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Abstract

Inspired by the traditional partial differential equation (PDE) approach for
image denoising, we propose a novel neural network architecture, referred as
NODE-ImgNet, that combines neural ordinary differential equations (NODEs)
with convolutional neural network (CNN) blocks. NODE-ImgNet is intrinsi-
cally a PDE model, where the dynamic system is learned implicitly without
the explicit specification of the PDE. This naturally circumvents the typical
issues associated with introducing artifacts during the learning process. By
invoking such a NODE structure, which can also be viewed as a continuous
variant of a residual network (ResNet) and inherits its advantage in image
denoising, our model achieves enhanced accuracy and parameter efficiency.
In particular, our model exhibits consistent effectiveness in different scenar-
ios, including denoising gray and color images perturbed by Gaussian noise,
as well as real-noisy images, and demonstrates superiority in learning from
small image datasets.

Keywords: Image Denoising; NODE network; PDE learning.

Preprint submitted to Pattern Recognition November 7, 2023

ar
X

iv
:2

30
5.

11
04

9v
2 

 [
ee

ss
.I

V
] 

 6
 N

ov
 2

02
3



1. Introduction

Various factors can cause noise in images. The most common ones are
sensor noise [1], compression noise [2], optical noise [3], etc. Referring as
the process of removing unwanted noise or artifacts from an image, image
denoising is an important task in image processing and computer vision. It
is critical for improving the quality, accuracy, and usefulness of images in a
wide range of applications. Image denoising techniques have been extensively
explored both in the industry and academia in the last several decades, see
e.g., [4, 5, 6] for a brief review.

The problem of image denoising can be mathematically formulated as

y = x+ ϵ,

where y is the noised image, x is the ground truth image and ϵ is the noise.
Given the noised image y, the task is to recover the ground truth x by
eliminating the noise ϵ.

In general, image denoising methods can be categorized into two main
groups: classical methods and machine learning-based methods. Classical
methods are rooted in mathematical models and signal processing techniques,
such as median filtering [7], wavelet denoising [8], total variation denoising
[9], non-local means filtering [10], to list a few. On the other hand, machine
learning-based methods use artificial neural networks or other machine learn-
ing algorithms to learn the mapping between noisy and clean images. There
are many machine learning-based models for image denoising developed re-
cently which achieve dramatic success. Popular deep learning methods in this
area include image denoising CNNs (DnCNN) [11], residual dense networks
(RDN) [12], non-local neural networks (N3Net) [13], Batch renormalization
denoising network (BRDNet) [14], to list a few.

Among the classical methods, partial differential equations (PDE) provide
a choice that utilizes evolving models to remove noise from digital images.
The traditional PDE-based image denoising method did not utilize neural
networks, including the Perona-Malik method [15], Total Variation (TV)
method [9], Fast Marching Methods (FMM) [16], to list a few.

While traditional PDE-based methods have many advantages including
preserving edges and textures accurately, they also come with certain draw-
backs. Specifically, using classical numerical methods to solve non-linear
PDEs can lead to high computational intensity. Additionally, each fixed
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PDE model has limited capabilities in handling complex noise. These limita-
tions can make traditional PDE-based methods less suitable for challenging
applications, and researchers continue to explore alternative approaches to
image denoising that may offer improved performance and versatility.

Recently several neural network methods have been proposed to learn
PDE for various imaging tasks [17, 18]. One advantage of using learning-
based PDEs over traditional PDEs is that they do not require human in-
tervention, as they are learned directly from training data. In contrast, the
traditional PDE approach often involves human input and expertise in for-
mulating mathematical equations. In this article, we also take a similar
learning-based approach. Such an approach allows us not to propose any
specific dynamic system in the first instance, and instead learn it through a
general ODE system modeled by the neural ODE (NODE) method [19].

More precisely, we assume that the image denoising task can be modeled
by the following dynamic system:

vt = F (t,v), v(t = 0) = y, v(t = T ) = x, (1)

where the functional F (t,v) is to be learned. Thanks to its generality, we note
that F can potentially represent an implicit differential operator involving
spacial derivatives. Therefore, under such case eq. (1) represents an implicit
PDE system. It is important to mention that we omit the direct dependence
of the spacial variable, denoted by τ , in F (t,v), since we desire the spacial
invariance property. In other words, one should obtain the same denoised
result for a noised pixel regardless of its position in a man-made coordinate
system.

Though eq. (1) represents a very general framework, it may be more effec-
tive to explicitly add ∇τv into the input list of functional F since ∇τv pro-
vides ample useful information including edging, texture, etc. Here τ repre-
sents the spacial variables. In this case, our model renders vt = F (t,v,∇τv)
and becomes an explicit PDE system. We will consider this as future work.

Since our model in eq. (1) represents a general ODE system, it is then
natural to utilize a NODE-based neural network [19] to model the system.
The NODE network has been exploited to efficiently approximate high-
dimensional parabolic PDE problems in [20]. NODE is also closely related
to the Deep Residual Network (ResNet) [21] as ResNets can be viewed as a
discrete-time approximation of a Neural ODE. The authors in [19] demon-
strate that NODEs are capable of diverse tasks, such as image classifica-
tion, density estimation, and generative modeling, and show that they can
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outperform traditional neural networks on certain tasks while using fewer
parameters.

1.1. Our contribution

Inspired by the PDE method, we identify the image-denoising task as
learning a general dynamical ODE system with an unknown vector field in
eq. (1). The main features of our proposed model include:

• It successfully captures the dynamics of the image denoising process
and preserves intrinsic features of the images, such as edges and tex-
tures;

• It allows flexible model choices to approximate the unknown vector
field, thus is able to utilize/build on the state-of-the-art model(s) for
imaging denoising;

• It is able to learn effectively from small amount of training imags with-
out inducing overfitting issues;

• It admits flexible time steps in the ODE solver, which enable easy
adjustment of the model complexity based on task needs.

