1 + ε2 + ...+ εt,

= y + ε̂(t), (5)

where ε̂(t) ∼ N(0, σ · t), t ∈ [T ]. Therefore, the drawback of the noise-space is

that it increases the variance of data, and makes the original data harder to be

learned.

Note that the proposed noisy scale-space using Eq.(3) can be rewritten in a

closed-form as

Φt(y) = k ∗(t) y︸ ︷︷ ︸
smoothed data

+ k ∗(t−1) ε1 + k ∗(t−2) ε2 + ...+ k ∗(1) εt−1 + k ∗(0) εt︸ ︷︷ ︸
low-to high-frequency noises

,

(6)

where k∗(t) denotes the t-times convolution with kernel k, and k ∗(0) εt = εt.

Thus, our noisy scale-space balances the variances of the data-term and the

noise-terms using the smoothing. A finding is that we can keep the data variance

using a constant σ as demonstrated in Figure 2. Equation (6) also shows that

the noisy scale-space replaces the high-frequency information in data by a set of

noises with the corresponding frequencies. We demonstrate this property using

a synthetic dataset in the following section.

Table 1: Fréchet inception distance (FID) and inception score (IS) for Celeba dataset by

DCGAN trained using (1st, ..., 7th columns) two-step scale-space {t, 0} with equal periods

using t = 0, 2, ..., 128, respectively, and (8th column) a scale-space using exponential annealing

with t = 128: t = 0 is the baseline. The mean of FID and IS were computed within 20 trials.

Smoothing t = 0 t = 4 t = 8 t = 16 t = 32 t = 64 t = 128 Annealing

FID (↓) 21.36 21.94 24.70 25.06 25.29 26.87 60.34 21.49

IS (↑) 2.39 2.39 2.35 2.33 2.30 2.31 2.14 2.37
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t = 0 t = 8 t = 16 t = 32 t = 64

Figure 3: The prediction curves by discriminator for (blue doted line) the projected real data

and (orange line) the projected fake data by DCGAN trained using CelebA dataset with

(1st, ..., 5th columns) the fixed smoothing with t: t = 0 is the baseline. The percentiles of

discriminator output were visualized in epoch wise.

4.3. Comparison to conventional scale-space

The conventional scale-space is a multi-scale representation of image in which

the smoothing is applied to data recursively as

Φs
t(y) := k ∗ Φs

t−1(y), (7)

with Φs
0(y) = y and t ∈ [T ]. As shown in Figure 1 (b), the scale-space continu-

ously removes the low-level information, e.g., textures and details, and provides

the high-level information that is invariant to the scale.

We first re-examine the effect of diffusion in GAN optimization. Figure 3

visualizes the prediction curves of DCGAN [16] based on CelebA [39] where

we trained the networks using the fixed smoothing time (t) applied to both

real and fake data. We have chosen DCGAN since the convolution networks

is the essential architecture of the modern GANs, e.g., [42, 43, 44, 45, 46, 47,

48]. As demonstrated in Figure 3, a larger t results in better prediction curves

where both D(Φs
t(x)) and D(Φs

t(G(z))) converge to 0.5. Thus, the diffusion will

make the problem more easy to learn by GANs. Note that the quality of G(z)

degenerates with t since there is information loss due to the diffusion. Therefore,

it is natural to anneal t over the training process.

However, the conventional scale-space cannot improve the accuracy of GANs

in general. Table 1 summaries the Fréchet inception distance (FID) [22] and the

inception score (IS) [18] by DCGAN for CelebA [39] using scale-spaces, where we

first used a fixed smoothing t for 5 epochs then used the original data (t = 0)

for 5 epochs. More details about the experimental set-up are summarized in
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Section 5.1. As shown in Table 1, GANs using scale-spaces are often inferior to

the baseline without smoothing.

