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Abstract—Event camera is an emerging bio-inspired vision
sensors that report per-pixel brightness changes asynchronously.
It holds noticeable advantage of high dynamic range, high speed
response, and low power budget that enable it to best capture
local motions in uncontrolled environments. This motivates us to
unlock the potential of event cameras for human pose estimation,
as the human pose estimation with event cameras is rarely ex-
plored. Due to the novel paradigm shift from conventional frame-
based cameras, however, event signals in a time interval contain
very limited information, as event cameras can only capture the
moving body parts and ignores those static body parts, resulting
in some parts to be incomplete or even disappeared in the
time interval. This paper proposes a novel densely connected
recurrent architecture to address the problem of incomplete
information. By this recurrent architecture, we can explicitly
model not only the sequential but also non-sequential geometric
consistency across time steps to accumulate information from
previous frames to recover the entire human bodies, achieving
a stable and accurate human pose estimation from event data.
Moreover, to better evaluate our model, we collect a large scale
multimodal event-based dataset that comes with human pose
annotations, which is by far the most challenging one to the
best of our knowledge. The experimental results on two public
datasets and our own dataset demonstrate the effectiveness and
strength of our approach. Code * can be available online for
facilitating the future research.

Index Terms—Human pose estimation, Dense connections,
Recurrent network, Event camera, Dataset

I. INTRODUCTION

Human pose estimation is a fundamental vision task which
finds a variety of real applications in computer vision, such as
augmented reality, human behavior understanding, and human-
robot interaction. Existing efforts [1]–[4] are mainly based
on conventional RGB cameras, and meanwhile remarkable
advances have been made thanks to the success of deep
CNNs. Meanwhile, event cameras [5], [6], inspired by the
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Fig. 1. Action samples captured by an event camera. The human body parts
are not all visible during movements, since that some body parts are just static
so that no events are triggered.

biological vision process, output a stream of asynchronous per-
pixel brightness changes, which allows event cameras to best
detect and capture local motions. Event camera has recently
been an emerging vision sensor to offer opportunities for
computer vision applications [5], [7]–[9], such as SLAM [10],
gesture recognition [11], [12], optical flow estimation [13],
object recognition [14]–[16] due to their unique advantages
of very high temporal resolution, high dynamic range, low
latency, and low power budget, which can tackle the problems
that are difficult with the conventional cameras. Therefore,
event camera has a large potential for human pose estimation
which may operate under uncontrolled lighting conditions and
crowded backgrounds. However, the potential of event cameras
in human pose estimation is being under-explored.

It is straightforward to apply the existing approaches based
on conventional cameras [1]–[3] to the event-based pose
estimation by accumulating asynchronous events into frames
[7], [9]. Nevertheless, the sparsity of event data limits the
performance, because event cameras only output events at
those positions that have noticeable brightness changes in the
scene. For example, in Fig. 1 we list several human action
samples captured by event cameras, where the human body
is partial invisible in some frames, because event cameras
can only capture the moving body parts and ignores those
static body parts, resulting in some parts to be incomplete
or even disappeared. Therefore, this problem motivates us to
consider the geometric consistency and temporal dependency
across frames for event-based pose estimation to help recover
and complete those lost information. Existing approaches for
video-based human pose estimation [17]–[21] can be lever-
aged to address this. However, it is not always effective for
event-based pose estimation, because in some cases no frame
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contains a complete human body whose all body parts are
visible in an event video, as shown in Fig. 1. As a result,
the existing approaches that consider geometric consistency
between adjacent frames may not be useful to help complete
invisible body parts.

In this paper, we argue that the temporal geometric con-
sistency in event videos may require not only a sequential
temporal dependency but also a non-sequential information
accumulation across frames in a long range to recover the
whole human bodies. For instance, as shown in Fig. 1, in some
cases there are some key frames that contains all body parts,
which can be used to complete the information of neighboring
frames. In some cases, we cannot always have key frames
in a video so that we need to accumulate the information
from a set of frames in a time window to recover the full
human body. Therefore, we adopt a basic recurrent architecture
with a newly proposed temporal dense connection across a
sequence of time steps to capture the geometric consistency
of human poses across frames in both local and long range to
complete the lost information in event frames, as illustrated in
Fig. 3. Specifically, we incorporate a set of dense connections
between the current frame and its all preceding frames into the
recurrent network built by using a Long Short-Term Memory
(LSTM) module to link an encoder-decoder CNN [1] tem-
porally. This new architecture allows for both the sequential
and non-sequential temporal dependency modeling thanks to
such skipped dense connections rather than only sequential
connections between two neighboring frames in [18], [20],
[22], [23]. Moreover, we introduce a spatio-temporal attention
mechanism into the dense connections to pay different impor-
tance to the preceding frames and their spatial joints when
fusing their information to the current frame. In addition, we
found in the experiments that the existing event-based human
pose datasets [7], [19] are normally captured under indoor
environments with clean background and controlled lighting
conditions. Therefore, our method is easily saturated in the
performance with these datasets. Therefore, to evaluate our
method, we collect a new event-based human pose dataset,
referred as CDEHP, to provide the benchmarks for event-based
pose estimation.

The contributions of this paper can be summarized as
following:
• We present a novel recurrent architecture with a newly

proposed temporal dense connections to capture both
sequential and non-sequential geometric consistency and
dependency among event frames for event-based human
pose estimation. Our method can effectively overcome the
problem of incomplete event information in event frames.

• The spatio-temporal attention mechanism is introduced
in our method to provide a more effective information
fusion and completion for event data by paying different
importance to preceding frames and their spatial joints,
compared with simply accumulating them.

• We collect a large scale multimodal event-based human
pose dataset from Color (RGB), Depth, and Event cam-
eras, called as CDEHP in this paper. The dataset is
captured from outdoor environments under varying light
conditions, while most existing event-based pose datasets

are captured from controlled indoor environments. The
CDEHP can help unlock the potential of event cameras
in human pose estimation, and facilitate the existing and
future related research directions.