• It is capable of learning noise levels of a wide range, and, compared to
baseline models, the benefit becomes more pronounced as the level of
noise increases.

Each of the points will be presented in Section 2 with supporting evidence
in Section 3.

Our paper is organized as follows: Section 2 is devoted to the detailed
introduction of our proposed NODE-ImgNet model, where in Section 2.1 we
also recall the structure of NODE model. In Section 3, we present the results
of our proposed method on multiple benchmark datasets, which include two
grayscale image datasets (BSD68 and Set12) and three color-scale image
datasets (CBSD68 Kodak24 and McMaster). Our method achieves state-
of-the-art performance in terms of peak signal-to-noise ratio (PSNR) across
multiple scales of additive Gaussian noise. Moreover, our proposed model
surpasses other highly competitive baseline models in real image denoising
tasks. Discussion, limitation and future works are included in Section 4.
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2. NODE-ImgNet for Image Denoising

2.1. NODE

We first briefly recall the NODE model. NODE models a continuous
function that maps Rd to Rd by defining the ODE model as follows: for
every input h0 ∈ Rd, the corresponding output of NODE model is h(T ) (or
h(t)t∈[0,T ]) where h satisfies

dh(t)

dt
= N vec

θ (h(t), t), h(0) = h0. (2)

Here the vector field N vec
θ represents a neural network with trainable param-

eters θ. In the image denoising model, it is natural to take h0 as the initial
noisy image y and h(T ) the denoised image, ideally x. By Picard’s Theorem,
the initial value problem (2) yields a unique solution provided N vec

θ is Lips-
chitz continuous, which is guaranteed by using finite weights and activation
functions like relu or tanh [19].

The NODE model can be viewed as a continuous and more accurate
version of the deep residual learning neural network (Res-Net) [21]. The
element of residual blocks have been frequently used in many state-of-art
image-denoising neural networks, e.g., DnCNN [11],FFDNet [22], DudeNet
[23] and batch-renormalization denoising network (BRDNet) [14].

It is important to note that we have the flexibility to utilize various state-
of-art image denoising network models for the vector field N vec

θ .
With the recent increase in computational power, state-of-the-art image

denoising models have become more complex, with millions of tunable param-
eters [24, 25, 26]. However, this increased complexity often requires a large
amount of training data to achieve optimal results. In many applications
where images are obtained at a high cost, there may be insufficient training
data, leading to over-fitting with large iterations. One of our aim is to en-
able our network capable to handle different training data sizes, providing
flexibility. Our guidance is to use a simpler model for smaller training data
sets and a more complex model for larger ones through a simple adjustment
of time integration steps used in the ODE numerical solver.

More specifically, the complexity of our NODE-based neural network
arises from two factors: the vector field N vec

θ (h(t), t) on the right-hand
side and the time integration number N used in the numerical ODE solver.
As aforementioned, we have the flexibility to construct our vector network
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N vec
θ (h(t), t) using many state-of-the-art networks as a basis. Notably, set-

ting the step size N to 1 results in the NODE model degenerating into the
vector network. Increasing the time steps introduces additional time integra-
tion steps, similar to residual blocks.

However, unlike classical residual blocks, increasing the time step in the
NODE network does not increase the number of model parameters; only the
training time increases linearly. To balance the two components of com-
plexity, we propose using a structure-similar yet much simpler analogue of
state-of-the-art neural networks for the vector field. The model will then
tune an appropriate step size to compensate for its accuracy. Since our
model uses fewer parameters, it tends to be more effective for small training
sets. Furthermore, by increasing the time step, we can increase the model’s
complexity, making it also effective for larger training sets.

2.2. Our proposed NODE-ImgNet
We use (2) to model the dynamics of the image denoising process. In

particular, we choose to use a shallow CNN with batch normalization and
dilation as our vector field for image denoising. Such structure has been used
as a basic block in many state of art networks for image denoising task, e.g.,
the BRDNet [14], DilatedConv-BN-ReLU [27], FFDNet [22], DudeNet [23],
etc.

Figure 1: Architecture of proposed NODE-ImgNet network.

The structure of the shallow CNN vector field consists of a 9-layer CNN,
with integrated batch normalization (BN) and dilated convolution. Batch
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normalization and dilated convolution have been proven effective and widely
used in the construction of Deep CNN models [27, 28]. BN has been proven
effective in removing exploding or vanishing gradients, as well as resolving
the internal covariate shift problem caused by convolutional operations [28].
The dilation factor and the number of dilated convolution layers directly
determine the receptive field size of the network. We refer Figure 1 for a
graphic view of NODE-ImgNet.

The detailed structure of the 9-layer vector field is comprised of two types
of structures: Conv + BN + ReLU and Conv. The term ‘Conv’ refers to a
dilated convolutional layer with 3 × 3 filters and ReLU refers to rectified
linear units.

Layers 1-8 are of the Conv+BN+ReLU type and the 9-th layer is Conv.
For all layers except the first and the last, the in-channel and out-channel
numbers are both set to 128, unless otherwise specified. The in-channel
number of the first layer is set to c + 1 where c is the channel of the image
with the extra channel being the time variable. For the final layer, the out-
channel number is set to be c.

For the first and last two layers, the dilation factor is set to be 1, which is
equivalent to the normal convolution without dilation. The dilation factor of
4 is applied in the convolution layers 2-7. Applying such dilated convolutions
gradually increases the receptive field size of the network. More precisely,
the initial receptive field size is 3 in the first layer, the same as the kernel
size. For each subsequent layer, the size of the receptive field is increased by
(kernel size − 1) × dilation factor. Therefore, the receptive field sizes of our
model in the nine layers are 3, 11, 19, 27, 35, 43, 51, 53 and 55, respectively.
We note that the dilation factors are chosen such that final receptive field
size is close to the size of the image patches.