Our key observation is that the scale-space has a side effect in the GAN

optimization where the smoothed data (real and fake data) make the generator

create a smoothed data and thus shrink the capability of the generator to learn

high-frequency information in further training steps. To demonstrate this side

effect, we propose to visualize the true probability distributions of both reals

and fakes using a synthetic dataset that is created based on eight of vertical

Hadamard bases ({Bi}8) shown in Figure 4 (top). Given coefficients {αi}8 for

the eight basis,
∑
i αiBi produces an 8× 8 pixel image as real data that looks a

white/grey vertical stripes. The coefficients are the true probability distribution

of real data. Given fake data, we can fit the bases to the fake image and compute

the coefficients of eight bases that reflect the probability distribution of fakes

with the fitting residuals.

We trained the basic GAN [1] based on the synthetic data using the smooth-

ing with fixed t = 8. Figure 4 illustrates (top) the Hadamard bases, (middle)

example of the original reals, smoothed-reals, smoothed-fakes, and the origi-

nal fake data, and (bottom) the distribution of their Hadamard coefficients.

There are two observations: (bottom-left) The coefficients of smoothed fakes

Φ(G(z)) follow the those of Φ(x) of which high-frequency coefficients are sup-

pressed by the diffusion, i.e., the model learned the probability distribution of

the smoothed data. (bottom-right) However, the diffusion decreased the diver-

sity of high-frequency coefficients of fakes (G(z)). This means that the data

smoothing reduces the overlap between the fake distribution with the distribu-

tion of reals with fine details that will be given in further steps.

We visualize the effect of the noisy scale-space using the synthetic dataset in

Figure 5 in which we used a fixed t = 8. Figure 5 shows that (left) the projected

data are smoothed yet (right) the diversity of high-frequency coefficients of fakes

are preserved as expected.

Here, we have studied the side-effect of the diffusion. Interestingly, this kind

of phenomenon due to a data transformation in GAN optimization is called
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x Φs(x) Φs(G(z)) G(z)

{αi} of Φs(x),Φs(G(z)) {αi} of x,G(z)

Figure 4: GAN with synthetic data using the scale-space: (top) The Hadamard bases

(B1, ..., B8), (middle part) nine examples of the original reals (x), the smoothed reals (Φs(x))

with fixed t = 8, the smoothed fakes (Φs(G(z))) with fixed t = 8, and the original fakes (G(z)),

(bottom left) (y-axis) the mean and std. of the coefficients for (x-axis) the Hadamard bases

B1, ..., B8 with low to high frequencies within the smoothed reals (green) and the smoothed

fakes (orange), and (bottom right) those within the original reals and fakes. 200K of the

synthetic images were created using αi ∼ U(−1, 1), ∀i with the uniform distribution (U). We

applied the smoothing to all data in the batch. The basic GAN [1] was trained using Adam

with the learning-rate scale of η = 2× 10−5 for 200 epochs.

’leaking’ that has been studied on, e.g., rotation and hue change [17]. The

contributions of our work are that we visualize the leaking of the smoothing

using the synthetic data; and we propose the prescription to mitigate the side-

effect of diffusion in GAN training.
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{αi} of Φ(x),Φ(G(z)) {αi} of x,G(z)

Figure 5: GAN with synthetic data using the proposed noisy scale-space: (left) The mean

and std. of the Hadamard coefficients (y-axis) with low to high frequencies (x-axis) within the

projected reals (green) and the projected fakes (orange), and (right) those within the original

reals and fakes using the noisy scale-space with fixed t = 8.

(a) (b) (c)

Figure 6: (a) The pipeline of GAN training with function Φ that is applied to the half of both

real data (x) and fake data (G(z)); (b) The module of the noise scale-space that consists of

t-times repetition of the convolution-layer using the Gaussian kernel with the random noise-

layer; and (c) The exponential annealing of t using the power of β = 20 with T = 256.