II. RELATED WORK

A. Human Pose Estimation

Human pose estimation from still images in early works
usually starts from building the parts-based graphic mod-
els or pictorial structure models [24]–[27] to learn spatial
relationships between articulated body parts. Recently, the
performance of these earlier works have been surpassed largely
thanks to the great success of deep convolutional networks [1]–
[4], [18], [28]–[30] that provide dominant solutions nowadays.
Apart from image-based pose estimation, many efforts [17],
[18], [31], [32] has also been made to exploit temporal and
motion information for human pose estimation from videos
by using optical flow or 3D CNNs, which are related to
our work since that we consider to accumulate event signals
into a sequence of event frames. However, these methods
have the limited ability to extract temporal contexts explicitly.
More recently, recurrent architectures [18], [20]–[23], [33] is
normally integrated with an encoder-decoder CNN framework
to model the temporal dependency across frames to refine
pose predictions, which have been pioneering frameworks
for video-base human pose estimation. Such kind of frame-
works share a general structure, where CNNs are normally
used to encode and decode every frame sequentially, and a
recurrent mechanism is then introduced to temporally link
the encoder-decoder streams along time steps to propagate
temporal dynamics between neighboring frames. However,
they all just model the temporal dependency between two
consecutive frames, which are not always effective for human
pose estimation from event signals, because in an event video
we also need to consider a long-range geometric consistency
across a set of frames in a time window. DCPose [33] leverages
the temporal cues between past, current, and next frames to
facilitate keypoint prediction. However, it still models a short-
range temporal dependency, and meanwhile it has to depends
on future frames. Similarly, most recent work FAMI-Pose
[?] leverages a hierarchical alignment framework to update
a short-range of neighboring frames (e.g., 2 previous and 2
future frames) to align with the current frame at feature level.

Different from existing methods, our model introduces
dense connections across a set of consecutive frames rather
than one single temporal connection between the current and
last frames to help recover human poses in event streams.

B. Event Camera and Applications

Most existing methods and algorithms in vision research
are based on the conventional frame-based cameras, where
the cameras output a sequence of synchronous frames at a
fixed rate. The frame contains the entire information in scene,
thereby producing redundant vision signals especially when
there are only very little changes in the scene between con-
secutive frames. In contrary, event cameras [5], [6], a new type
of bio-inspired vision sensors that have emerged in the last few
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years, output a signed ‘event’ signal ei at the pixel location of
(ui, vi) only when the detected changes in the log brightness
exceeds a predefined threshold C (|∆log(I(ui, vi, ti))| > C)
at time instance ti with the polarity ρi (ρ ∈ {−1,+1}). Then,
an event signal can be represented as ei = (ui, vi, ti, ρi),
where positive events (ρi = +1) indicates the brightness
increase (∆log(I) > C) and negative events (ρi = −1)
indicates the brightness decrease (∆log(I) < −C), as shown
in Fig. 2.

Thus, unlike conventional cameras, event cameras produce a
sequence of asynchronous events because they asynchronously
sample light of each pixel independently. As a result, the
events are spatially much sparser in comparison with conven-
tional frame-based cameras, where each frame is generated by
densely sampling the entire pixels at the same time. Hence,
event camera is able to best capture local motions in the scene
as a stream of sparse and asynchronous events. Event cameras
have unique advantages of very high temporal resolution, high
dynamic range, low latency, and low power consumption.
Hence, event cameras have stimulated a variety of research
activities and applications in computer vision [5], including
visual SLAM [10], optical flow estimation [13], object track-
ing [8], object recognition [14], [15], [34], gait recognition
[12], and high-speed maneuvers [35], among others.

For human pose estimation, there has been little investi-
gations into applying event cameras to capture and estimate
human poses. DHP19 [7], EventCap [36], and EventHPE [19]
are perhaps most related to our work. In DHP19 [7], a simple
encoder-decoder CNN is designed to estimate human poses
from single integrated event frames. The method normally
fails in those frames that contain only few visible body parts.
Other two related works EventCap and EventHPE are mainly
dedicated to address 3D human motion capture and shape
recovery rather than pose estimation from event streams. In
EventCap [36], it aims to achieve markerless human motion
capture, which however requires a necessary additional input
of gray-scale images apart from event signals. EventHPE [19]
can achieve human pose and shape estimation simultaneously
with the solo event source. However, it needs to fuse an
event sequence and its corresponding optical flows, where
optical flows require an extra FlowNet to infer. Moreover,
a beginning body posture at the first frame of gray-scale
images is necessary for this method. Compared with them, our
approach only takes in event signals as the sole input source
to address the human pose estimation with a light model.

C. Event-based Human Pose Datasets

There are already many RGB-based datasets for human
pose estimation, including images and videos, such as COCO
[37], MPII [38], LSP [39], PoseTrack [40], etc., which have
largely facilitated the evaluations of RGB-based algorithms.
However, event-based human pose datasets have been rarely
curated. There are only two existing datasets, DHP19 [7] and
MMHPSD [19], which are commonly used to evaluate the
pose estimation. DHP19 contains total of 33 action categories,
but most of them are simple slow motions such as hand waving
and leg swinging so that a very simple CNN can even saturate

on this dataset. The MMHPSD dataset is a multimodal dataset
that contains more diverse actions with fast, medium, and
slow motions. However, the 2D joint annotations are roughly
obtained by using OpenPose [4] as MMHPSD dataset was
initially created for 3D human shape estimation. Moreover,
both datasets were acquired indoors under a fixed environment
with clean backgrounds. Therefore, we curated a large-scale
multimodal event-based dataset CDEHP that are captured in
outdoor environments with uncontrolled lighting conditions.

events (𝜌 = +1)

log(𝐼(𝑢, 𝑣, 𝑡))

𝑒(𝑢, 𝑣, 𝑡) time

time𝑡! 𝑡"

Threshold 𝐶

events (𝜌 = −1)

Fig. 2. Top: Event-based vision sensor working principle. Events are
generated asynchronously according to the brightness changes (∆log(I)).
Dotted lines show how the thresholds for detecting increases and decreases in
brightness change as outputs are generated. This sub-figure is cropped from
[16].

Middle: The difference in vision acquisition between the
event camera and RGB camera. Bottom: The RGB frame

captured from the conventional RGB camera and event
frames accumulated from event signals. Best viewed in color.

III. OUR APPROACH

In the event capturing, event camera provides a stream of
asynchronous event signals. In this work, we divide the event
stream into a sequence of T event packets, where each event
packet consists of a set of event signals collected from a
fixed time interval (ti−1, ti), as shown in Fig. 3. We then
accumulate the events of each packet by following the strategy
in [9] to integrate an event frame. We here have a little
abuse of notation t that is used to represent the temporal
index of integrated event frames rather than a time instance.
Therefore, we address the event-based human pose estimation
by detecting the keypoints from a sequence of T consecutive
event frames {It}T−1t=0 , i.e., I ∈ RW×H×T . Most of the
existing methods transform this problem to predict a set of
heatmaps b = {bt}T−1t=0 for all frames. The bt ∈ RW ′×H′×K

is of spatial size W ′ × H ′, where K represents the number
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Fig. 3. An overview of the densely connected recurrent network. Events in a fixed time interval (ti−1, ti) are accumulated as an event frame first. We then
can convert a stream of asynchronous event signals to an event video that consists of a sequence of event frames It. ConvNet1 is an encoder-decoder CNN to
extract convolutional features from event frames, and ConvNet2 that has a 1× 1 convolutional layer is added to generate the heatmaps. An LSTM module is
incorporated with ConvNet1 and ConvNet2 to create a basic recurrent network, based on which we introduce a set of dense connections with attentions to pass
all the preceding heatmaps to fused with convolutional features at the current time step (frame) for explicitly modeling both the sequential and non-sequential
geometric consistency across time steps in a long range.

of keypoints in a human body, and each bt(k) indicates the
location confidence of the k-th keypoint at the t-th time step
(frame).