Recall that one of the key features of our model is the flexibility to control
its depth by adjusting the number of time integration steps, N . In the
experiments described in the paper, we set N to be between 2 and 8, which
allowed us to balance the training time and the expected performance of
the model effectively. For the numerical integration, we use the randomized
(forward) Euler method [29]. Finally, we choose the final time parameter
T = 1.
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2.3. Loss function

In our work, we choose the mean-square error (MSE). Define

l(θ) =
1

Np

Np∑
j=1

||f(yi,θ)− xi||22, (3)

where Np is the number of noisy-image patches, θ denotes the set of all
parameters in the model, f(yi,θ) denotes the output of the neural network
at the final time t = T for the denoised image yi, i.e., f(yi,θ) = h(T ) with
h(0) = yi in (2). xi is the ground truth image corresponding to yi. The
norm ∥ · ∥2 denotes the Euclidean norm.

3. Experimental results

This section mainly presents experimental results of our NODE-ImgNet
model along with comparisons to other competitive baseline models that
have similar CNN structures. The datasets and experimental settings used
in the experiments are documented in Section 3.1 and 3.2. We compare the
model performance on the synthetic Gaussian noise denoising for both gray
and color images in Section 3.3.1 and 3.3.2 respectively. We also perform ex-
periments on the real images and the results are presented in Section 3.3.3.
After that, we investigate the scalability of our proposed method on small-
scale partial datasets in Section 3.4. In Section 3.5, we present our ablation
experiments and demonstrate the flexibility of our model. Lastly, we dis-
cuss the computational costs in the subsequent Section 3.6. The codes are
avaliable at https://github.com/xiexinheng/NODE-ImgNet.

3.1. Datasets

3.1.1. Training dataset

For the experiments of Gaussian noise denoising, we train our model on
the Waterloo Exploration Database, which contains 4744 color images. The
full database is used for both color and gray image denoising tasks, where for
the latter we first convert the original color images to gray images. To test
the effectivity of our model in handling data of various sizes, we also train the
model based on 2%, 10%, 20%, and 50% portion of the full image set with
random sampling. In all experiments, each image from the dataset is cropped
into 300 small 60×60 sized patches. The choice of 60×60 as the patch size is
made as a trade-off between computational efficiency and performance. The
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Gaussian noises are added as independent and identically distributed (i.i.d.)
random variables with a mean of 0 and a standard deviation of σ (either
fixed or to be specified in a range) to each patch in the training dataset.

For the real image denoising, we train our model based on a dataset of
40 image pairs collected by Xu et al. [30], as well as the SIDD Medium
dataset [31], which includes 320 image pairs. Each image pair contains a
ground truth image and a corresponding noisy image. Since the images in
the first dataset are relatively small, we augment the dataset by applying
classical image augmentation techniques such as rotations of 90°, 180°, and
270°, resulting in 120 additional images. We also apply horizontal flipping to
each of the 160 images, resulting in an additional 160 images. Combining the
augment data set with the SIDD dataset, we obtain a total of 640 images.
Finally, each image is cropped into 662 patches of size 60×60 pixels, resulting
in a total of 423, 680 training patches.

3.1.2. Test dataset

For a fair comparison, we follow other Gaussian image denoising models
[11, 22, 14] and test our model on datasets BSD68 and Set12 for the trained
gray-scale image models, and on CBSD68, Kodak24 and McMaster for the
trained color image models. BSD68 consists of 68 natural images with di-
mensions of either 481 × 321 or 321 × 481; Set12 consists of 12 gray-scale
images with a size of either 256 × 256 or 512 × 512. CBSD68 includes 68
color images with the same background as BSD68. Kodak24 is composed of
24 natural color images, each with a size of 500× 500. McMaster consists of
18 color images, each with a size of 500× 500.

It is known that real noisy images are usually captured by cameras of
different types with different ISO values [32]. Motivated by this fact, we
choose cc [2] as the test dataset for real noise task. The cc dataset has 15
noisy images captured by three different cameras, i.e., Nikon D800, Nikon
D600, and Canon 5D Mark III with different ISO values (1600, 3200, and
6400), shown in Figure 2.

3.2. Other experimental settings

We use the Adam optimizer with a learning rate of 5 × 10−4, β1 of 0.9,
β2 of 0.999, and epsilon of 1× 10−8. Here, β1 and β2 control the exponential
decay rates for the first and second moment estimates of the gradient, respec-
tively, while ϵ is a small value added to the denominator of the Adam update
formula to prevent division by zero. The batch size is set to 40, and the
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Figure 2: 15 images in the cc dataset.

maximum number of epochs for training NODE-ImgNet is 50. During the
training, the learning rate is halved if the training loss does not decrease for
three consecutive epochs. Additionally, we employ early stopping techniques
to reduce training time and avoid overfitting. In particular, the loss on a
specified test set is computed after each epoch. For gray and color image
denoising tasks, we use the set68 and McMaster test sets, respectively. The
early stopping is activated if the loss of test set does not decrease for five
consecutive epochs.

We train our proposed NODE-ImgNet model under the PyTorch frame-
work [33]. All experiments are conducted on a server running the Linux-5.4.0
operating system and Python 3.9 environment. The server has a memory ca-
pacity of 1.4 TiB and is powered by an Intel Xeon(R) Gold 6240 CPU @
2.60GHz x 72G processor. The server is equipped with an NVIDIA GeForce
RTX 3080 Ti GPU, which has 12 GB of GPU RAM. To accelerate the com-
putational performance of the GPU, we use the NVIDIA CUDA 11.8 version.
We use the 0.2.3 version of the torchdiffeq package to solve NODEs. This
package is optimized for GPU usage and offers a way to reduce memory con-
sumption through backpropagation. To provide the reader with a point of

10



reference, the training of a color Gaussian denoising NODE-ImgNet model,
employing the structure presented in Section 2.2 and utilizingN = 8, requires
an estimated duration of around 82 hours.