4.4. Implementation of noisy scale-space

The data-based stabilization methods can be embedded into GANs as de-

picted in Figure 6 (a). We implement our data representation into DCGAN [16]

that is the foundation of recent extensive studies, and call it Noisy Scale-Space

(NSS) GAN. The function Φ consists of the repetition of the smoothing and

the noise-injection layers (Figure 6b) that can be computed efficiently in par-

allel. Regarding the annealing of the time parameter (t) that determines the

magnitude of stabilization effect, we use an exponential function as

t(i) := T · exp (i/β) , (8)
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where i ∈ [0, 1] is the relative iteration in the optimization process that starts

at i = 0, β is the power of decay, and T is the initial time t(0). We use β = 20 in

order to apply the data transformation in the early stage of GAN optimization.

Figure 6 (c) shows the annealing curve of t with T = 256. We have observed that

the exponential function achieves better accuracy than others including the step

function and the decaying-wave function. Also we employ an implementation

technique [14] in which we apply the filtering function Φ to only half of data in

real-and fake-batches for obtaining a stable and accurate generator.

5. Experimental results

In order to empirically demonstrate the expected stabilization effect of the

noisy scale-space for GAN optimization, we conduct three experiments: an ab-

lation study on the initial scale in data spaces, a primal experiment in which we

compare the proposed NSS with the state-of-the-art GANs based on DCGAN,

and an additional experiment using StyleGAN2.

5.1. Experimental set-up for primal experiments

In the preliminary experiment, we compare our NSS-GAN with potential

competitors: DCGAN (GAN) as the baseline, GAN using the scale-space (SS-

GAN), DCGAN using the noise-space (NS-GAN) where SS-GAN, NS-GAN,

and NSS-GAN share the same architecture and the annealing function of t

except for the filtering function Φ. Moreover, we employ GAN with the gradient

regularization [3] (GAN-gr), LSGAN [49], WGAN-gp [18], and Dragan [20] as

the state-of-the-arts in the second experiment.

We use four of the major datasets: CelebA [39], LSUN-Church, LSUN-

Conference [40], and Oxford-Flowers [41] as the image generation tasks of faces,

outdoor scenes, indoor scenes, and plants, respectively. CelebA consists of about

200K of celebrity face images. LSUN-Church and LSUN-Conference have about

126K images of outdoor scene of churches, and about 224K images of indoor

scene of conferences, respectively. Oxford-Flowers has about 8K images of flow-

ers. The images are resized to 64×64 pixels to meet the architecture of DCGAN.
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We use the non-saturating loss that is known to be superior to the Wasser-

stein loss and others [3], and employ Adam [38] as one of the popular optimizers

in GAN studies. For all the experiments, the mini-batch size is set to 128, and

the number of training epochs is set to 10 epochs for CelebA, LSUN-Church

and LSUN-Conference, and 100 epochs for Oxford-Flowers, respectively, based

on their example sizes. The standard deviation of noise is set to σ = 0.15.

The hyper-parameters that determine the quality of generated data are the ini-

tial time T of SS, NS, and NSS-GANs, the learning-rate scale (η) and the first

momentum coefficient (b1) of Adam, and the regularization coefficient (λ) of

GAN-gr. We conduct our experiments in two steps: a preliminary experiment

on T with fixed η and b1, and the final experiment using the tuned η, b1, and λ

with fixed T . We perform each condition 20 individual times.

For quantitative evaluation of generated fake images, we use the Fréchet

inception distance (FID) [22] with the inception score (IS) [18] that are widely

used in GAN studies. FID measures the distance between the real data with

fake data in feature space defined using a pre-trained network. IS measures the

diversity of fakes in the feature space. Lower FID values with higher IS indicate

better quality and diversity of fake data, respectively. We use FID as the primal

metric that reflects the objective of GAN.

