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Abstract

Graph and hypergraph representation learning has attracted increasing atten-

tion from various research fields. Despite the decent performance and fruitful

applications of Graph Neural Networks (GNNs), Hypergraph Neural Networks

(HGNNs), and their well-designed variants, on some commonly used benchmark

graphs and hypergraphs, they are outperformed by even a simple Multi-Layer

Perceptron. This observation motivates a reexamination of the design paradigm

of the current GNNs and HGNNs and poses challenges of extracting graph fea-

tures effectively. In this work, a universal feature encoder for both graph and

hypergraph representation learning is designed, called UniG-Encoder. The ar-

chitecture starts with a forward transformation of the topological relationships

of connected nodes into edge or hyperedge features via a normalized projec-

tion matrix. The resulting edge/hyperedge features, together with the original

node features, are fed into a neural network. The encoded node embeddings

are then derived from the reversed transformation, described by the transpose

of the projection matrix, of the network’s output, which can be further used

for tasks such as node classification. The proposed architecture, in contrast

to the traditional spectral-based and/or message passing approaches, simulta-
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neously and comprehensively exploits the node features and graph/hypergraph

topologies in an efficient and unified manner, covering both heterophilic and

homophilic graphs. The designed projection matrix, encoding the graph fea-

tures, is intuitive and interpretable. Extensive experiments are conducted and

demonstrate the superior performance of the proposed framework on twelve

representative hypergraph datasets and six real-world graph datasets, com-

pared to the state-of-the-art methods. Our implementation is available online

at https://github.com/MinhZou/UniG-Encoder.

Keywords: Graph and hypergraph, Representation learning, Homophily and

heterophily, Node classification, Feature projection

1. Introduction

Graph and hypergraph representation learning is a rapidly growing field of

research that focuses on learning meaningful representations from nodes and

edges/hyperedges features in graph/hypergraph-structured data. This field has

seen significant progress in recent years due to the development of advanced

techniques such as Graph Neural Networks (GNNs) and Hypergraph Neural

Networks (HGNNs), which are capable of modeling complex interactions in real-

world scenarios. Particularly, HGNNs are designed to extend GNNs to capture

higher-order relationships among more than two nodes, which are ubiquitous

in social networks [1, 2], ecological networks [3], biological networks [4], etc. A

fundamental task in graph/hypergraph representation learning is node classifi-

cation that categorizing nodes based on their features and graph/hypergraph

topologies.

Most of the existing literatures stick to learning node embeddings from neigh-

bors using powerful neural operators, such as convolution [5, 6, 7], attention [8,

9, 10], spectrum [11, 12], and diffusion [13]. These approaches have resulted in

the popular spectral-based and message passing architectures [14, 15, 16, 17].

Despite their wide applications, these approaches have limitations, as a sim-

ple Multi-Layer Perceptron (MLP) can even outperform well-designed GNNs,
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HGNNs, and their variants on some commonly used benchmark graphs and hy-

pergraphs, see the results in Table 4 for Zoo, House, Senate, Cornell, Texas,

and Wisconsin datasets. The major drawback of the spectral-based architecture

is its heavy reliance on the homophily assumption, which requires that nodes

with similar features and/or labels tend to be linked. The message passing ar-

chitecture conducts aggregation on the raw node embeddings or considers only

the node-to-edge then edge-to-node mapping procedure, which can lead to sub-

optimal performance in some cases. To address these issues, a new approach,

called UniG-Encoder, is proposed which simultaneously and comprehensively

exploits the node features and graph/hypergraph topologies.

Drawing inspiration from Hypergraph Line Expansion [18], which treats

nodes and edges equally and converts hyperedges into “line nodes”, our ar-

chitecture leverages these approaches by treating edges/hyperedges as addi-

tional nodes and extracting their features from the topological relationships of

the connected nodes. Edges/hyperedges that connect two or more nodes are

transformed into additional feature vectors, enabling tuning the weights be-

tween node features and graph structure based on the homophilic extent thus

alleviating the curse of heterophily. This is efficiently accomplished by using

a normalized projection matrix, linearly combining the features of connected

nodes and resulting the edge/hyperedge features. These generated features, to-

gether with the original node features, are fed into a neural network, e.g., MLP,

Transformer [19], etc., and its output is processed via a reversed transformation,

aggregating neighborhood features by the transpose of the projection matrix, to

obtain the encoded node embeddings, which can be further used for tasks such

as node classification. The proposed framework is demonstrated by extensive

experiments to outperform the state-of-the-art methods on eighteen benchmark

datasets with diverse properties. We summarize the main contributions of our

work as:

• A universal framework UniG-Encoder is proposed towards representation

learning for both graphs and hypergraphs, covering also both heterophilic
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and homophilic circumstances by leveraging simultaneously the informa-

tion of node features and topology.

• The architecture is realized via an intuitive and interpretable normalized

projection matrix, enabling tuning the weights between node features and

graph structure based on the homophilic extent, which can be easily ac-

quired from a priori knowledge of datasets.

• The designed architecture involves minor computation consumption but

achieves superior performance over the state-of-the-art methods on repre-

sentative datasets, supported by extensive analysis and experiments.

2. Related Works

Graph and Hypergraph Neural Networks. GNNs and HGNNs learn

informative graph/hypergraph embeddings by leveraging the node features and

structure. Various variants of GNNs and HGNNs have been developed, and we

review the most recent advances here.

Spectral-based approaches interpret graph convolution from the perspective

of graph signal processing, with the aim of removing noise from graph signals or

smoothing information among connected nodes. GCN [5] applies convolutional

operation in the spectral domain to input features, generating node embeddings

for node classification and other downstream tasks. Building upon GCN, GC-

NII [20] employs initial residual and identity mapping to effectively alleviate the

over-smoothing problem. The spectral-based approach has also been extended

to deal with hypergraphs, such as HyperGCN [7].