3.3. Compared results

In this section, we will give both quantitative and qualitative analyses of
the performance by NODE-ImgNet. We compare NODE-ImgNet with other
competitive baseline image denoising methods, including DnCNN [11], Di-
lated Conv-BN-ReLU(DC-B-R) [27], FFDNet [22], complex-valued denoising
network (CDNet) [34], DudeNet [23], batch renormalization denoising net-
work(BRDNet) [14], ADNet [35], MWDCNN [36] and GradNet [37]. We se-
lect these models because they are primarily constructed using Convolution
(Conv), Batch Normalization (BN), Residual Learning (RL), and Rectified
Linear Unit (ReLU) technologies, or their variations such as complex-valued
and batch renormalization. Comparing our model to these existing models
allows for a clear demonstration of the improvements made by our model.

In this section, we will employ N = 8 by default as the number of time
integration steps in the ODE solver for NODE-ImgNet models, unless speci-
fied otherwise. This specific hyperparameter selection is based on finding the
optimal balance between accuracy and training cost, ensuring an effective
trade-off between the two.

In the following, we first present a comparison of NODE-ImgNet’s de-
noising performance on gray images using the BSD68 and Set12 test sets in
Section 3.3.1. Next, in Section 3.3.2, we evaluate the denoising capabilities
of NODE-ImgNet on color images of three test datasets: CBSD68, Kodak24,
and McMaster. We also compare NODE-ImgNet’s denoising ability on real
images using the cc dataset in Section 3.3.3.

3.3.1. NODE-ImgNet for gray Gaussian image denoising

For gray Gaussian image denoising, we train multiple NODE-ImgNet
models in two modes. In the first mode, following literature [11, 22, 14] we
train three separate models with fixed noise level σ = 15, 25, 50, respectively.
We refer to these three models as NODE-ImgNet. In the second mode, we
employ a blind denoising approach, where the noise level σ for each image
patch is randomly sampled based on a uniform distribution between 0 and
55 during the training process. We refer to this model as NODE-ImgNet-B,
which aimed to provide a robust image denoising model that can deal with
a wide range of noise levels in real-world scenarios.
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σ

Methods DnCNN
[11]

DC-B-R
[27]

FFDNet
[22]

ADNet
[35]

DudeNet
[23]

CDNet
[34]

MWDCNN
[36]

BRDNet
[14]

NODE-
ImgNet

NODE-
ImgNet-B

σ = 15 31.72 31.68 31.63 31.74 31.78 31.74 31.77 31.79 31.81 31.66

σ = 25 29.23 29.18 29.19 29.25 29.29 29.28 29.28 29.29 29.36 29.27

σ = 50 26.23 26.21 26.29 26.29 26.31 26.36 26.29 26.36 26.45 26.41

Table 1: Average PSNR (dB) results of various methods for Gaussian gray image denoising
on the BSD68 Dataset at various noise levels.

The test results of our trained models along with comparisons based on
the BSD68 dataset are presented in Table 1, where the highest and second-
highest PSNR values for each noise level are highlighted in red and blue,
respectively. The results show that NODE-ImgNet outperforms all the com-
pared benchmark models in terms of PSNR. Moreover, we observe a more
significant improvement in our model as the noise level increases. In particu-
lar, compared to the baseline model DnCNN, whose structure is similar to the
vector field of NODE-ImgNet, NODE-ImgNet achieves average improvements
of 0.09, 0.13, 0.22 (in dB) for σ = 15, 25 and 50, respectively. NODE-ImgNet-
B also shows competitive performance. Notably, when test σ = 50, NODE-
ImgNet-B performs better than all other models except NODE-ImgNet.

In Figure 3, we compare the results through visualization of a same
zoomed region from denoised images produced by various methods when
σ = 25. We observe that the denoised image generated by NODE-ImgNet
exhibits better quality in terms of preserving edges and detailed textures.

Figure 4 visualise all test images from Set12. In Table 2, we present the
comparison results for each individual image from Set12 on various noise lev-
els. As before, the highest and second-highest PSNR results for each setting
are marked in red and blue, respectively. We again observe that NODE-
ImgNet on average outperforms all other models. In particular, compared
to the baseline model DnCNN, NODE-ImgNet achieves average improve-
ments of 0.18, 0.30, 0.45 (in dB) for σ = 15, 25 and 50, respectively. Clearly,
NODE-ImgNet demonstrates superior performance compared to other mod-
els across a wide range of image settings. In particular, when evaluated on
the Set12 dataset with noise levels of σ = 15, 25, and 50, NODE-ImgNet
achieves the highest PSNR results for 58%, 71%, and 92% of the images,
respectively. Similar to previous observations, as the noise level increases,
our model achieves more significant improvement.

In Figure 5, we compare the results through visualization of the same
zoomed region from denoised images produced by various methods when
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(a) Original Image (b) Noisy Image (20.71dB) (c) DnCNN (29.17dB)

(d) ffdnet (29.15dB) (e) BRDNet (29.51dB) (f) MWDCNN (29.25dB)

(g) NODE-ImgNet-B (29.52dB) (h) NODE-ImgNet (29.56dB)

Figure 3: Denoising results for Gaussian gray noisy image from the Set68 dataset with
σ = 25.

σ = 50. It is obvious that NODE-ImgNet is better at preserving edges and
complex textures.

In summary, we conclude that NODE-ImgNet provides a highly compet-
itive model for image denoising on gray images with Gaussian noise. More-
over, as noise level increases, we observe that the NODE-ImgNet achieves
more significant improvement than baseline models.

3.3.2. NODE-ImgNet for color Gaussian image denoising

For color Gaussian image denoising, we also train multiple NODE-ImgNet
models in two modes. In the first mode, we train 5 separate NODE-ImgNet
models with fixed noise levels σ = 15, 25, 35, 50, 75, respectively. In the sec-
ond mode, we employ a similar blind denoising approach as in section 3.3.1,
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Figure 4: The 12 images in the Set12 dataset.