Fig. 3 illustrates an overview of our proposed recurrent
architecture. A base convolutional network based on the
encoder-decoder architecture [1] (i.e.,ConvNet1 in Fig. 3) are
temporally linked by using a recurrent architecture for event-
based pose estimation, where specifically a convolutional
LSTM module is employed to model the temporal dependency
across consecutive frames. At every time steps, ConvNet1
first learns the convolutional features and then recovers the
high-resolution spatial feature maps for heatmap generation.
These feature maps across time steps are then sent into the
LSTM module to form a recurrent network. A following
1 × 1 convolutional network (i.e.,ConvNet2 in Fig. 3) finally
produces the heatmaps of joint locations for each input frame.
Most importantly, to address the problem of event-based pose
estimation, we introduce a set of temporal dense connections
into such recurrent network inspired by prior works [18],
[41], where a spatio-temporal attention mechanism is further
incorporated to learn the their weights of connections.

A. Convolutional Base Network

We follow the widely-used pipelines [1], [21], [28], [42]
to predict the body keypoints by using an encoder-decoder
architecture, which usually consists of a series of convolutional
layers followed by a couple of upsampling and deconvolutional
layers to generate high-resolution spatial feature maps. A
few of regression layers take the feature maps as input to
finally estimate the heatmaps for all keypoints. We adopt
the convolutional network in [1], i.e., SimpleBaseline, as our
base network to extract the feature maps for each frame to
generate heatmaps, as the SimpleBaseline [1] is a very simple

but effective convolutional network for human pose estimation
from still images.

SimpleBaseline simply uses the ResNet [43] as the back-
bone to extract high-level image feature and then typically
adds three transposed convolution layers (deconvolution) to
recover the high-resolution spatial feature maps. Specifically,
there are 256 filters with a 4×4 kernel and a stride of 2 in each
deconvolutional layer. An 1× 1 convolutional layer is finally
adopted at last to predict the heatmaps of the body keypoints
based on the feature maps. In our architecture, we use the
abbreviation ConvNet2 to indicate such an 1×1 convolutional
layer, while we use the abbreviation ConvNet1 to indicate
the convolutional block composed of the ResNet and three
deconvolution layers.

B. LSTM-based Recurrent Network

To build our recurrent network, we use an LSTM module
to link the convolutional base network in temporal dimension,
as illustrated in Fig. 3, where we choose to insert the LSTM
module between ConvNet1 and ConvNet2. By such recurrent
style model, the parameters of ConvNet1 and ConvNet2 are
shared across different time steps. Since the LSTM module
take the convolutional feature maps generated by the ConvNet1
as input, we leverage two convolutional LSTM layers [44]
without peephole connections as our LSTM module, where
the operations inside it are defined as:

it = δ (Wxi ∗Xt + Whi ∗ ht−1 + εi) ,

ft = δ (Wxf ∗Xt + Whf ∗ ht−1 + εf ) ,

ot = δ (Wxo ∗Xt + Who ∗ ht−1 + εo) ,

Ct = ft � Ct−1 + it � ϕ (Wxc ∗Xt + Whc ∗ ht−1 + εc) ,

ht = ot � ϕ(Ct),
(1)
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Unlike the standard LSTM, ’*’ here denotes a convolutional
operation similar with [44]. As a result, all the ’+’ in Eq. 1
represent the element-wise addition. Xt denotes the input
feature, while W∗∗ denotes the weights of the LSTM module.
ε∗ denote the bias terms. δ and ϕ represent the activation
functions sigmoid(·) and tanh(·), respectively. it, ft, ot, and
ht represents the input gate, forget gate, output gate, and
hidden state, respectively. Such convolutional design of LSTM
gates allows for more attentions on the regional context rather
than global information, and it can effectively capture the local
changes of joints.

We adopt two such convolutional LSTM layers with 3 ×
3 kernels as our LSTM module, referred to as the function
L (·). Successive event frames in an event video are sent into
the feature extractor ConvNet1 to produce the feature maps
of size W ′ × H ′ × M as the input of the LSTM module
across each time step. Lastly, the outputs of the LSTM module
are sent into the heatmap generator ConvNet2 with an 1 × 1
convolutional layer to predict the heatmaps for each frame.
Mathematically, we denote the computation of ConvNet1 and
ConvNet2 consistently used in all time steps as the functions
F (·) and g (·), respectively, and It ∈ RW×H is the original
input event frame at time step t. Denote bt ∈ RW ′×H′×K

as the heatmaps in time step t. The LSTM-based recurrent
network can be formulated mathematically as following,

bt = g (L (F (It))) , t = 0, 1, 2, ..., T − 1 (2)

C. Dense Connections with Attentions

The key strategy in this paper is that we propose a novel
densely connectivity pattern as shown in Fig. 3 in the recur-
rent network to pass all the preceding heatmaps to the next
time step for explicitly building sequential and non-sequential
geometric consistency in an event video. We introduce direct
connections from the heatmaps in every time step to the inputs
of LSTM modules in all subsequent time steps. In this way, the
t-th LSTM module L (·) receives the heatmaps in all preceding
time steps. All these past heatmaps are simply accumulated as
one heatmap, which is then concatenated (indicated by the
operation ⊕) with the feature map extracted by ConvNet1
F (·) in the t − th step as input to the LSTM module.
Mathematically, a new recurrent architecture with the proposed
temporal dense connections can be formulated as:

bt = g

(
L

(
F (It)⊕

t−1∑
τ=0

bτ

))
, (3)

The preceding frames may play different important roles in
predicting poses at current frame. Meanwhile, the visible body
parts in the previous frames also may make different contribu-
tions on completing the lost body parts in the current frames.
Therefore, we introduce an attention weight matrix into the
fusion of the preceding heatmaps during the propagation. In
addition, it should be noted that there are not prior heatmaps
when t = 0. Thus, we have to employ the base network
(ConvNet1 + ConvNet2) to generate the heatmap at the first
frame to provide initialized prior input to LSTM module for

the first frame self, as illustrated in Fig. 3. Consequently, we
have:

bt = g
(

L
(

F (It)⊕ g (F (It))
))
, t = 0, (4)

bt = g
(

L
(

F (It)⊕
∑t−1
τ=0 (Wt

τ � bτ )
))

, t = 1, ..., T,

(5)

where bt ∈ RW ′×H′×K , and Wt
τ is the attention matrix

to weight the heatmap of the τ -th frame to fuse with the
feature maps at t-th frame. � indicates the element-wise
multiplication that means the spatial attention on different
body parts in the corresponding frame is also applied. Such
spatio-temporal attention mechanism is introduced into the
dense connections to pay different importance to the preceding
frames and their spatial joints when fusing their information
to the current frame. Because of such temporal connectivity,
we refer to this recurrent architecture as Temporal Densely
Connected Recurrent Network (tDenseRNN). This new ar-
chitecture allows for both the sequential and non-sequential
temporal dependency modeling thanks to such skipped dense
connections rather than only sequential connections between
two consecutive frames in [18], [20], [22].