Spatial-based approaches aggregate messages from neighboring nodes via

message passing layers, known as Message Passing Neural Networks (MPNNs) [21].

GraphSAGE [22] generates node embeddings by aggregating information from

a fixed number of neighbors. In contrast, GAT [8] uses an attention mecha-

nism to weigh the contributions of neighboring nodes and aggregates informa-

tion from these neighbors based on learned weights. Many GNNs have also
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been developed for heterophilic problem, such as H2GCN [23], GGCN [24], and

GloGNN [25]. In hypergraph representation learning, many works use a two-

stage message passing process, such as HGNN [15], AllSet (AllDeepSets and

AllSetTransformer) [17], and UniGCNII [14]. In most cases when the num-

ber of edges is significantly larger than the number of nodes, these two-stage

methods suffer from computational burden due to enormous intermediate edge

embeddings.

Hypergraph Expansion. In the realm of hypergraph analysis, a tech-

nique known as hypergraph expansion is often used to transform hypergraphs

into graphs. One prominent algorithm for hypergraph expansion is the clique

expansion [12], which generates a graph from hypergraph by substituting each

hyperedge with a clique in the resulting graph. Another approach, known as

the star expansion algorithm [11], creates a graph by introducing a new vertex

for every hyperedge, which is connected to each vertex in the hyperedge. Line

expansion [18] simplifies the hypergraph by treating nodes and hyperedges as

equivalent, representing each vertex-hyperedge incident pair as a “line node”.

The expansion methods also bring in additional computational burden due to

an extra number of edges expanded from hyperedges.

3. Preliminaries

In this section, essential concepts, definitions, and notations pertaining to

GNNs and HGNNs are presented.

A universal representation learning framework for both graphs and hyper-

graphs is proposed in this work, so we adopt a unified representation for them

here. Both edges and hyperedges are defined as subsets of nodes, while an edge

is a subset with two elements and a subset of hyperedge contains more than two

nodes. Therefore, let G = (V, E) denote a graph or hypergraph, where V is the

set of all nodes, and E is the set of edges or hyperedges defined above.

For an arbitrary set S, the cardinality of it is denoted by |S|. A graph

or hypergraph G can be characterized by a |V| × |E| incidence matrix B, where

5



Bij =

1, if vi ∈ ej

0, otherwise

with node vi ∈ V and edge/hyperedge ej ∈ E . For vi ∈ V

and ej ∈ E , their degrees are defined as d(vi) =
∑
j

Bij and δ(ej) =
∑
i

Bij ,

respectively. DV ∈ R|V|×|V| and DE ∈ R|E|×|E| denote the diagonal matrices of

node degrees and edge degrees, respectively. The raw node features is described

by matrix X ∈ R|V|×C0 , where the i-th row vector xi denotes the ego-feature of

node vi and C0 is the dimension of features.

4. Methods

We illustrate here the general architecture of UniG-Encoder for both graph

and hypergraph representation learning. The key component lies in a normalized

projection matrix that first forwardly converts the topological relationships of

connected nodes into edge or hyperedge features. The resulting edge/hyperedge

features, together with the original node features, are fed into a neural network.

In this work, we use a simple MLP to process these features. The encoded node

embeddings are then derived from the reversed transformation, described by

the transpose of the projection matrix, of the MLP’s output, which are subse-

quently used for node classification task. The architecture of UniG-Encoder is

summarized in Figure 1, with the detailed components described in the following

subsections.

4.1. Forward Projection

Projected Set. Let VP denote the set induced by the projection matrix

from the graph/hypergraph G = (V, E), which is an ordered set consisting of

two parts. The first part is a permutation of the node set V and the second part

denotes the transformed edge/hyperedge set, while the features of the projected

set are obtained from the raw node features with the projection matrix P acting

on them.

Projection Matrix. We introduce a seminal version of the projection ma-

trix here, whereas it can be redesigned to accommodate different homophilic
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Figure 1: The architecture of UniG-Encoder. The architecture starts with a forward

transformation of the topological relationships of connected nodes into edge or hyperedge

features via a normalized projection matrix. The resulting edge/hyperedge features, together

with the original node features, are fed into a neural network. The encoded node embeddings

are then derived from the reversed transformation, described by the transpose of the projection

matrix, of the network’s output, which can be further used for tasks such as node classification.

Notably, the MLP can be substituted by advanced neural networks such as the Transformer.

extents of the graphs/hypergraphs. The projection matrix P is the row-wise

concatenation of two matrices: the node part PV and the edge/hyperedge

part PE . The former is of size R|V|×|V|, which is a column-wise permuta-

tion of the unit matrix I. The latter PE is of size R|VE |×|V|, whose element

PE,ij equals to 1 if vj ∈ ei and whose other elements are all zero. Therefore,

P =

PV

PE

 ∈ R|VP |×|V|. The above forward projection procedure satisfies the

following theorem:

Theorem 1. Assume there is no duplicate edge/hyperedge in a given

graph/hypergraph G = (V, E). One can construct a map ϕ : V ∪ E → VP ,

which is bijective under the construction according to the above corresponding

relations as the projection matrix P, and its inverse exists. This means that

each node and edge/hyperedge in G is uniquely mapped to an element in VP ,

and vice versa.

7



4.2. Feature Projection

The projection matrix P in fact provides a new method for generating

edge/hyperedge features by linearly combining the features of connected nodes,

called feature projection. These resulting features, together with the original

node features, are subsequently fed as input to an MLP to obtain new embed-

dings. Notably, the MLP can be replaced by other neural network architectures,

such as RNN or Transformer, thereby enhancing the flexibility and adaptability

of out framework in different application scenarios.