Methods
Images

C.man House Peppers Starfish Monarch Airplane Parrot Lena Barbara Boat Man Couple Average

Noise Level σ = 15
DnCNN [11] 32.61 34.97 33.30 32.20 33.09 31.70 31.83 34.62 32.64 32.42 32.46 32.47 32.86
FFDNet [22] 32.43 35.07 33.25 31.99 32.66 31.57 31.81 34.62 32.54 32.38 32.41 32.46 32.77
ADNet [35] 32.81 35.22 33.49 32.17 33.17 31.86 31.96 34.71 32.80 32.57 32.47 32.58 32.98
DudeNet [23] 32.71 35.13 33.38 32.29 33.28 31.78 31.93 34.66 32.73 32.46 32.46 32.49 32.94

MWDCNN [36] 32.53 35.09 33.29 32.28 33.20 31.74 31.97 34.64 32.65 32.49 32.46 32.52 32.91
BRDNet [14] 32.80 35.27 33.47 32.24 33.35 31.85 32.00 34.75 32.93 32.55 32.50 32.62 33.03
NODE-ImgNet 32.68 35.44 33.48 32.35 33.29 31.90 31.97 34.76 32.87 32.53 32.52 32.65 33.04

NODE-ImgNet-B 32.55 35.28 33.39 32.22 33.10 31.78 31.88 34.70 32.35 32.44 32.44 32.58 32.89
Noise Level σ = 25

DnCNN [11] 30.18 33.06 30.87 29.41 30.28 29.13 29.43 32.44 30.00 30.21 30.10 30.12 30.43
FFDNet [22] 30.10 33.28 30.93 29.32 30.08 29.04 29.44 32.57 30.01 30.25 30.11 30.20 30.44
ADNet [35] 30.34 33.41 31.14 29.41 30.39 29.17 29.49 32.61 30.25 30.37 30.08 30.24 30.58
DudeNet [23] 30.23 33.24 30.98 29.53 30.44 29.14 29.48 32.52 30.15 30.24 30.08 30.15 30.52

MWDCNN [36] 30.19 33.33 30.85 29.66 30.55 29.16 29.48 32.67 30.21 30.28 30.10 30.13 30.55
BRDNet [14] 31.39 33.41 31.04 29.46 30.50 29.20 29.55 32.65 30.34 30.33 30.14 30.28 30.61
NODE-ImgNet 30.33 33.68 31.12 29.82 30.57 29.31 29.55 32.80 30.56 30.41 30.21 30.43 30.73

NODE-ImgNet-B 30.22 33.61 31.07 29.64 30.51 29.23 29.51 32.74 29.90 30.33 30.19 30.35 30.61
Noise Level σ = 50

DnCNN [11] 27.03 30.00 27.32 25.70 26.78 25.87 26.48 29.39 26.22 27.20 27.24 26.90 27.18
FFDNet [22] 27.05 30.37 27.54 25.75 26.81 25.89 26.57 29.66 26.45 27.33 27.29 27.08 27.32
ADNet [35] 27.31 30.59 27.69 25.70 26.90 25.88 26.56 29.59 26.64 27.35 27.17 27.07 27.37
DudeNet [23] 27.22 30.27 27.51 25.88 26.93 25.88 26.50 29.45 26.49 27.26 27.19 26.97 27.30

MWDCNN [36] 26.99 30.58 27.34 25.85 27.02 25.93 26.48 29.63 26.60 27.23 27.27 27.11 27.34
BRDNet [14] 27.44 30.53 27.67 25.77 26.97 25.93 26.66 29.73 26.85 27.38 27.27 27.17 27.45
NODE-ImgNet 27.32 31.10 27.73 26.05 27.18 26.03 26.67 29.90 27.32 27.46 27.41 27.37 27.63

NODE-ImgNet-B 27.30 31.03 27.68 25.98 27.17 26.00 26.68 29.88 27.08 27.41 27.36 27.33 27.57

Table 2: PSNR (dB) results of various methods for Gaussian gray image denoising on the
Set12 Dataset at various noise levels.

i.e., the noise level σ for each image patch is uniformly distributed between 0
and 55 during the training process. This model is also referred to as NODE-
ImgNet-B.

We assess the denoising performance of our models with other bench-
mark models on datasets CBSD68, Kodak24, and McMaster. The results are
presented in Table 3. It is obvious that NODE-ImgNet demonstrates uni-
form superior effectiveness for color Gaussian image denoising in comparison
to other baseline models. In addition, it is worth noting that our NODE-

14



(a) Original image (b) Noisy image (14.77dB)

(c) DnCNN (26.22dB) (d) FFDNet (26.45dB) (e) BRDNet (26.85dB)

(f) NODE-ImgNet-B (27.08dB) (g) NODE-ImgNet (27.32dB)

Figure 5: Denoising results for Gaussian gray noisy image “Barbara” from the Set12
dataset with σ = 50.

ImgNet-B model also outperforms other baseline models at σ = 25, 35, 50 for
all test datasets, demonstrating superior blind noise reduction capabilities.

Figures 6, 7 and 8 visualize the resulting denoised color images from
various denoising models at different Gaussian noise, i.e., σ = 25, 50 and 75.
It is evident from each of the figures that the denoised image produced by
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Datasets Methods σ = 15 σ = 25 σ = 35 σ = 50 σ = 75
DnCNN [11] 33.98 31.31 29.65 28.01 -
DC-B-R [27] 31.68 - 29.18 26.21 -
FFDNet [22] 33.80 31.18 29.57 27.96 26.24
GradNet [37] 34.07 31.39 - 28.12 -
ADNet [35] 33.99 31.31 29.66 28.04 26.33
DudeNet [23] 34.01 31.34 29.71 28.09 26.40
BRDNet [14] 34.10 31.43 29.77 28.16 26.43
NODE-ImgNet 34.19 31.49 29.88 28.29 26.60