D. Training of the Network

For the ground truth heatmap for k-th joint, we transform
the label in Cartesian coordinates for the k-th joint into a
heatmap by placing a Gaussian peak at the center of the joint
locations. We have T time steps in the recurrent network,
where T is the number of consecutive frames in each training
sequence. The total loss is accumulated at the end of each
time step to supervise the network training. In the training,
we aim to minimize such loss with the l2 distance between
the predicted heatmaps and ground truth heatmaps for all joints
and all frames jointly,

l =

T∑
t

K∑
k

‖bt(k)− b∗t (k)‖ , (6)

where bt(k) and b∗t (k) are the predicted heatmaps and
ground truth heatmaps for k-th joint at t-th time step, respec-
tively.

E. Our CDEHP Dataset

A multimodal human pose dataset captured in outdoor
scenes, CDEHP, has been curated to evaluate our approach,
because there is not a very challenging dataset captured
in different environments to facilitate the evaluation of our
approach which easily saturates on the existing datasets with
simple actions captured in a fixed indoor environment.

Data acquisition. The CDEHP dataset was collected from
different outdoor environments under varying light conditions
by using a multiple camera system. The multiple camera
system contains 2 different imaging sensors, including one
event camera CeleX-V [8] and one RGB-D camera Intel
RealSense D435i, which could output a sequence of event
streams, RGB color frames, and depth frames simultaneously.
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TABLE I
LISTS OF RECORDED HUMAN ACTIONS PERFORMED WITH

LOW/MEDIUM/FAST SPEEDS

Speed Actions

slow walking, picking up, crawling, sweeping, mopping,
playing shuttlecock

medium
squat jumping, frog jumping, boxing, cartwheel,
rope skipping, supine jumping, kicking, ball throwing,
spinning, throwing

fast
running, bungee jumping, open and closed jumping,
crotch high five, cycling, alternating squat jump,
spreading arm big jump, assisted long jump, Bobbi jump

Specifically, the resolution of RGB-D camera (Intel RealSense
D435i) is set to be 840*480 with the frame rate of 60, while
the resolution of the event camera (Celex-V) is set to be
1280*800. The samples in the CDEHP dataset are captured
in four different outdoor environments by 20 subjects, with
15 being male and 5 being female. Each subject performs
25 different actions with varying speeds (slow/medium/fast)
for 3 ∼ 4 times, as listed in TABLE I. Finally, this amounts
to 500 video samples collected in total, where each video
sample contains RGB video sequences, depth video sequences,
and event streams. Overall, this amounts to be a total of
82K frames in the dataset in terms of the number of RGB-D
frames. Some action samples with RGB and event modalities
are shown in a figure of Appendix.

Fig. 4. Multiple camera system for data acquisition, with the RealSense D435i
on top and CeleX-V below.

Camera calibration. In our multiple camera system, we
use three imaging cameras, including event camera, depth, and
RGB cameras, where depth and RGB cameras are integrated
into one single RGB-D camera D435i. We need to calibrate
the intrinsic and extrinsic parameters of these cameras in order
to obtain the transformations between camera spaces. First,
we calibrate the intrinsic parameters of the event camera,
where particularly gray-scale images rather than event streams
are used during the calibration. For the RGB-D camera, we
directly use the intrinsic and extrinsic parameters provided
by the manufacture for RGB and depth cameras. Lastly, we
calibrate the relative mapping matrix of the event camera space
to the RGB-D camera space while the intrinsic and extrinsic
parameters of RGB-D cameras are fixed during calibration. In
this way, we can directly project the joint locations in the 3D
space of RGB-D camera to the 2D space of event camera.

Annotation. Currently, there are few event-based datasets
for human pose estimation. One main reason is that it is not

TABLE II
EXISTING EVENT-BASED HUMAN POSE DATASETS ARE COMPARED IN

TERMS OF THE NUMBER OF SUBJECTS (SUB#), THE NUMBER OF ACTIONS
PER SUBJECT (ACT#), THE NUMBER OF FRAMES (FRAME#), AND

MULTI-MODALITY (MM). THE SHOOTING SCENES ARE ALSO LISTED TO
COMPARE.

Dataset Sub# Act# MM Frame# Scenes
DHP19 [7] 17 33 No 87k indoor

MMHPSD [19] 15 12 Yes 240k indoor
CDEHP(ours) 20 25 Yes 82k outdoor

easy to annotate on event streams when dataset is captured
outdoors. Most of the existing datasets are collected indoors
using a set of motion capture sensors to assist annotation,
which limits the diversity of human actions. Therefore, we use
a simple but effective multiple camera system that are easily
to annotate the joint locations. In our multiple camera system,
we need to calibrate the intrinsic and extrinsic parameters of
these cameras in order to obtain the transformations between
camera spaces. With the calibration, we first manually annotate
the ground truth of 2D joints on the RGB frames. The depth of
each 2D joint is then obtained by warping its corresponding
depth image to the RGB frame. Accordingly, we can have
3D joint locations in the 3D space of RGB-D camera by
using the intrinsic parameters of depth camera. Lastly, it is
straightforward to obtain the 2D joint locations in event camera
space by projecting the annotations in RGB-D camera space
based on the calibrated matrix. It should be noted that since
that we integrate the event stream to a sequence of successive
frames in a fixed time interval, we temporally align the RGB-
based annotations to the event frames according to their frame
rates as in [7]. To implement the annotation, we developed a
interactive GUI tool as illustrated in a figure of Appendix.
In addition, some exemplar annotated action samples can be
found in the Appendix.

Data comparison. We compare our dataset with two other
existing datasets. As shown in TABLE II, although our data
is not the largest one in terms of the number of frames, we
have a more diversity in action classes, as listed in TABLE I.
Moreover, our dataset is acquired in multiple outdoor scenes
under varying environments rather than a fixed environment.
Our dataset also can offer the possibility of 3D pose estima-
tion in future, because we have the annotations of 3D joint
locations by using the depth camera.