Concretely, for a graph/hypergraph G = (V, E), the projection matrix P is

acted on the original node features X ∈ R|V|×C0 , yielding the feature vectors of

the projected set VP , i.e., H
(0) = PX ∈ R|VP |×C0 . In fact, H(0) is the concate-

nation of the permutated node ego-features and the generated edge/hyperedge

features. Subsequently, H(0) is fed into an l-layer neural network and the em-

bedding for its k-th layer is denoted by H(k) ∈ R|VP |×Ck(k = 1, · · · , l).

4.3. Reversed Projection

The output of the neural network H(l) is then reversely transformed by

the transpose of the projection matrix, i.e., P⊤. In fact, P⊤ =
[
P⊤

V ,P
⊤
E
]
∈

R|V|×|VP |. Thus the encoded node embeddings used for classification can be

obtained by Y = P⊤H(l) ∈ R|V|×C , where C = Cl denotes the number of final

features. The resulting rows of Y are obtained by taking a weighted summation

of the corresponding rows of H(l), where the weights are given by the nonzero

elements in each row of P⊤. Here, the matrix P⊤
V is used to extract representa-

tions from the ego-embeddings, while P⊤
E is used to extract representations from

the edge/hyperedge embeddings. This operation represents an extension of the

aggregation process from neighbors in message passing architecture or the spec-

tral filter in spectral-based architecture, which simultaneously leverages both

node embeddings and edge/hyperedge embeddings. The procedures satisfy the

following theorem:

Theorem 2. Let σ : V → V be an arbitrary permutation, thus PV,ij =
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δj,σ(i), where δij =

1, if i = j

0, otherwise

. It can be concluded that (P⊤P)ij > 0 if

and only if i = j or ∃e ∈ E such that vi ∈ e and vj ∈ e.

This theorem guarantees the exact correspondence during the projection

process, that is, the encoded embeddings for node vi exactly contains the infor-

mation from the raw features of node vi and the features of edges/hyperedges

containing vi.

4.4. Normalization

The defined projection matrix and its transpose are normalized in this frame-

work. During the forward projection, the rows of PEX are obtained by taking a

weighted summation of the corresponding rows ofX, where the weights are given

by the nonzero elements in each row of PE . The intuition lies in that PE is used

to fuse the features of connected nodes into the features of edges/hyperedges.

Therefore, row normalization needs to be performed on PE , i.e.,

P̂E,ij =
PE,ij∑|V|
k=1 PE,ik

. (1)

Row normalization is also used for the reversed transformation described by

P⊤, i.e.,

P̂⊤
ij =

P⊤
ij∑|VP |

k=1 P⊤
ik

. (2)

After normalization, the embeddings of nodes and the embeddings of edges/hyperedges

they belong to are fused by weighted summation into the final encoded embed-

dings. We also try different normalization methods that trading-off the weights

between node features and edge/hyperedge features in the experiments and

compare their impacts.

5. Experiments

5.1. Datasets

Our framework is designed to accommodate both graphs and hypergraphs.

To demonstrate its effectiveness, extensive experiments are conducted on various
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benchmark datasets. We briefly introduce the datasets used in this work, with

their detailed information listed in Appendix.

Graph Datasets. Six real-world graph datasets with different homophilic

extents are used and their statistics are listed in Table 1.

Table 1: Statistics of six graph datasets.

Dataset CiteSeer Cora PubMed Cornell Texas Wisconsin

|V| 3,327 2,708 19,717 183 183 251

|E| 4,676 5,278 44,327 280 295 466

#Features 3,703 1,433 500 1,703 1,703 1,703

#Classes 7 6 3 5 5 5

Homophily Score 0.74 0.81 0.80 0.30 0.11 0.21

Hypergraph Datasets. Twelve benchmark hypergraph datasets are used

in this work with diverse scales, structures, and homophilic extents. Their

statistics are listed in Table 2.

Table 2: Statistics of twelve hypergraph datasets.

Dataset Cora Citeseer Pubmed Cora-CA DBLP-CA ModelNet40 NTU2012 House Zoo 20News Yelp Senate

|V| 2,708 3,312 19,717 2,708 41,302 12,311 2,012 1,290 101 16,242 50,758 282

|E| 1,579 1,079 7,963 1,072 22,363 12,311 2,012 341 42 100 679,302 315

#Features 1,433 3,703 500 1,433 1,425 100 100 100 16 100 1,862 2

#Classes 7 6 3 7 6 40 67 2 7 4 9 2

Homophily Score 0.897 0.893 0.952 0.803 0.869 0.853 0.752 0.509 0.241 0.461 0.226 0.498

5.2. Baselines and Settings

We compare our UniG-Encoder framework with several classic graph-oriented

models, including (1) MLP; (2) general GNN methods: GCN [5], GAT [8],

GCNII [20], GraphSAGE [22]; (3) heterophily-oriented methods: H2GCN [23],

GGCN [24], GloGNN [25], across various benchmark datasets. To conduct these

experiments, we adopt ten random splits with a ratio of 48%/32%/20% of nodes

per class for training/validation/test, as previously established in [25]. We eval-

uate the performance by computing the overall mean accuracy and standard

deviation on the test sets over the ten splits.

We also present a comparative analysis of our proposed framework UniG-

Encoder against several state-of-the-art models on hypergraph benchmarks, in-
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cluding HGNN [15], HCHA [26], HNHN [27], HyperGCN [7], UniGCNII [14],

AllSet (AllDeepSets and AllSetTransformer) [17], ED-HNN [13], and LE-GCN [18].