CBSD68

NODE-ImgNet-B 34.05 31.45 29.86 28.24 -
DnCNN [11] 34.73 32.23 30.64 29.02 -
FFDNet [22] 34.55 32.11 30.56 28.99 27.25
GradNet [37] 34.85 32.35 - 29.23 -
ADNet [35] 34.76 32.26 30.68 29.1 27.4
DudeNet [23] 34.81 32.26 30.69 29.1 27.39
BRDNet [14] 34.88 32.41 30.8 29.22 27.49
NODE-ImgNet 34.96 32.51 31.00 29.47 27.78

Kodak24

NODE-ImgNet-B 34.87 32.47 30.96 29.38 -
DnCNN [11] 34.80 32.47 30.91 29.21 -
FFDNet [22] 34.47 32.25 30.76 29.21 27.29
GradNet [37] 34.81 32.45 - 29.39 -
ADNet [35] 34.93 32.56 31 29.36 27.53
BRDNet [14] 35.08 32.75 31.15 29.52 27.72
NODE-ImgNet 35.11 32.83 31.35 29.79 27.97

McMaster

NODE-ImgNet-B 35.01 32.78 31.31 29.72 -

Table 3: Average PSNR (dB) results of various methods for Gaussian color image denoising
at various noise levels on the CBSD68, Kodak24, and McMaster datasets.
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NODE-ImgNet successfully restores the most texture and details depicted in
the clean image.

In summary, NODE-ImgNet stands out as a competitive model for de-
noising color images affected by Gaussian noise. Once again, as the noise
level escalates, NODE-ImgNet exhibits a considerably more substantial im-
provement in performance in contrast to the baseline models.

(a) Clean image (b) Noisy image (23.89dB) (c) FFDNet (33.28dB)

(d) BrdNet (33.54dB) (e) NODE-ImgNet-B (33.59dB) (f) NODE-ImgNet (33.65dB)

Figure 6: Denoising results for a Gaussian color noisy image from the McMaster dataset
with σ = 25.

3.3.3. NODE-ImgNet for real image denoising

In this subsection, we compare the performance of NODE-ImgNet on real
image denoising with other competitive baseline methods including DnCNN
[11], ADNet [35], DudeNet [23], MWDCNN [36] and BRDNet [14]. The
trained model is tested on the cc [2] dataset with 15 noisy images. The
results presented in Table 4 show that NODE-ImgNet outperforms other
models for the majority of images in the data set. In particular, when the
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(a) Clean image (b) Noisy image (18.16dB) (c) FFDNet (32.85dB)

(d) BRDNet (33.05dB) (e) NODE-ImgNet-B (33.35dB) (f) NODE-ImgNet (33.50dB)

Figure 7: Denoising results for a Gaussian color noisy image from the Kodak24 dataset
with σ = 50.

ISO values are larger, indicating higher levels of noise, our model performs
uniformly better with higher improvement. This along with former results
indicates that our NODE-ImgNet has strong denoising capabilities for more
complex noise types, such as real-world noise.

It is important to note that for real image denoising, the improvement
of NODE-ImgNet over other baseline networks, e.g., BRDNet, is more sig-
nificant than the synthetic Gaussian denoising tests. More precisely, for
the color Gaussian denoising experiments, the average improvement range in
PSNR compared to BRDNet across each test set is between 0.03 to 0.29 dB.
Whereas, for the real image denoising, the improvement is 0.60 in dB which
is more than 2 folds higher.

More precisely, for the color Gaussian denoising experiments, the im-
provement range in PSNR compared to BRDNet is between 0.03 to 0.29 in
dB. Whereas, for the real image denoising, the improvement is 0.6 dB which

18



(a) Clean image (b) Noisy image (15.48dB)

(c) FFDNet (30.68dB) (d) BRDNet (30.94dB) (e) NODE-ImgNet (31.12dB)

Figure 8: Denoising results for a Gaussian color noisy image from the CBSD68 dataset
with σ = 75.

is about 2 times higher.

Camera settings DnCNN [11] ADNet [35] DudeNet [23] MWDCNN [36] BRDNet [14] NODE-ImgNet
37.26 35.96 36.66 36.97 37.63 37.09
34.13 36.11 36.70 36.01 37.28 36.78Canon 5D ISO=3200
34.09 34.49 35.03 34.80 37.75 35.58
33.62 33.94 33.72 33.91 34.55 34.93
34.48 34.33 34.70 34.88 35.99 36.43Nikon D600 ISO=3200
35.41 38.87 37.98 37.02 38.62 42.05
35.79 37.61 38.10 37.93 39.22 37.92
36.08 38.24 39.15 37.49 39.67 39.81Nikon D800 ISO=1600
35.48 36.89 36.14 38.44 39.04 38.14
34.08 37.20 36.96 37.10 38.28 40.35
33.70 35.67 35.80 36.72 37.18 36.76Nikon D800 ISO=3200
33.31 38.09 37.49 37.25 38.85 40.93
29.83 32.24 31.94 32.24 32.75 34.79
30.55 32.59 32.51 32.56 33.24 34.14Nikon D800 ISO=6400
30.09 33.14 32.91 32.76 32.89 34.34

Average 33.86 35.69 35.72 35.74 36.73 37.33

Table 4: PSNR (dB) Results of Various Methods on Real Noisy Images

3.4. Efficiency with Small-Scale Partial Datasets

As aforementioned, the inherent flexibility in NODE-ImgNet enables its
efficacy on smaller datasets, which is critical for tasks with limited access to
training data. To better support the statement, we train our NODE-ImgNet
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and BRDNet models based on each dataset that comprises 50%, 25%, 10%,
and 2% of the Waterloo Exploration Database with random sampling, re-
spectively. The resulting number of training images for the four experiments
is, therefore, 2372, 1186, 474, and 95, respectively. Each selected image were
also cropped into 300 patches of size 60×60, following the previous way. The
models are trained with fixed noise level σ = 50.