Event frame and video generation. In order to leverage
the frame-based deep learning techniques, we need to convert
asynchronous events into frames, referred as event frames. To
do that, we follow the strategy in [9] to simply accumulate
the events at the fixed time interval of 8.333 ms in a pixel-
wise manner to obtain 2D histograms of events as an event
frame. According to this procedure, around 82K event frames
are generated in ours CDEHP dataset. A set of consecutive
frames generated from each event stream compose an event
video. Using these videos, we segment them into a number
of successive short video clips of the length T same with the
temporal length of our recurrent network. These short video
clips are then used to train and test our model.
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IV. EXPERIMENTS

In this section, we first introduce our experimental setup.
Second, extensive experiments for ablation studies are carried
out to analyze and verify the effectiveness of the proposed
method. Finally, we compare our method to existing state-
of-the-art methods on the DHP19 MMHPSD, and CDEHP
dataset. The results demonstrate the effectiveness and strength
of our method in event-based human pose estimation.

A. Experimental Setup

Datasets. We evaluate our method on three datasets, DHP19
[7], MMHPSD [19], and CDEHP. DHP19 is the first dataset
collected for event-based human pose estimation. It contains
a total of 33 actions, where each action is performed 10 times
by 17 subjects (12 female and 5 male). The DHP 19 dataset
was recorded from four event cameras located in different four
views. We only adopt the event data from a single camera
view (camera view 3 as illustrated in [7]) to evaluate our
approach, while our paper focuses on the 2D pose estimation
from event data. Following the previous work [7], we split
17 subjects into 12 subjects for training and 5 subjects for
testing for evaluation. MMHPSD is a latest event-based human
pose estimation dataset which was initially created for 3D
shape estimation, where 4 different types of visual sensors,
including one event camera, one polarization camera, and five
RGB-D cameras, are used to capture the actions. We utilize
2D joints in the pre-processed data, issued publicly by the
authors of [19], as the pose annotations, which are obtained
by projecting the fine-tuned 3D shapes constructed from the
annotations of multi-view RGB frames [19]. In MMHPSD,
there are 15 subjects performing 3 groups of actions (21
actions in total) for 4 times, where each group includes
actions with slow/medium/fast speed respectively. The detailed
action classes of the MMHPSD dataset can be found in [19].
Following the work [19], we split 15 subjects into 12 subjects
for training and 3 subjects for testing. For our CDEHP dataset,
its details has been introduced in Section III-E. For evaluation,
we split it a training set from 15 subjects and a testing set from
the remained 5 subjects.

Implementation. In the experiments, all event frames are
cropped to a fixed size of 256 × 256 with the human bodies
set at center. Random rotation is simply used for the data
augmentation. During training, the temporal length of our
recurrent network is set to be 16 (i.e., T = 16), which is
found to be large enough to obtain sufficient information for
completing lost events, achieving the best performance. Adam
optimizer with the learning rate of 5e-5 and the weight decay
of 1e-4 is used to optimize the learning process. If the training
loss does not continue to decrease in 5 epochs, the learning
rate is then reduced by half until the learning rate is less than
1e-6 and then the training ends. The model is carried out on
four NVIDIA 2080Ti GPUs.

Evaluation metrics. The commonly used standard eval-
uation metric is the object keypoint similarity (OKS) [3],
which is calculated based on the Euclidean distance between
a detected joint and its ground truth. We report a set of
standard average precision scores: AP50 (AP at OKS =
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Fig. 5. The model performance using different temporal lengths in our recur-
rent network on (a) CDEHP dataset, (b) DHP19 dataset, and (c) MMHPSD
dataset, respectively. PCK metric is used on CDEHP and MMHPSD, while
MPJPE is used on DHP19. Best viewed in color.

0.50), AP75 (AP at OKS = 0.75), and AP (AP at OKS =
0.50, 0.55, ..., 0.90, 0.95). In addition, we also adopt the per-
centage of correct keypoints (PCK) metric, which reports the
percentage of correct keypoint detection. A detected joint is
considered as correct if it falls within a normalized distance to
the ground truth. Nevertheless, on the DHP19 dataset, the PCK
and AP tend to saturate on this dataset by using even a very
simple network, since that they both can reach almost 100%
when every model listed in TABLE III has just started the
training for a few epochs. Therefore, we employ the mean per
joint position error (MPJPE) as the evaluation metric, which
represents the average Euclidean distance between ground
truth and prediction, which is usually measured with pixel
distances in 2D image space, i.e., 1

K

∑K
k ‖pi − p∗i ‖. pk and

p∗k denote the ground truth and predicted position of the k-th
joint in image space.

B. Experimental Analysis

Effect of the temporal length. Temporal lengths T in
Eq. 5 is a hyper-parameter that refers to the number of
successive frames input to the recurrent network for the
training. We experiment with the varying temporal lengths,
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TABLE III
COMPARISON WITH STATE-OF-THE-ART METHODS ON CDEHP, MMHPSD AND DHP19 DATASET. BEST IN BOLD, SECOND-BEST UNDERLINED. THE

INPUT SIZE FOR ALL METHODS IS 256× 256

Method Backbone CDEHP MMHPSD [19] DHP19 [7]
AP ↑ AP50 ↑ AP75 ↑ PCK ↑ AP ↑ AP50 ↑ AP75 ↑ PCK ↑ MPJPE ↓

Hourglass [28] 8-Stack HG 75.87 91.78 59.47 71.32 76.47 94.88 65.55 91.74 7.18
SimpleBaseline [1] ResNet-18 77.51 93.10 63.20 73.60 77.16 95.12 67.73 91.84 7.15
HigherHRNet [3] HRNet-W32 75.60 91.65 57.95 71.56 78.18 95.53 70.62 92.14 7.02
LSTM-CPM [18] CPM 59.37 67.63 28.10 49.07 40.99 39.28 3.66 54.75 7.36
DKD [20] ResNet-18 78.97 95.37 67.36 76.79 81.07 97.44 77.90 94.41 5.40
DCPose [33] ResNet-18 77.56 93.65 63.18 74.80 81.97 97.45 80.62 95.02 6.62
FAMI-Pose [?] HRNet-W32 78.40 93.23 67.43 76.90 80.31 96.53 76.45 93.54 5.53
RNN ResNet-18 77.97 94.09 64.63 75.79 84.15 98.23 85.26 95.76 5.36
tThinRNN ResNet-18 78.18 94.82 64.53 76.00 84.90 98.65 87.48 96.15 5.32
tDenseRNN-w/o-AT ResNet-18 79.54 95.06 69.74 78.95 86.82 98.83 90.55 97.00 5.17
tDenseRNN ResNet-18 80.18 95.51 71.50 79.70 86.96 99.09 91.77 97.14 5.08
tDenseRNN+PoseAug ResNet-18 82.22 96.60 77.23 82.66 – – – – 4.55

i.e., T = 2, 4, 8, 16, and report the results in terms of the PCK
metric on the three datasets, as recorded in Fig. 5. The figure
shows the effects of different temporal lengths on the model
performance with increasing epochs in the training process.
We can observe the best performance on CDEHP dataset is
achieved with T = 8, 16, while on other two datasets the
best results are achieved with T = 16. The results with the
shorter temporal lengths decrease significantly especially when
T = 2, 4. This study reveals that with the proposed densely
connections in a long range are effective to pass previous
useful information to help predict the pose at the current frame.
But, it doesn’t mean that the longer the temporal length is, the
better performance is, while on CDEHP and DHP 19 datasets
we can see the performance with T = 8 is close to the one
with T = 16. It exhibits that the information of the preceding
frames that are very far away from the current frame does
not contain effective information as useful as the near frames.
Meanwhile, a longer temporal length could bring a higher
computational cost accordingly. Therefore, we do not try to set
up a higher temporal length over the current setting T = 16,
as we set T = 16 in this paper.