To ensure a fair comparison, we follow the experimental protocols of ED-HNN

for the hypergraph datasets experiments. Specifically, we split the data into

training, validation, and test sets in a 50%/25%/25% ratio, as suggested in [17].

We adopt prediction accuracy as evaluation metric and run each model ten

times with different training and validation splits to obtain the mean accuracy

and standard deviation.

6. Results and Analysis

Overall Performance Analysis. We present our experimental results

on six graph datasets in Table 3. It is noted that general GNN models such

as GCN, GAT, GCNII, and GraphSAGE perform well on homophilic datasets

such as CiteSeer, Cora, and PubMed, but their performance deteriorates on het-

erophilic datasets such as Cornell, Texas, and Wisconsin, even outperformed

by simple models such as MLP. Our proposed framework not only achieves com-

petitive performance compared to general GNNs, but also outperforms some

heterophily-oriented models such as H2GCN, GGCN, and GloGNN, by adjust-

ing the weights in the projection matrix P. Details on this adjustment can be

found in Appendix.

Table 4 illustrates the results of our comparative analysis, demonstrating

that our proposed UniG-Encoder well performs on all twelve hypergraph datasets,

compared to existing models, ranking 1st in 6/12 datasets and 2nd in 4/12

datasets. The top-performing baseline models include AllSetTransformer, ED-

HNN, MLP, and LEGCN, etc. However, their performance varies significantly

across different datasets. For instance, AllSetTransformer, AllDeepSets, UniGC-

NII, and ED-HNN exhibit promising results on homophilic hypergraph datasets

such as citation networks, but their performance are subpar on heterophilic

datasets, such as House and Senate, where MLP and LEGCN perform much

better. In contrast, our framework achieves consistently superior results. The
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Table 3: Results on graphs. Mean accuracy (%) ± standard deviation is shown for each

method. For each dataset, we mark the winner’s score in bold and highlight the runner-up’s

with underline.

Graph CiteSeer Cora PubMed Cornell Texas Wisconsin

MLP 74.02± 1.90 75.69± 2.00 87.16± 0.37 81.89± 6.40 80.81± 4.75 85.29± 3.31

GCN 76.50± 1.36 86.98± 1.27 88.42± 0.50 60.54± 5.30 55.14± 5.16 51.76± 3.06

GCNII 77.33± 1.48 88.37± 1.25 90.15± 0.43 77.86± 3.79 77.57± 3.83 80.39± 3.40

GraphSAGE 76.04± 1.30 86.90± 1.04 88.45± 0.50 75.95± 5.01 82.43± 6.14 81.18± 5.56

GAT 76.55± 1.23 87.30± 1.10 86.33± 0.48 61.89± 5.05 52.16± 6.63 49.41± 4.09

H2GCN 77.07± 1.64 87.81± 1.35 89.59± 0.33 82.16± 6.00 82.16± 5.28 86.67± 4.69

GGCN 77.14± 1.45 87.95± 1.05 89.15± 0.37 85.68± 6.63 84.86± 4.55 86.86± 3.29

GloGNN 77.41± 1.65 88.31± 1.13 89.62± 0.35 85.95± 5.10 84.32± 4.15 87.06± 3.53

UniG-Encoder 77.33± 1.86 87.36± 1.17 89.76± 0.46 86.75± 6.56 85.40± 5.3 88.03± 4.42

out-of-memory (OOM) issue in LE-GCN is caused by line expansion, which

generates “line nodes” from hyperedges. In datasets such as Yelp, which con-

tain a large number of hyperedges, OOM error may also occur due to memory

constraint.

Impacts of Normalization. We compare five types of normalization here,

including (1) no normalization for P and P⊤, (2) row normalization for P

and P⊤, (3) column normalization for P and P⊤, (4) row normalization for

P and column normalization for P⊤, and (5) column normalization for P and

row normalization for P⊤. We conduct experiments on the Cora hypergraph

dataset. It is indicated that normalizing P and P⊤ by row produces the best

results (79.01 ± 1.40, 80.64 ± 1.62, 80.22 ± 0.76, 80.03 ± 0.97, 80.25 ± 1.17 for

types (1)-(5) respectively). This finding is also consistent with our design of PE ,

which represents a weighted average on edges/hyperedges, while P⊤ is used to

aggregate the embeddings of the nodes and their neighbors.

Impacts of weight on PV . Our UniG-Encoder enables tuning the weight

on PV to accommodate various scenarios, especially with different homophilic

extents. Heterophily refers to a situation where a node’s neighbors are substan-

tially different from the node itself. In this case, when performing operations

such as summation or averaging on the features of a node and its neighbors,
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Table 4: Results on hypergraphs. Mean accuracy (%) ± standard deviation is shown for

each method. For each dataset, we mark the winner’s score in bold and highlight the runner-

up’s with underline. “OOM” denotes out-of-memory issue.

Hypergraph Cora Citeseer Pubmed Cora-CA DBLP-CA ModelNet40

HGNN 79.39± 1.36 72.45± 1.16 86.44± 0.44 82.64± 1.65 91.03± 0.20 95.44± 0.33

HCHA 79.14± 1.02 72.42± 1.42 86.41± 0.36 82.55± 0.97 90.92± 0.22 94.48± 0.28

HNHN 76.36± 1.92 72.64± 1.57 86.90± 0.30 77.19± 1.49 86.78± 0.29 97.84± 0.25

HyperGCN 78.45± 1.26 71.28± 0.82 82.84± 8.67 79.48± 2.08 89.38± 0.25 75.89± 5.26

UniGCNII 78.81± 1.05 73.05± 2.21 88.25± 0.40 83.60± 1.14 91.69± 0.19 98.07± 0.23

AllDeepSets 76.88± 1.80 70.83± 1.63 88.75± 0.33 81.97± 1.50 91.27± 0.27 96.98± 0.26