Table 2: The Fréchet inception distance (FID) over the initial time T = 0, 32, 64, 128, 256 for

(column parts) CelebA, LSUN-Church, LSUN-Conference, and Oxford-Flowers by DCGAN

using the scale-space (SS), the noise-space (NS), and our noisy scale-space (NSS): In order

to demonstrate the stabilization effect over T , the learning-rate scale and the 1st momentum

were fixed for each dataset such that the baseline DCGAN (T = 0) can be unstable.

CelebA Church Conference Flowers

SS NS NSS SS NS NSS SS NS NSS SS NS NSS

T=0 24.60 - - 70.94 - - 127.32 - - 201.02 - -

T=32 23.14 22.82 22.32 69.80 70.20 69.88 119.06 71.16 67.37 162.24 89.46 87.30

T=64 23.16 23.01 22.43 69.05 69.60 69.67 98.73 72.21 70.33 120.57 93.46 88.68

T=128 23.11 24.02 21.18 69.38 69.51 68.59 84.31 71.83 68.90 116.29 95.66 92.57

T=256 22.31 24.29 21.79 70.58 69.61 67.38 87.46 73.11 70.47 100.84 95.47 94.24
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Table 3: The tuned hyper-parameters of (columns) the experimented GANs for (rows) CelebA,

LSUN-Church, LSUN-Conference, and Oxford-Flowers datasets: the learning-rate scale (η ×

10−4 ), the 1st momentum (b1) of Adam, and the regularization coefficient (λ) were selected

using grid search based on the mean FID. GAN with the scale-space (SS), GAN with the

noise-space (NS), and GAN with the noisy scale-space (NSS) share the fixed T = 256.

GAN GAN-gr LSGAN WGAN-gp Dragan SS NS NSS

C
e
le
b
A η 5 5 1 10 1 5 5 5

b1 0.3 0.3 0.4 0.3 0.4 0.4 0.3 0.4

λ - 1 - 20 10 - - -

C
h
u
rc
h η 2 5 0.5 10 1 5 10 5

b1 0.3 0.3 0.5 0.3 0.4 0.3 0.3 0.3

λ - 10 - 20 10 - - -

C
o
n
fe
r. η 2 2 0.5 10 2 2 5 5

b1 0.3 0.3 0.5 0.3 0.4 0.3 0.3 0.3

λ - 5 - 20 10 - - -

F
lo
w
e
rs η 2 5 0.5 10 2 5 5 5

b1 0.4 0.4 0.5 0.3 0.5 0.3 0.3 0.3

λ - 5 - 20 10 - - -

5.2. Effect of initial time

We first examine the initial time T in Eq.(8) that determines the degree of

the scale-space, the noise-space, and the proposed noisy scale-space. In order

to observe the relative stabilization effect of the three data representations in

comparison to the baseline GAN, we purposely use a condition that can make

the baseline GAN unstable for each dataset. Concretely, we employ (η, b1) =

(0.0002, 0.4) for CelebA and LSUN-Church, (η, b1) = (0.0005, 0.3) for LSUN-

Conference, and (η, b1) = (0.0005, 0.4) for Oxford-Flowers datasets.

Table 2 shows the mean FID within the 20 trials over the initial time of

T = 0, 32, 64, 128, 256 where T = 0 is the baseline DCGAN. Table 2 demon-

strates that both the scale-space and the noise-space improved the quality of

fakes compared to the baseline GAN; and the proposed NSS-GAN has achieved

a better stabilization effect than SS-GAN and NS-GAN independent of the

datasets and the initial time T . The scale (t) should start with a large value for

any type of images and the initial value T depends on the context and the scale

of images essentially. In practice, we recommend T = 256 for 642-pixel images

and T = 128 for 512-pixel images and use them in the final experiments.
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GAN GAN-gr LSGAN WGAN-gp