Contribution of each component. We conduct extensive
experiments to study the effect of each component in our
model. First, we insert a convolutional LSTM module between
ConvNet1 and ConvNet2 to simply create a standard recurrent
neural network for modeling the temporal dependency across
frames, as stated in Eq. 2. We consider this model as our
baseline, denoted as RNN. Next, we incorporate one single
connection between every two adjacent frames in the baseline
model, where the output heatmap at the last frame are passed
to the current frame to concatenate with the features as
newly input to the LSTM module. We denote this model
as tThinRNN. Instead of one single connection, the dense
connection is introduced to the baseline model, as described
in Eq. 3, which is denoted as tDenseRNN-w/o-AT. Lastly,
the attention mechanism is furthermore incorporated into the
tDenseRNN-w/o-AT model to form our full model, as stated
in Eq. 5. We use tDenseRNN to denote our full model. For all
above models, we fix the backbone of the encoder in ConvNet1
as ResNet-18.

From the results on all datasets, as listed in TABLE III, we
can see using RNN already serves as a simple and strong
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Fig. 6. An example of the pose augmentation on pose events. (a) An original
pose. (b) The augmented pose. Best viewed in color.

baseline, achieving 5.36 MPJPE on DHP19, 84.15 AP on
MMHPSD, and 77.97 AP on CDEHP dataset. Especially on
MMHPSD and DHP19 dataset, our all models can achieve a
set of similar performance with marginal differences, because
actions in MMHPSD and DHP19 are not very challenging so
that our models are easy to saturate on these two datasets.
Therefore, in the following experimental study, we only an-
alyze the results on our CDEHP dataset. For tThinRNN, we
can find that it does not improve much in performance and
even its AP drops a little (-0.30 AP) in comparison with the
RNN model. By adding dense connections, tDenseRNN-w/o-
AT can outperform tThinRNN by a distinct margin of +1.63
AP. Furthermore, tDenseRNN with the attention mechanism
achieve the best performance, where AP is improved from
79.30 to 80.24. In terms of PCK, we even improve the
performance by a large margin of +1.30 PCK compared to
tDenseRNN-w/o-AT. These results verify the strength of our
dense connections with the attention mechanism for the pose
estimation from event video.

Pose augmentation. Motivated by [45], we introduce a
simple approach to augment the training poses of our dataset
towards a greater diversity and thus improve the generaliza-
tion of our model. Specifically, we augment the pose events
{ui, vi} in an event frame It by rotating those events by the
joints of knees and elbows, generating new pose events, as
illustrated in Fig. 6,

(uai , v
a
i ) = (ui − uc, vi − vc)

(
cosθ sinθ
−sinθ cosθ

)
+ (uc, vc)

(7)
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TABLE IV
ACTION-WISE RESULT COMPARISON ON CDEHP DATASET IN TERMS OF THE AP METRIC. SLOW ACTIONS, MEDIUM ACTIONS, AND FAST

ACTIONS ARE INCLUDED IN THE TOP, MIDDLE, AND BOTTOM PARTS, RESPECTIVELY, WHILE WE SEPARATE THE TABLE INTO THREE PARTS IN
TERMS OF THE ACTION SPEED. BEST IN BOLD, SECOND-BEST UNDERLINED.

Action
Method

Hourglass Simple
Baseline

Higher
HRNet

LSTM-
CPM DKD DCPose FAMI-

Pose RNN tTR1 tDR-w/o-A2 tDR3

walking 68.99 77.63 73.40 42.11 80.64 77.50 75.57 77.04 71.78 77.12 80.52
picking up 73.39 73.94 72.14 56.86 76.66 73.58 75.36 75.44 72.53 77.06 75.01
crawling 62.79 64.39 62.65 31.27 66.79 65.04 61.43 64.63 66.98 67.69 70.02
sweeping 73.94 75.99 73.08 61.92 76.35 73.87 78.68 75.57 76.06 77.18 78.23

shuttlecock kicking 86.25 84.26 84.88 71.64 86.69 84.62 89.08 85.01 86.27 85.62 87.54
Average 73.07 75.24 73.23 52.76 77.43 74.92 76.02 75.54 74.72 76.94 78.27

squat jump 89.42 89.35 88.71 78.49 89.75 87.80 88.67 89.51 90.55 89.64 89.93
frog jump 79.99 79.11 79.45 57.50 82.63 80.89 82.24 81.42 82.36 83.59 83.09

boxing 81.50 80.64 75.25 71.45 80.66 81.31 77.80 82.08 83.32 83.54 83.58
cartwheel 57.49 58.06 56.80 36.67 60.20 59.48 64.98 61.27 60.73 61.72 63.37

rope skipping 75.30 75.18 73.10 65.75 76.76 77.62 76.05 76.27 75.90 77.74 78.18
sit-up jump 74.94 74.75 73.02 59.31 75.46 73.22 73.89 74.53 76.84 76.78 77.86

kicking 69.45 72.45 72.48 60.81 75.99 73.85 75.47 75.87 76.14 75.66 77.33
jump shot 74.30 75.68 72.59 58.02 77.90 76.41 78.85 76.76 79.30 80.33 79.52
spinning 69.11 75.39 72.27 56.00 74.37 73.54 75.20 73.15 74.25 75.98 74.26
throwing 74.20 75.08 70.94 57.46 74.49 75.29 75.54 72.45 77.14 78.35 78.04
Average 74.57 75.57 73.46 60.15 76.82 75.94 76.87 76.33 77.65 78.33 78.52

jumping jack 96.30 96.02 95.54 81.88 95.88 95.60 95.53 95.95 95.55 96.27 95.94
running 73.90 76.91 73.60 54.61 79.50 78.92 78.89 78.46 80.05 80.29 80.60
burpee 72.81 73.62 71.45 46.70 75.38 74.26 73.50 73.83 76.32 76.71 77.60

mopping 69.19 73.86 70.15 49.79 74.05 72.13 70.75 74.56 72.97 75.19 76.37
cycling 72.31 77.69 77.12 66.37 79.93 75.95 79.79 79.14 77.82 79.56 81.03

big jump 92.11 92.18 92.66 77.56 93.01 91.76 93.29 92.67 92.98 93.44 93.16
long jump 69.71 70.13 69.17 54.03 71.39 72.23 74.30 70.77 70.09 72.78 73.52

crotch high five 87.89 88.68 87.79 74.58 89.07 89.80 89.62 87.83 87.10 88.77 90.32
alternate jumping lunge 77.88 80.24 77.28 66.34 80.60 79.94 78.98 80.18 81.50 82.04 81.68
jump fwd/bwd/left/right 87.56 87.87 86.33 80.19 87.84 87.58 88.55 87.00 87.23 88.32 87.37