The test results on the McMaster, Kodak24, and CBSD68 dataset are
presented in Table 5. We observe that NODE-ImgNet is less negatively
affected when decreasing the amount of training data. To better visualize
the data, we also organize them in Figure 9 for the McMaster test dataset.
With linear regression, the decrease rates for NODE-ImgNet and BRDNet is
−0.168 and −0.246 in dB/percent, respectively. Therefore, Figure 9 further
confirms that our model can achieve better performance on small-scale partial
datasets compared to BRDNet and, therefore, can effectively handle tasks
with limited training data.

Figure 9: Performance of NODE-ImgNet and BRDNet with decreasing size of training
Dataset. Shown results are obtained through the McMaster test set.

3.5. Ablation Experiments and Demonstration of Model Flexibility

In this subsection, we conducted ablation experiments. The results high-
light the efficacy of our approach. Concurrently, these ablation studies also
reveal a significant advantage of our NODE structure: It offers flexibility
in choosing the value for the hyper-parameter of time integration steps N,
which facilitating a balance between training time and accuracy.
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Training Data Ratio NODE-ImgNet BRDNet Relative Decrease Value (dB) Relative Decrease Percentage
100% 29.79 29.52 NODE-ImgNet BRDNet NODE-ImgNet BRDNet
50% 29.73 29.46 -0.06 -0.06 -0.19% -0.19%
25% 29.66 29.12 -0.13 -0.40 -0.45% -1.37%
10% 29.53 29.06 -0.26 -0.47 -0.87% -1.60%
5% 29.29 29.02 -0.50 -0.50 -1.72% -1.74%

McMaster

2% 29.05 28.49 -0.74 -1.03 -2.56% -3.61%
100% 29.47 29.22 NODE-ImgNet BRDNet NODE-ImgNet BRDNet
50% 29.46 29.20 0.01 -0.02 -0.03% -0.08%
25% 29.35 28.95 -0.13 -0.27 -0.42% -0.94%
10% 29.26 28.95 -0.21 -0.27 -0.72% -0.94%
5% 29.06 28.90 -0.41 -0.32 -1.39% -1.09%

Kodak24

2% 28.94 28.50 -0.53 -0.72 -1.81% -2.52%
100% 28.29 28.16 NODE-ImgNet BRDNet NODE-ImgNet BRDNet
50% 28.28 28.10 -0.01 -0.06 -0.04% -0.20%
25% 28.22 27.95 -0.07 -0.22 -0.24% -0.77%
10% 28.17 27.93 -0.12 -0.23 -0.44% -0.83%
5% 28.03 27.90 -0.26 -0.26 -0.91% -0.93%

CBSD68

2% 27.93 27.58 -0.36 -0.59 -1.30% -2.12%

Table 5: Performance of NODE-ImgNet and BRDNet with decreasing size of training
Dataset. Evaluations are shown on CBSD68, Kodak24, and McMaster test sets.

The novelty of our model stems from the combination of the NODE model
with the CNN network. This necessitates us to consider two aspects when
designing ablation experiments: firstly, by removing the NODE structure
to demonstrate the denoising capability of the original Vector field CNN
structure; and secondly, by adjusting the time step N in NODE to showcase
the model’s denoising ability under different N scenarios. For the former
approach, we design two models. In the first model, we entirely remove the
NODE structure, retaining only the vector field CNN framework. We refer to
this model as the ‘Vector field (N=0)’. In the second model, while removing
the NODE structure, we also introduce a residual block to bridge the input
and output, thereby enhancing the original CNN network. We designate
this model as the ‘Vector field (N=1)’. The rationale behind this design
is that this residual structure resembles the NODE structure when N=1.
Theoretically, NODE at N=1 is equivalent to not partitioning time, and thus,
we disregard this scenario for NODE-ImgNet. For the latter approach, we
test the denoising capability of NODE-ImgNet by solely adjusting the time
step N from 2 to 8, examining its performance under various time steps.

For a fair comparison, all of the aforementioned models are trained based
on the full Waterloo dataset with a fixed noise level of σ = 50. The final
experimental results are shown in Figure 10. On the x-axis, the labels N=0
and N=1 correspond to the Vector field (N=0) and Vector field (N=1) models
respectively, while labels N=2 to N=8 represent the NODE-ImgNet with time
steps from N=2 to N=8. In the figure, the model’s performance is depicted
by a blue curve, while the training time is represented by a red curve.
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Comparing the results of Vector field (N=0, 1) with NODE-ImgNet N=2-
8 underscores the efficacy of incorporating NODE with an appropriate num-
ber of steps, thus validating the effectiveness of our structure. Further, when
observing the results of NODE-ImgNet from N=2 to N=8, it’s evident that
both the training time (for 100 batches) and the PSNR value exhibit an al-
most linear relationship with the value of N. This demonstrates the flexibility
of our model, allowing users to make a trade-off between performance and
training time by simply adjusting the value of N.

However, it’s crucial to point out that as the value of N increases, the
growth rate for PSNR is relatively more gradual than that for the training
time. Nonetheless, it’s noteworthy that with N=2, NODE-ImgNet already
surpasses BRDNet under an identical noise setting.

Figure 10: Average PSNR for Kodak24
test set and training time for 100 batches
under varying N values.

Figure 11: Test time versus N values on
a 1024 × 1024 color image using NODE-
ImgNet.