Dragan SS-GAN NS-GAN NSS-GAN

(a) CelebA

GAN GAN-gr LSGAN WGAN-gp

Dragan SS-GAN NS-GAN NSS-GAN

(b) Church

Figure 7: Fake images created by the generator of which FID is the closest to the mean of

the individual trials for (top part) CelebA and (bottom part) LSUN-Church datasets using

the baseline DCGAN (GAN), GAN with gradient regularization (GAN-gr) [3], LSGAN [49],

WGAN-gp [18], (bottom) Dragan [20], and GANs using the scale-space (SS), the noise-space

(NS), and the proposed noisy scale-space (NSS) with T = 256.
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GAN GAN-gr LSGAN WGAN-gp

Dragan SS-GAN NS-GAN NSS-GAN

(a) Conference

GAN GAN-gr LSGAN WGAN-gp

Dragan SS-GAN NS-GAN NSS-GAN

(b) Flowers

Figure 8: Fake images created by the generator of which FID is the closest to the mean

of the individual trials for (top part) LSUN-Conference and (bottom part) Oxford-Flowers

datasets using the baseline DCGAN (GAN), GAN with gradient regularization (GAN-gr) [3],

LSGAN [49], WGAN-gp [18], (bottom) Dragan [20], and GANs using the scale-space (SS),

the noise-space (NS), and the proposed noisy scale-space (NSS) with T = 256.
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Table 4: The mean and std. of Fréchet inception distance (FID) and inception score (IS)

within 20 individual trials using CelebA, LSUN-Church, LSUN-Conference, and Oxford-

Flowers datasets by (rows in each part) the baseline DCGAN (GAN), GAN with gradient

regularization (GAN-gr) [3], LSGAN [49], WGAN-gp [18], Dragan [20], and GANs using the

conventional scale-space (SS), the noise-space (NS), and the proposed noisy scale-space (NSS)

with T = 256: The learning-rate and 1st momentum were tuned for each condition based on

the mean FID.

CelebA Church

FID (↓) IS (↑) FID IS

GAN 21.36 ± 1.71 2.39 ± 0.06 69.05 ± 4.65 2.98 ± 0.07

GAN-gr 19.87 ± 1.19 2.35 ± 0.05 61.67 ± 5.07 2.97 ± 0.11

LSGAN 33.38 ± 5.10 2.28 ± 0.06 75.88 ± 9.56 3.02 ± 0.09

WGAN-gp 42.16 ± 2.77 2.45 ± 0.07 102.61 ± 18.48 2.90 ± 0.14

Dragan 20.36 ± 1.25 2.35 ± 0.05 50.41 ± 2.68 2.91 ± 0.04

SS-GAN 21.49 ± 1.49 2.37 ± 0.05 61.20 ± 3.53 2.97 ± 0.08

NS-GAN 20.50 ± 1.14 2.37 ± 0.04 60.02 ± 4.47 2.98 ± 0.08

NSS-GAN 19.45 ± 1.15 2.42 ± 0.05 58.86 ± 3.92 2.97 ± 0.08

Conference Flowers

FID IS FID IS

GAN 77.96 ± 5.49 4.19 ± 0.11 97.71 ± 4.91 2.98 ± 0.09

GAN-gr 70.82 ± 3.80 4.08 ± 0.11 99.25 ± 5.59 3.15 ± 0.09

LSGAN 81.90 ± 9.49 4.01 ± 0.11 121.81 ± 8.50 2.72 ± 0.15

WGAN-gp 121.05 ± 7.60 3.51 ± 0.13 129.05 ± 7.70 2.89 ± 0.08

Dragan 67.07 ± 5.45 4.18 ± 0.16 98.37 ± 6.63 3.00 ± 0.09

SS-GAN 80.07 ± 5.44 4.02 ± 0.10 91.93 ± 5.12 3.11 ± 0.09

NS-GAN 73.11 ± 4.07 4.02 ± 0.08 91.44 ± 4.47 3.07 ± 0.08

NSS-GAN 64.61 ± 3.20 4.21 ± 0.14 86.28 ± 6.57 3.09 ± 0.10
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5.3. Comparison to state-of-the-arts