Average 79.97 81.72 80.11 65.20 82.66 81.82 82.32 82.04 82.16 83.34 83.76
1 tTR indicates tThinRNN,
2 tDR-w/o-A indicates tDenseRNN-w/o-AT,
3 tDR indicates tDenseRNN.

where (uai , v
a
i ) is the new locations of events in the augmented

poses and (uc, vc) is the center point of rotation. θ ∈ (−90, 90)
is set randomly.

Our model trained with the additional augmented training
poses, denoted as tDenseRNN+PoseAug, can achieve signif-
icant improvements over the model tDenseRNN on CDEHP
and HDP19 dataset, which demonstrates the diversity of train-
ing data is quite useful to obtain a greater generalization of the
model. It should be noted that we do not augment the data for
MMHPSD dataset, because the raw data of MMHPSD dataset
have not been available publicly so far.

C. Comparisons with State-of-the-Arts

Results on DHP19. TABLE III summarizes the results on
the DHP19 datasets, where we can see our baselines and the
full model tDenseRNN achieve the best performance com-
pared to other competitors. However, on DHP19 all methods
achieve nearly same level of performance since that there are
only pixel errors of 1 ∼ 2 in terms of the used metric of 2D
MPJPE, while they can produce almost the result of 100% in
terms of PCK and AP metrics on DHP19. Therefore, obviously
the DHP19 cannot be used to evaluate our method, because
the included actions in this dataset are too simple so that it
has not be a challenging dataset as the evaluation benchmark
for pose estimation.

Results on CDEHP. TABLE III shows the comparisons
of our model with state-of-the-arts on the CDEHP dataset,
in terms of PCK and AP evaluation metrics. We can see
that our tDenseRNN model achieves the best performance.
Among those competitors, HigherHRNet [3] ,Hourglass [28]
and SimpleBaseline [1] are three representative methods in
image-based pose estimation, which achieve promising results
of 75.60 AP, 75.87 AP and and 77.51 AP, respectively. DKD
[20], DCPose [33], and FAMI-Pose [?] are three pioneering
methods for video-based pose estimation, and they outperform
those image-based methods by noticeable margins (+5.23
PCK, +3.24 PCK, and 5.34 PCK compared to HigherHRNet,
respectively). This result implies that the temporal information
can provide useful motion clues for event-based pose esti-
mation. LSTM-CPM [18] is also one of the strong baselines
for video-based pose estimation method, which however does
not produce an expected promising result (40.99 AP). This
is may because it inherits the convolutional architecture from
CPM [46] using a multi-stage refining scheme, which focuses
on designing large receptive fields in multi-stage CNNs to
capture long-range spatial dependencies that are not applicable
for event frames with the absence of some body parts. Similar
to DKD, DCPose and FAMI-Pose, RNN and tThinRNN intro-
duce the recurrent module to model the temporal dependency
achieving comparable results with them. By comparing them
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Fig. 7. Qualitative results on the CDEHP dataset using our model tDenseRNN and the baseline model RNN, respectively. The samples are from actions of
Burpee, picking up, cycling, cartwheel, and alternate jumping lunge, respectively. Best viewed in color and 3× zoom.

with our models tDenseRNN-w/o-AT and tDenseRNN, we
can find our models always maintain high performance across
all evaluation metrics, especially AP75, thanks to the dense
connections that are not considered in DKD, DCPose and
FAMI-Pose, which only leverage a couple of adjacent frames.

Results on MMHPSD. As shown in TABLE III, we have
the similar observation with the results on CDEHP. video-
based methods including ours can achieve promising results
thanks to the temporal information considered, in comparison
with image-based methods [1], [3], [28]. Different to the
results on CDEHP, the overall better performance results can
be obtained on MMHPSD across all methods, because the
actions are simpler than CDEHP dataset and captured in a
fixed environment. Meanwhile, our methods outperform the
competitive methods including DKD, DCpose and FAMI-
Pose [?], [20], [33] by a very noticeable margin, showing the
strength of the temporal dense connection across frames.

Action-wise result comparison on CDEHP dataset. To
analyze the results on various types of actions, we report the
action-wise results on CDEHP dataset, as list in TABLE IV.
We can observe that most of the challenges come from
those slow/medium actions and complex actions, since that
the former actions could produce more sparse event signals
and the latter actions can bring severe self-occlusion of body
parts in some cases. Therefore, a better performance can be
obtained on those simple actions with fast speeds, as shown
in TABLE IV. From the results, we can see that DKD [20]
and FAMI-Pose [?] are two methods that achieve promising

results compared with our methods, while they can achieve
the second/third best and even the best in some cases. In
addition, almost all the methods can obtain the similar good
performance on those simple actions, for example, squat jump,
jumping jack and big jump, while our methods (tDenseRNN)
can particularly outperform other competitive methods by a
large margin on those complex and slow actions, such as
crawling, sit up jumping, burpee, and cartwheel. Moreover,
for those actions that a few body part is moving, our method
can also achieve superior results with a large performance
improvement over other methods, such as throwing and mop-
ping. Moreover, we can obverse the performance improve-
ments between our two baselines tDenseRNN and tThinRNN
on those slow actions specifically, where the performance
of TDenseRNN can usually gain noticeable improvements
over tThinRNN thanks to the dense connections, such as
walking, crawling, sweeping. Overall, with our method the
best or second results are obtained in all types of actions.
This action-wise result demonstrates that our method, to some
extent, can effectively alleviate the problem of the sparse and
incomplete observations from event cameras. Meanwhile, it is
observed that pose estimation from complex actions can also
be addressed by our method.