AllSetTransformer 78.58± 1.47 73.08± 1.20 88.72± 0.37 83.63± 1.47 91.53± 0.23 98.20± 0.20

ED-HNN 80.31± 1.35 73.70± 1.38 89.56± 0.62 83.97± 1.55 91.93± 0.29 98.35± 0.20

LE-GCN 77.34± 1.10 73.41± 1.15 88.53± 0.48 76.60± 1.63 85.82± 0.31 96.68± 0.16

MLP 77.49± 1.43 73.99± 0.85 88.50± 0.39 77.40± 1.38 85.85± 0.43 96.70± 0.23

UniG-Encoder 81.43± 1.37 75.08± 1.45 88.98± 0.37 85.58± 1.13 91.65± 0.15 98.41± 0.17

Hypergraph NTU2012 Zoo 20Newsgroups Yelp House Senate

HGNN 87.72± 1.35 95.50± 4.58 80.33± 0.42 33.04± 0.62 61.39± 2.96 48.59± 4.52

HCHA 87.48± 1.87 93.65± 6.15 80.33± 0.80 30.99± 0.72 61.36± 2.53 48.62± 4.41

HNHN 89.11± 1.44 93.59± 5.88 81.35± 0.61 31.65± 0.44 67.80± 2.59 50.93± 6.33

HyperGCN 56.36± 4.86 85.38± 6.23 81.05± 0.59 29.42± 1.54 48.32± 2.93 42.45± 3.67

UniGCNII 89.30± 1.33 93.65± 4.37 81.12± 0.67 31.70± 0.52 67.25± 2.57 49.30± 4.25

AllDeepSets 88.09± 1.52 95.39± 4.77 81.06± 0.54 30.36± 1.57 67.82± 2.40 48.17± 5.67

AllSetTransformer 88.69± 1.24 97.50± 3.59 81.38± 0.58 36.89± 0.51 69.33± 2.20 51.83± 5.22

ED-HNN 88.07± 1.28 95.77± 3.37 81.90± 0.55 34.99± 0.55 72.45± 2.28 64.79± 5.14

LE-GCN 89.16± 1.13 95.00± 4.81 81.84± 0.34 OOM 78.39± 1.64 80.70± 5.67

MLP 89.08± 1.58 94.62± 4.51 81.42± 0.49 32.67± 0.32 78.79± 2.28 79.72± 3.40

UniG-Encoder 90.42± 1.49 98.46± 3.71 81.74± 0.54 36.33± 0.28 78.73± 2.00 80.56± 3.86
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the ego-feature should dominate. In our approach, this can be simply realized

by modifying the nonzero values in PV to control the weights of features from

the node itself and its neighbors. This technique also enables a performance en-

hancement of our framework on heterophilic datasets. To validate, we conduct

experiments on both real-world datasets and synthetic datasets obtained from

Texas. The results are depicted in Figure 2. As illustrated in Figure 2(a), for

datasets Pubmed, Cora, and Citeseer with high degree of homophily, the varia-

tion in the nonzero values of PV has minor impact on their performance in the

node classification task. This result aligns with our intuition that when a node

and its neighbors have consistent features, the contribution of neighbors to the

aggregated embeddings should be similar to that of the node itself. However,

in a heterophilic graph where nodes and their neighbors have different cate-

gories, achieving better classification performance requires a trade-off between

ego-features and the features of neighbors. Consequently, excessively small or

large nonzero values in PV will both result in suboptimal accuracy, as depicted

in Figure 2(b).

0 5 10 15 20
Nonzero Values in PV

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

Pubmed
Cora
Citeseer
House
Senate

(a) Real-World Datasets

0 5 10 15 20
Nonzero Values in PV

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

0.061
0.369
0.483
0.536
0.573
0.599
0.621

(b) Synthetic Texas Datasets

Figure 2: Performance with different nonzero values in PV . The legends in (b) corre-

spond to the Homophily Scores of the synthetic datasets.

Impacts of Projection Placement. In fact, the projection operation

with its reverse in our framework can be placed at any layer of the neural

network pipeline. We present experiments placing projection and its reverse

(denoted by “· & ·”) at different layers of a three-layer MLP, and the results
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are shown in Table 5. Although the effect of placing projection at different

layers is not that significant, we emphasize that two variants, PX&P⊤H(0) and

PH(1)&P⊤H(2), which in fact successively execute forward projection and its

reverse by multiplying the embeddings by P⊤P, which can be regarded as a

decomposition of the adjacency matrix [28, 29], practically do not increase the

time complexity. It is worth noting that the framework can be easily extended

to utilize multi-hop neighborhood information by using multiple P⊤P.

Table 5: Results of different projection placement.

Variant Cora Citeseer Pubmed House

No Projection 75.47± 1.27 73.47± 1.05 88.41± 0.54 76.93± 2.67

PX & P⊤H(0) 79.97± 1.14 74.12± 1.09 88.68± 0.48 77.00± 2.99

PX & P⊤H(1) 80.34± 1.22 74.35± 1.09 88.70± 0.50 76.44± 3.46

PX & P⊤H(2) 80.31± 1.17 74.36± 1.09 88.73± 0.41 76.44± 3.46

PH(0) & P⊤H(1) 80.64± 1.19 74.44± 1.25 88.60± 0.42 77.21± 2.68

PH(0) & P⊤H(2) 80.66± 1.21 74.43± 1.24 88.66± 0.61 77.24± 2.68

PH(1) & P⊤H(2) 80.44± 1.00 74.44± 1.25 88.60± 0.42 77.24± 2.68

Complexity Analysis. Generally, the proposed framework has a similar

computing complexity as the used neural network, such as MLP, Transformer.