We now compare the proposed NSS-GAN with the state-of-the-arts of GAN-

optimization: the baseline DCGAN (GAN), GAN with the gradient regular-

ization [3], LSGAN [49], WGAN with gradient penalty (WGAN-gp) [18], Dra-

gan [20], GANs using the scale-space (SS-GAN), and the noise-space (NS-GAN)

using the four of datasets. Note that these GANs share the same backbone ar-

chitecture of DCGAN. In order to make our result independent to the hyper

parameters of Adam, we employ grid search and tuned the learning-rate scale (η)

in combination with the first momentum coefficient (b1) for each pair of model

and dataset, while the second momentum of Adam was fixed as b2 = 0.999

based on our pretest. For each model, we then choose the best condition using

the mean FID within the 20 trials. Table 3 summarizes the tuned parameters

in which the baseline GAN prefers a stable condition compared to the others.

Figure 7 and Figure 8 present fake images by the tested GANs with their

tuned hyper-parameters, where we use the generator of which FID is the clos-

est to the mean of the independent trials. Table 4 summarizes the mean and

std. of FID and IS of the experimented GANs for the four datasets within

the 20 trials, where the proposed NSS-GAN with the constant parameter of

T = 256 has achieved better and comparable results than the state-of-the-arts,

demonstrating the effectiveness of the presented NSS-GAN.

More importantly, Table 4 shows that the conventional scale-space (SS) GAN

and the noise-space (NS) GAN were not consistently better than the baseline

GAN. In contrast, the proposed NSS-GAN has consistently outperformed the

baseline GAN, SS-GAN, and NS-GAN in FID. This indicates that the stabiliza-

tion effect of the presented NSS-GAN is not the simple summation of those by

the scale-space with the noise-space but due to the better use of their mutually

complementary relationship in the GAN optimization.

5.4. Comparison to StyleGAN2-Ada

As an additional study, we apply the noise scale-space to StyleGAN2-Ada [17]

and compare it with the original algorithm using MetFaces dataset [17] and
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Table 5: The hyper-parameters of (left) StyleGAN2-Ada and (right) StyleGAN2 with the

proposed noisy scale-sapce: the R1 regularization (γ) of StyleGAN2 and the noise std of the

proposed method (σ). We also employed the initial value T = 128 for our noisy scale-space.

StyleGAN2-Ada StyleGAN2-NSS

MetFaces-512
γ 1.64 0.82

σ - 0.05

FFHQ-512
γ 1.64 1.64

σ - 0.1

Flickr-Faces-HQ (FFHQ) dataset [48]. StyleGAN2-Ada [17] is a state-of-the-art

generative model for high-resolution images using a variety of data augmenta-

tions. We denote our implementation by StyleGAN2-NSS.

StyleGAN2 series require 25Kimg-iterations to converge with images of the

size 1024×1024. However, this requires a large-scale GPUs with a huge compu-

tational time. For the sake of reproducibility, we use down-scaled images of the

size 512 × 512 that we call MetFaces-512 and FFHQ-512, respectively, and we

also limit the training iterations to 5Kimg that is known to achieve reasonable

results [17].

For FFHQ-512 dataset, we implement our StyleGAN2-NSS by replacing the

augmentation term (i.e., Ada) [17] by the proposed NSS function. However, we

have observed that both the vanilla StyleGAN2 without Ada and StyleGAN2-

NSS can explode when applied to MetFaces-512. This means that the backbone

network of StyleGAN2 does not work with MetFaces-512 without the Ada term.

Thus, our implementation for MetFaces-512 includes the Ada term in combina-

tion with our NSS function.