D. Visualization

Result Visualization. Some qualitative results are shown in
Fig. 7 to visualize the effectiveness of our model for event-
based human pose estimation on CDEHP dataset compared
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to the baseline model RNN. We can observe that tDenseRNN
can still accurately estimate the body joints when there are
invisible body parts in event frames, as shown in Fig. 7
(a)(d). In addition, for those complex actions, tDenseRNN
can effectively handle the self-occlusions by encouraging
the geometric consistency in the presence of fast and large-
degree motion variations, as shown in Fig. 7 (b)(c)(e). These
visualized results further verify the strength of our model
tDenseRNN.

Attention Visualization. We also visualize the attention
maps on two example sequences to understand the key frames
where information is densely propagated, as illustrated in
Fig. 8. In the first example as shown in Fig. 8a, one of
the foots are not complete or even disappeared at some
frames. On one hand, the attention regions on the first frame
are mainly distributed in those key joints, where especially
the information of the foot joint can be propagated to help
complete the foot information in the subsequent frames. On
the other hand, each frame can receive attentions from a set
of preceding frames, as shown in the bottom row of Fig. 8a,
where all the 7 preceding frames are combined to predict
the human poses at 8th frame, since that body moving is
continuous and temporally dependent. In the second example
as shown in Fig. 8b, the event signals at the 7th and 9th frames
are very sparse. In this case, the preceding frames are very
useful to alleviate the problem of incomplete event information
for the human body. Especially, at the 1st frame one of the
feet is visible, whereas at 5th and 6th frames that foot is not
visible. Therefore, the attention regions at that foot area of the
1st frame to the 5th and 6th frames are much brighter to pass
more information of that foot to the 5th and 6th frames. The
visualization results show the effectiveness of the attention
mechanism used in temporally dense connections.

E. Concluding Remarks
Through extensive experiments above, we demonstrate the

effectiveness of our method in addressing the challenges of
event-based human pose estimation. As our approach converts
event streams into a set of event frames, approaches for normal
video-based human pose estimation, such as DKD, DCPose,
and FAMI-Pose [?], [20], [33], are directly employed to event
frames as comparisons, achieving competitive results as shown
in TABLE III and TABLE IV. Even that, we do not adopt those
complex schemes used in the video-based approaches to fuse
and align neighboring frames with the current frame. Instead,
we build a simple densely connected RNN architecture to
achieve the best performance. Hence, we have demonstrated
that leveraging a longer range of neighboring frames is a
simple yet effective way to alleviate the problem of incomplete
information in event-based human pose estimation. Further-
more, taking future frames into count, such done in DCPose
and FAMI-Pose, is not a natural way to perform online tasks,
since one of the advantages of using event cameras is their
ability to operate in real-time manner.

F. Limitations and future work
This paper presents a temporal densely connected recurrent

network for human pose estimation from event data. There are

1st 2nd 3rd 4th 5th 6th 7th 8th
Original 8 frames

The attention maps of the 1st frame to the subsequent frames

The attention maps of the preceding frames to the 8th frame

(a)

Original 8 frames

The visual attention maps of the 1st frame to the subsequent frames

The visual attention maps of the preceding frames to the 8th frame

1st 2nd 3rd 4th 5th 6th 7th 8th

(b)
Fig. 8. Attention Visualization. We take two short video clips (a) and (b)
from action alternate jumping lunge and Crotch high five as two example
sequences with 8 frames, respectively. In each visualized example, the top
and bottom rows exhibit the visual attention regions on the corresponding
original event frames, while the middle row shows the original event frames.
The top shows the attention maps of the first frame to its subsequent seven
frame. The bottom row shows the attention maps of the preceding seventh
frames to the eighth frame. Best viewed in color and 3× zoom.

some potential limitations in our method. First, our method
cannot work directly on raw event signals, which have to
be converted into frames first. Second, for those unnormal
actions like cartwheel, where the human body is upside
down rather than usually upright, we did not collect enough
samples as many as the normal actions to train the model on
CDEHP dataset. For future work, we will focus on estimating
human poses from raw event signals by leveraging point-based
methods, and try to extend the action samples to make the
dataset more diverse. Finally, as shown in the results, and to
the best of our knowledge, CDEHP is still the most challenging
dataset in human pose estimation from event data. There is still
plenty of room for improvement and problems remained, even
though our method can help alleviate the problem brought by
event signals in event-based human pose estimation, as the
event signals are too sparse and irregular in spatio-temporal
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space when we try to encode complex actions. In the future,
we will try to distill knowledge from other modalities, such
as RGB and depth cameras, to help extract and encode event
signals.

V. CONCLUSION

This paper presents a temporal densely connected recurrent
network (tDenseRNN) for human pose estimation from event
data. Particularly, it introduces a set of dense connections
into the recurrent-based model to explicitly model both the
sequential and non-sequential temporal dependency and geo-
metric consistency among a set of consecutive event frames
to address the problem of the absence of body parts during
event streams. By such densely connected RNN, the adoption
of even a very simple encoder-decoder CNN with a LSTM
module can achieve superior performance to other state-of-
the-art methods. tDenseRNN also introduces a spatio-temporal
attention mechanism into the dense connections to weight the
contributions of the preceding frames and the importance of
joints within each preceding frame on the prediction at current
frame, thus largely improving the performance. Moreover, to
effectively evaluate our model, we collect a new large-scale
event-based human pose dataset, which is captured from more
challenging scenarios than the existing dataset that has been
saturated by using our method. Experiments on three datasets
demonstrate the strength and effectiveness of our method in
addressing the event-based pose estimation, achieving the best
performance. The dataset will be publicly online available
soon for further research.
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APPENDIX
VISUALIZATION OF THE CDEHP DATASET

Fig. 10 visualizes several action examples from RGB, depth,
event modalities respectively. All actions are collected in
various outdoor environments. As shown in the figure, only
human motions without backgrounds are captured in the event
images because of the property of event cameras. Furthermore,
we have included visualized samples for all action classes in
the dataset, which can be found in Fig. 9. There are a number
of actions that involve the disappearing body parts at particular
time instances, which can pose significant challenges to event-
based human pose estimation. We annotate human poses by
using the annotation tool we designed, as shown in Fig. 11.
The human keypoints are manually marked on RGB frames,
while the keypoints are projected automatically to the event
frames based on the calibrated parameters.

With the annotation tool, we obtain all annotations of
keypoints on event frames. Fig. 12 lists some examples of
event frames and their ground truth for human keypoints.

t t-1 t t+1t

Fig. 10. Visualized examples of actions captured by the RGB, Depth, and
Event Camera. Actions at the first column are RGB frames at t-th time, while
actions at the rest of columns are the corresponding event frames and their
neighboring frames.

Fig. 11. The keypoint annotation tool we designed.

t-2 t-1 t t+1

(a)

t-2 t-1 t t+1

(b)
Fig. 12. Some annotated event-based action samples.

Fig. 9. Visualized samples for all action classes in CDEHP dataset. Best viewed by zooming in.
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