The extra computing consumption is brought in by the dimension increase be-

tween the forward projection and its reverse. Therefore, as mentioned above, if

we place the forward projection and its reverse adjacently, i.e., multiplying the

embeddings directly by P⊤P, no extra complexity exists.

7. Conclusion

In this study, we propose a new universal architecture for both graph and

hypergraph representation learning, called UniG-Encoder. In contrast to the

traditional spectral-based and/or message passing approaches, our proposed

framework simultaneously and comprehensively exploits the node features and

graph/hypergraph topologies in an efficient and unified manner, covering both

heterophilic and homophilic graphs. The designed projection matrix, serving as
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key encoder to the graph features, is intuitive and interpretable. We conduct

experiments on various graph and hypergraph datasets with different scales,

structures, and homophilic extents. The experimental results and comparisons

with the state-of-the-art methods demonstrate superior performance of the pro-

posed UniG-Encoder. The framework can lead to potential applications in many

tasks, such as graph classification and link prediction.

Appendix A. Proofs

Appendix A.1. Proof of Theorem 1

Proof. Let σ : V → V be an arbitrary permutation. The map ϕ can be

constructed as follows: for v ∈ V, let ϕ(v) = σ(v); for e ∈ E , let ϕ(e) = e. As

there is no duplicate edge/hyperedge in G, it is clear that ϕ|V = σ and ϕE is an

identity map on E . Because σ and the identity map are bijective and V ∩E = ∅,

the map ϕ is also bijective.

Appendix A.2. Proof of Theorem 2

Proof. Note that P⊤
V,ij = δi,σ(j). Thus (P⊤

VPV)ij =
∑|V|

k=1 P
⊤
V,ikPV,kj =∑|V|

k=1 δi,σ(k)δj,σ(k) = δij , which means that P⊤
VPV = I. Note also that PE,ij

equals to 1 if vj ∈ ei. Thus P⊤
E,ij = 1 if vi ∈ ej . It follows that (P⊤

E PE)ij =∑|VE |
k=1 P

⊤
E,ikPE,kj =

∑|VE |
k=1 1{vi∈ek}1{vj∈ek}, where 1{·} is the indicator function.

Therefore, P⊤P =
[
P⊤

V ,P
⊤
E
] PV

PE

 = P⊤
VPV + P⊤

E PE = I + P⊤
E PE . This

indicates that (P⊤P)ij > 0 if and only if Iij > 0 or (P⊤
E PE)ij > 0, which proves

the theorem.

Appendix B. A Schematic Example

We provide here a schematic example to show the intuition and interpretabil-

ity of the projection matrix. For the hypergraph shown in Figure 1 of the main

16



text, the incidence matrix

B =



1 0 0

1 0 0

1 1 0

0 1 0

1 0 1

0 0 1

0 0 1


.

Thus the projection matrix without permutation on PV is

P =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1 1 1 0 1 0 0

0 0 1 1 0 0 0

0 0 0 0 1 1 1


and its transpose is

P⊤ =



1 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 1 1 0

0 0 0 1 0 0 0 0 1 0

0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 1 0 0 1


.

17



The compound matrix thus satisfies

P⊤P = [I,B]

 I

B⊤

 = I+BB⊤ =



2 1 1 0 1 0 0

1 2 1 0 1 0 0

1 1 3 1 1 0 0

0 0 1 2 0 0 0

1 1 1 0 3 1 1

0 0 0 0 1 2 1

0 0 0 0 1 1 2


.

Note that the adjacency matrix A of a graph or hypergraph is defined as BB⊤,

where Aij represents the number of edges/hyperedges shared between nodes vi

and vj . Therefore, P
⊤P = I+A.

Regarding to the normalization process, the compound row normalized ma-

trix is

P̂⊤P̂ = [I+DV ]
−1

[I,B]

 I 0

0 DE
−1

 I

B⊤


= [I+DV ]

−1
[I,B]

 I

DE
−1B⊤


= [I+DV ]

−1 [
I+BDE

−1B⊤] ,
where [I+DV ]

−1
represents the row normalization factor forP⊤ and

 I 0

0 DE
−1


for P.

Appendix C. Graph and Hypergraph Datasets

We utilize a total of 6 representative graph datasets and 12 benchmark hyper-

graph datasets sourced from the existing literatures, with their statistics listed

in Table 1 and 2 of the main text. Here we describe the detailed information of

these datasets.

The graph datasets include Cora, Citeseer, Pubmed, Texas, Wisconsin,

and Cornell [30]. The Cora, Citeseer, and Pubmed datasets consist of citation
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graphs where nodes represent papers and edges denote the citation or quotation

relationships between them. These graphs employ bag-of-words representations

as the feature vectors for the nodes, indicating the presence of corresponding

words from the dictionary in the papers. The labels in these datasets correspond

to the classes or fields of the papers. The Texas, Wisconsin, and Cornell

datasets comprise web pages collected from the computer science departments

of their respective universities. In these datasets, nodes represent web pages,

while edges represent hyperlinks connecting them. Each page in these datasets

also employs bag-of-words representations as the feature vectors for the nodes,

indicating the existence of corresponding words from the dictionary.

The benchmark hypergraph datasets include Cora, Citeseer, Pubmed, Cora-CA,

DBLP-CA, 20Newsgroups, Zoo, ModelNet40, NTU2012, Yelp, House, and Senate.