We follow the experimental set-up, the evaluation metrics, and the hyper-

parameters of the official StyleGAN2 implementation, including the R1 regu-

larization weight (γ) that we have tuned within γ = 0.82, 1.64, 3.28 as recom-

mended in [17]. We tune the noise std of NSS based on the image variance

curve of the images and also employ T = 128 as the initial condition. Table 5

summarizes the tuned hyper-parameters.

Table 6 summarizes FID and IS by StyleGAN2-Ada and StyleGAN2 using

the proposed noisy scale-space. Figure 9 visualizes fake images created by the
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generator with the average FID within the individual trials. Table 6 and Figure 9

show that the presented NSS-GAN has successfully improved the accuracy and

quality of generated images using the state-of-art StyleGAN2.

It has been reported[17] that StyleGAN2-Ada outperforms Progressive-GAN [28]

in accuracy. Therefore, our experimental results implicitly demonstrate that

StyleGAN2-NSS is superior to Progressive-GAN. Moreover, our noisy scale-

space is independent of the architecture in contrast to Progressive-GAN that

requires the hierarchical architecture of networks.

Table 6: Fréchet inception distance (FID-50K) and inception score (IS-50K) for (top part)

MetFaces-512 and (bottm part) FFHQ-512 datasets by (left) StyleGAN2-Ada and (right)

StyleGAN2 with the proposed noisy scale-space. The models were trained 5KImg-iterations.

The mean and std of the metrics were computed within the individual 5 trials.

StyleGAN2-Ada StyleGAN2-NSS (ours)

MetFaces-512
FID (↓) 18.30 ± 1.87 17.25 ± 0.56

IS (↑) 3.79 ± 0.14 3.87 ± 0.05

FFHQ-512
FID (↓) 7.27 ± 0.25 5.52 ± 0.12

IS (↑) 4.61 ± 0.03 4.91 ± 0.08

6. Conclusion

In the consideration of data manipulation for the stable optimization in

GANs, we have proposed a discrete representation of data, called noisy scale-

space (NSS), that gradually removes high-frequency information in image while

adding noise, leading to a coarse-to-fine training of GANs. In order to observe

the side-effect of the conventional scale-space in GAN optimization, we have

proposed the synthetic dataset based on the Hadamard bases that visualizes

the true distribution of the real and fake data. We have experimented with the

proposed NSS using two backbone networks: DCGAN and StyleGAN2 based on

the major datasets for natural image generation tasks. The experimental results

have successfully demonstrated that: NSS-based GANs overtook the potential

competitors and the state-of-the-arts in most cases.
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StyleGAN2-Ada StyleGAN2-NSS (ours)

Figure 9: Fake images based on (top) MetFaces-512 and (bottom) FFHQ-512 datasets by

(left) StyleGAN2-Ada and (right) StyleGAN2 with the proposed noisy scale-sapce trained

5KImg-iterations. The generators with the average FID within the 5 trials were used.

A limitation of our method is that we assume the diffusion can simplify (the

real) data. Concretely, our NSS-GAN is inferior to the original GAN when using

MNIST [50] images that consist of 0/1 binary values. Obviously, smoothing the

binary data increases the diversity of pixel values. Our assumption holds for

natural images and our method yields the sufficient stabilization effect for GAN

optimization irrespective of the content of images.
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[5] K. Kurach, M. Lučić, X. Zhai, M. Michalski, S. Gelly, A large-scale study

on regularization and normalization in gans, in: International Conference

on Machine Learning, PMLR, 2019, pp. 3581–3590.

[6] D. Wang, X. Qin, F. Song, L. Cheng, Stabilizing training of genera-

tive adversarial nets via langevin stein variational gradient descent, IEEE

Transactions on Neural Networks and Learning Systems (2020) 1–13doi:

10.1109/TNNLS.2020.3045082.

[7] M. Arjovsky, L. Bottou, Towards principled methods for training gener-

ative adversarial networks, in: 5th International Conference on Learning

Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference

Track Proceedings, 2017.