The co-citation networks Cora, Citeseer, and Pubmed, are obtained from [7], in

which all documents cited by a document are connected by a hyperedge. The co-

authorship networks Cora-CA and DBLP-CA are also obtained from [7], in which

all documents co-authored by an author are connected by a hyperedge. In these

co-citation and co-authorship networks datasets, the node features consist of

bag-of-words representations of the corresponding documents, and node labels

are the paper classes. The 20Newsgroups and Zoo datasets are obtained from

the UCI Categorical Machine Learning Repository [31]. In the 20Newsgroups

dataset, the node features consist of TF-IDF representations of news messages.

In the Zoo dataset, the node features are combinations of categorical and numer-

ical measurements describing various animals. Two public 3D object datasets

in computer vision, namely ModelNet40 [32] and NTU2012 [33], are utilized.

The former comprises of 12,311 3D objects from 40 categories, while the lat-

ter consists of 2,012 3D shapes from 67 categories. The two datasets feature

visual objects with extracted features using the Group-View Convolutional Neu-

ral Network (GVCNN) [34] and the Multi-View Convolutional Neural Network

(MVCNN) [35]. The construction of the hypergraphs follows the methodology

described in [15, 18]. The Yelp, House, and Senate datasets are introduced

in [17, 36]. Using the “restaurant” catalog in Yelp, all businesses are selected
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as nodes, and hyperedges are formed by selecting restaurants visited by the

same user. The node labels, representing the average review of a restaurant,

are derived from the numbers of rating stars, ranged from 1 to 5 stars with an

interval of 0.5 star. The node features are constructed using the latitude, longi-

tude, city, state (encoded as one-hot vectors), and bag-of-words encodings of the

top-1000 words in the restaurant names. In the House dataset, each node repre-

sents a member of the US House of Representatives, and hyperedges are formed

by grouping together members of the same committee. The node labels indi-

cate the political party affiliation of the representatives. As the original House

dataset lacks node features, they are generated using Gaussian random vectors,

following a similar approach of the contextual stochastic block model. The fea-

ture vectors are fixed at a dimension of 100, and the features are obtained by

applying one-hot encodings to the labels, with Gaussian noise N (0, σ2I) added.

The standard deviation of the noise, σ, is set to 1 here. In Senate dataset,

nodes are US Congressperson and hyperedges are comprised of the sponsors

and co-sponsors of bills put forth in the Senate. Each node in the datasets is

labeled with political party affiliation.

Appendix D. Experimental Settings

All the experiments are conducted on a Linux machine running Ubuntu

18.04, equipped with eight NVIDIA 3090ti GPUs with 24GB memory. To en-

sure a fair comparison, we follow the same training recipe as [13, 17]. Adam op-

timizer [37] with fixed learning rate and weight decay across epochs is utilized to

minimize the cross-entropy loss function. The models are trained for 500 epochs

for all datasets. Dropout is applied to prevent overfitting, and ReLU is chosen

as the nonlinear activation function. The best hyperparameters are determined

using Optuna [38] with 200 trails. The search range for the number of layers

is {1, 2}, and the hidden dimensions are selected from {64, 128, 256, 512}. We

tune the learning rate from the set {0.1, 0.02, 0.01, 0.001, 0.0001}, the weight de-

cay from {0, 0.005, 0.0005, 0.00005}, and the dropout rate from {0, 0.5, 0.7, 0.9}.
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The initial nonzero values of PV are set to either {1, 10, 100, 0.1, 0.001, 0.0001}

or di ×{1, 10, 100, 0.1, 0.001, 0.0001}, where di is the i-th diagonal value of DV .

P and P⊤ are row normalized. The reported standard deviations are calculated

by conducting experiments on ten different data splits.

Appendix E. Sensitivity to Hidden Dimension

We perform comparison study on the expressivity of UniG-Encoder versus

the hidden dimension of the MLP, as shown in Table E.6, where we use different

hidden dimensions and evaluate the performance on the Pubmed hypergraph

dataset. We also compare our framework with the top-performing baselines,

namely AllDeepSets, AllSetTransformer, and ED-HNN. Remarkably, our model

with a hidden dimension of 128 achieves comparable results to the 512-width

AllSet models and shows performance on par with the ED-HNN model. These

results indicate that our UniG-Encoder exhibits good tolerance for low hidden

dimension, which can be attributed to its enhanced expressive power via the

normalized projection matrix.

Table E.6: Sensitivity to hidden dimension on Pubmed hypergraph dataset.

Model 512 256 128 64

AllDeepSets 88.75± 0.33 88.41± 0.37 87.50± 0.42 86.78± 0.40

AllSetTransformer 88.72± 0.37 88.16± 0.24 87.36± 0.23 86.21± 0.25

ED-HNN 89.03± 0.53 88.74± 0.38 88.84± 0.38 88.76± 0.24

UniG-Encoder 88.98± 0.37 88.82± 0.40 88.83± 0.48 88.46± 0.23

Appendix F. Over-Smoothing Analysis

GNNs encounter over-smoothing problem when they are extended to deeper

architectures. The mixing of node embeddings from different classes results in a

decline in GNNs performance, due to the excessive aggregation of neighborhood

information. Figure F.3 illustrates that as the models go deeper, their overall

performance deteriorates due to over-smoothing.

21



2 4 6 8 10
Layers

0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

UniG-Encoder
LE-GCN
MLP

(a) Cora

2 4 6 8 10
Layers

40

50

60

70

80

90

A
cc

ur
ac

y 
(%

)

UniG-Encoder
LE-GCN
MLP

(b) Citeseer

2 4 6 8 10
Layers

80

82

84

86

88

90

A
cc

ur
ac

y 
(%

)

UniG-Encoder
LE-GCN
MLP

(c) Pubmed

Figure F.3: Performance of different models with deeper layers on three benchmark

datasets.