[8] A. Krogh, J. A. Hertz, A simple weight decay can improve generalization,

in: Advances in neural information processing systems, 1992, pp. 950–957.

24

http://dx.doi.org/10.1109/TNNLS.2020.3045082
http://dx.doi.org/10.1109/TNNLS.2020.3045082


[9] R. Sutton, Two problems with back propagation and other steepest descent

learning procedures for networks, in: Proceedings of the Eighth Annual

Conference of the Cognitive Science Society, 1986, pp. 823–832.

[10] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, S. Paul Smolley, Least squares

generative adversarial networks, in: Proceedings of the IEEE international

conference on computer vision, 2017, pp. 2794–2802.

[11] S. Nowozin, B. Cseke, R. Tomioka, f-gan: Training generative neural sam-

plers using variational divergence minimization, in: D. Lee, M. Sugiyama,

U. Luxburg, I. Guyon, R. Garnett (Eds.), Advances in Neural Information

Processing Systems, Vol. 29, Curran Associates, Inc., 2016, pp. 271–279.

[12] L. Cai, Y. Chen, N. Cai, W. Cheng, H. Wang, Utilizing amari-alpha diver-

gence to stabilize the training of generative adversarial networks, Entropy

22 (4) (2020) 410.

[13] M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial

networks, in: International conference on machine learning, PMLR, 2017,

pp. 214–223.

[14] S. Jenni, P. Favaro, On stabilizing generative adversarial training with

noise, in: Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, 2019, pp. 12145–12153.

[15] W. J. Townsend, M. A. Thornton, Walsh spectrum computations using

cayley graphs, in: Proceedings of the 44th IEEE 2001 Midwest Symposium

on Circuits and Systems. MWSCAS 2001 (Cat. No. 01CH37257), Vol. 1,

IEEE, 2001, pp. 110–113.

[16] A. Radford, L. Metz, S. Chintala, Unsupervised representation learning

with deep convolutional generative adversarial networks, arXiv preprint

arXiv:1511.06434.

25



[17] T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, T. Aila, Train-

ing generative adversarial networks with limited data, Advances in Neural

Information Processing Systems 33 (2020) 12104–12114.

[18] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen,

X. Chen, Improved techniques for training gans, in: D. Lee, M. Sugiyama,

U. Luxburg, I. Guyon, R. Garnett (Eds.), Advances in Neural Information

Processing Systems, Vol. 29, Curran Associates, Inc., 2016, pp. 2234–2242.

[19] T. Miyato, T. Kataoka, M. Koyama, Y. Yoshida, Spectral normalization

for generative adversarial networks, in: 6th International Conference on

Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 -

May 3, 2018, Conference Track Proceedings, 2018.

[20] N. Kodali, J. Abernethy, J. Hays, Z. Kira, On convergence and stability of

gans, arXiv preprint arXiv:1705.07215.

[21] K. Roth, A. Lucchi, S. Nowozin, T. Hofmann, Stabilizing training of gen-

erative adversarial networks through regularization, in: I. Guyon, U. V.

Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett

(Eds.), Advances in Neural Information Processing Systems, Vol. 30, Cur-

ran Associates, Inc., 2017, pp. 2018–2028.

[22] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, S. Hochreiter, Gans

trained by a two time-scale update rule converge to a local nash equilibrium,

in: I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-

wanathan, R. Garnett (Eds.), Advances in Neural Information Processing

Systems, Vol. 30, Curran Associates, Inc., 2017.

[23] F. Schaefer, H. Zheng, A. Anandkumar, Implicit competitive regularization

in GANs, in: H. D. III, A. Singh (Eds.), Proceedings of the 37th Interna-

tional Conference on Machine Learning, Vol. 119 of Proceedings of Machine

Learning Research, PMLR, 2020, pp. 8533–8544.

26



[24] D. Zhang, A. Khoreva, Progressive augmentation of gans, in: H. Wallach,

H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, R. Garnett (Eds.),
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