Appendix G. Synthetic Graph and Hypergraph Datasets

The proposed framework utilizes a universal architecture for both graphs and

hypergraphs with difference lying in the construction of the PE matrix. PE con-

tains at most two nonzero elements per row for graphs, whereas for hypergraphs

it contains three or more nonzero elements per row. In practise, an important

question is the conversion between graphs and hypergraphs. To guarantee as

high homophilic extent as possible when synthesizing hypergraphs from graphs,

a technique is to add certain node to existing edge with a probability, which has

same label with at least one of the original nodes in the edge. Our experiments

on synthesized hypergraphs show that this approach significantly increases the

homophilic extent, leading to improved performance, see Figure G.4(a). We also

provide the corresponding homophily scores for different probabilities of adding

node to an existing edge and different ranks of synthetic hypergraphs in Table

G.7.

Table G.7: Corresponding homophily scores for different probabilities of adding

node to an existing edge and different ranks of synthetic hypergraphs.

Probability 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Rank 3 0.06 0.14 0.21 0.25 0.28 0.30 0.32 0.34 0.35 0.36 0.37

Rank 4 0.06 0.26 0.36 0.42 0.44 0.46 0.49 0.50 0.51 0.52 0.53

Rank 5 0.06 0.37 0.48 0.54 0.56 0.57 0.60 0.60 0.61 0.62 0.62

Rank 6 0.06 0.46 0.57 0.62 0.64 0.65 0.66 0.66 0.67 0.68 0.68

Rank 7 0.06 0.54 0.64 0.68 0.69 0.70 0.71 0.71 0.72 0.72 0.73
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Moreover, to compare the performance of our UniG-Encoder on graphs and

hypergraphs that have same homophilic extent, based on the above synthesized

hypergraph datasets, we obtain the graph datasets with same homophilic extent

by adding new edges that belong to the clique expansion of the corresponding

hyperedges in the synthesized hypergraph datasets. Here to ensure a fair com-

parison, we fix the training hyperparameters, such as the learning rate of 0.001

and the hidden dimension of 64. Results in Figure G.4(b)(c) show that our

framework performs better on hypergraphs than graphs with the same high ho-

mophily and performs better on graphs than hypergraphs with the same low

homophily, which are also reflected in Table G.8.
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Figure G.4: Experiments on synthetic datasets based on Texas. The horizontal axis

denote the probability of adding node to an existing edge. The numbers attached to the

curves denote the corresponding values of probability one. The numerical value indicated in

the legend of (a)(c), e.g., “syn-hypergraph-3”, corresponds to the rank of each hyperedge in

the synthetic hypergraphs. The numerical value indicated in the legend of (b), e.g., “syn-

graph-3”, corresponds to the graph obtained from the corresponding synthetic hypergraph,

as stated in the text. The homophily score is calculated based on the clique expansion of

hypergraphs.
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Table G.8: Performance on synthetic graph and hypergraph datasets with different

probability of adding node to an existing edge.

Probability 0.0 0.1 0.2 0.3 0.4

syn-graph-3 70.54± 6.99 71.08± 5.68 74.05± 4.05 75.68± 5.13 75.68± 4.83

syn-hypergraph-3 70.54± 6.99 69.19± 6.42 70.08± 5.93 71.89± 6.07 73.51± 6.49

syn-graph-4 70.54± 6.99 75.95± 4.43 80.00± 6.19 81.35± 6.22 84.05± 6.10

syn-hypergraph-4 70.54± 6.99 72.43± 6.60 77.84± 6.71 79.46± 5.69 81.35± 6.56

syn-graph-5 70.54± 6.99 80.00± 5.16 85.13± 4.72 85.67± 6.40 87.30± 5.14

syn-hypergraph-5 70.54± 6.99 75.95± 6.22 81.62± 4.95 84.32± 4.65 87.30± 4.53

syn-graph-6 70.54± 6.99 81.08± 4.68 87.84± 5.57 88.38± 6.40 89.73± 4.80

syn-hypergraph-6 70.54± 6.99 79.46± 5.57 84.05± 5.73 87.30± 5.41 89.19± 4.19

syn-graph-7 70.54± 6.99 84.32± 4.80 89.46± 5.73 90.81± 5.82 90.27± 5.30

syn-hypergraph-7 70.54± 6.99 80.81± 4.90 85.95± 5.90 89.46± 5.33 89.73± 3.38

0.5 0.6 0.7 0.8 0.9 1.0

76.22± 5.51 76.22± 5.90 78.11± 6.45 77.84± 5.38 79.73± 7.18 82.43± 6.19

72.97± 5.80 74.32± 5.30 76.49± 6.17 76.22± 5.24 78.65± 5.85 79.46± 6.30

84.59± 6.63 84.32± 4.49 83.24± 6.14 85.13± 6.19 86.49± 4.19 87.03± 5.51

83.51± 6.67 85.13± 4.40 84.05± 6.67 86.49± 5.27 87.03± 6.26 87.57± 4.39

88.92± 4.59 87.30± 5.68 87.03± 4.95 88.11± 6.30 88.38± 5.80 89.73± 5.10

88.92± 4.75 87.57± 4.22 87.30± 4.02 89.73± 3.15 90.54± 3.68 91.89± 2.69

89.73± 4.80 90.00± 5.55 88.92± 5.47 89.20± 5.27 89.73± 5.90 91.08± 6.05

90.54± 3.68 91.35± 3.78 90.81± 2.76 90.54± 2.77 90.00± 2.72 91.89± 3.20

91.08± 5.28 90.81± 5.16 90.62± 5.60 90.27± 6.19 90.81± 5.16 91.62± 5.60

90.27± 3.24 91.35± 3.59 92.16± 3.07 91.35± 2.91 91.35± 2.36 92.97± 4.39
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