3.6. Computational Costs

Testing time and the number of parameters are also important metrics
for evaluating models [38]. In this subsection, we compare our model NODE-
ImgNet with various other baseline models including FFDnet, DnCNN, MWD-
CNN, and BRDNet in terms of evaluation/testing time and the number of
parameters. The testing times are obtained on testing color images of size
256×256, 512×512, and 1024×1024 with Gaussian fixed noise level σ = 50.
To ensure fair comparison, we rebuild these models and test them on the
same device mentioned in section 3.2. The results are shown in Table 6. We
also plot the testing time for denoising the same 1024 × 1024 color image
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Methods DnCNN ADNet DudeNet MWDCNN BRDNet
NODE-ImgNet

N=2, 128 channels N=8, 128 channels N=8, 64 channels

Parameters 0.56M 0.52 M 1.03M 0.50M 1.11M 1.04M 1.04M 0.26M

size

256 × 256 0.007s 0.012s 0.014 0.027s 0.012s 0.017s 0.072 0.052s

512 × 512 0.024s 0.032s 0.047s 0.147s 0.047s 0.060s 0.254s 0.148s

1024 × 1024 0.103s 0.142s 0.221s 0.877s 0.197s 0.228s 0.887s 0.4763s

Table 6: Comparison of testing time for various models using different input image sizes.

versus N , as shown in Figure 11. We observe that when N = 2, the testing
time of NODE-ImgNet is comparable with BRDNet whereas NODE-ImgNet
performs better and has less number of parameters.

It is worth mentioning that BRDNet utilizes a channel number of 64 in
its intermediate layers. To provide a comparison point, we also train NODE-
ImgNet models with the same intermediate channel number of 64 and N = 8.

In this scenario, the vector field network employed by NODE-ImgNet is a
proper subset of BRDNet, resulting in NODE-ImgNet utilizing only 23% of
the parameters found in BRDNet. The performance of NODE-ImgNet, with
a channel number of 64, is presented in Table 7. We also include a comparison
to other baseline models for three color image test datasets. Upon examining
the results, our model demonstrates superior performance compared to all
the baseline models for the chosen high levels of noise.

The results suggest that NODE-ImgNet exhibits significant potential for
image denoising on portable devices like smartphones, drones, embedded
systems, and cameras.

Datasets Noise Level DnCNN [11] FFDNet [22] GradNet [37] ADNet [35] DudeNet [23] BRDNet [14] NODE-ImgNet-S

σ = 50 28.01 27.96 28.12 28.04 28.09 28.16 28.19
CBSD68

σ = 75 - 26.24 - 26.33 26.40 26.43 26.54

σ = 50 29.02 28.99 29.23 29.1 29.1 29.22 29.30
Kodak24

σ = 75 - 27.25 - 27.4 27.39 27.49 27.67

σ = 50 29.21 29.21 29.39 29.36 - 29.52 29.57
McMaster

σ = 75 - 27.29 - 27.53 - 27.72 27.81

Table 7: Comparison of NODE-ImgNet (channel number 64) and various other models for
Gaussian color image denoising at two high noise levels.

4. Conclusion

Inspired by the traditional PDE approach to image denoising, we pro-
pose an image denoising model referred as NODE-ImgNet in this paper. The
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structure of NODE-ImgNet employed in this paper combines NODEs with
CNN blocks and achieves enhanced accuracy and parameter efficiency. The
experimental data suggest that NODE-ImgNet consistently performs at a
high level across diverse image denoising scenarios. Additionally, this model
exhibits proficiency in learning from limited training datasets and provides
flexibility in model complexity tuning to meet specific task parameters. Nev-
ertheless, the present framework does not integrate important image metrics,
e.g., gradient, divergence, etc. This omission may constrains the model’s full
potential in optimizing denoising outcomes. It is also noteworthy that aug-
menting the model with pre-processed image data using traditional models
could further enhance its performance capabilities.

One of our future objectives is to enhance the efficiency of our model by
explicitly incorporating spatial derivatives into the vector field. Specifically,
we aim to expand the application of our proposed architecture to tackle
increasingly complex real-world image denoising tasks, including denoising
low-light conditioned and blurred images. Moreover, we plan to investigate
the integration of advanced techniques such as attention mechanisms [39]
and U-Net [40] within the vector field, further augmenting the effectiveness
of our model.

Adopting our proposed framework offers several benefits to users and
other models: 1) Proper integration of other benchmark models to the vector
field of NODE-ImgNet has the potential to significantly enhance the perfor-
mance of existing benchmark structures; 2) Its inherent versatility allows for a
wide range of applications, including image segmentation and high-resolution
reconstruction.

Acknowledgements

We would like to express our gratitude to the Oxford Mathematics In-
stitute for providing server support and technical assistance. We are also
grateful for Baoren Xiao (UCL)’s assistance with some of the numerical ex-
periments.

Funding

HN is supported by the Engineering and Physical Sciences Research
Council (EPSRC) [grant number EP/S026347/1] and the Alan Turing In-
stitute under the EPSRC grant [grant number EP/N510129/1].

24



References

[1] J. Zhang, K. Hirakawa, Improved denoising via poisson mixture model-
ing of image sensor noise, IEEE Transactions on Image Processing 26 (4)
(2017) 1565–1578, https://doi.org/10.1109/TIP.2017.2651365.

[2] S. Nam, Y. Hwang, Y. Matsushita, S. J. Kim, A holistic ap-
proach to cross-channel image noise modeling and its applica-
tion to image denoising, in: Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 1683–1691,
https://doi.org/10.1109/cvpr.2016.186.

[3] X. Kuang, X. Sui, Y. Liu, Q. Chen, G. Guohua, Single in-
frared image optical noise removal using a deep convolutional
neural network, IEEE photonics Journal 10 (2) (2017) 1–15,
https://doi.org/10.1109/JPHOT.2017.2779149.

[4] M. C. Motwani, M. C. Gadiya, R. C. Motwani, F. C. Har-
ris, Survey of image denoising techniques, in: Proceedings
of GSPX, Vol. 27, Proceedings of GSPX, 2004, pp. 27–30,
https://www.cse.unr.edu/ fredh/papers/conf/034-asoidt/paper.pdf .

[5] L. Fan, F. Zhang, H. Fan, C. Zhang, Brief review of image denoising
techniques, Visual Computing for Industry, Biomedicine, and Art 2 (1)
(2019) 1–12, https://doi.org/10.1186/s42492-019-0016-7.

[6] A. E. Ilesanmi, T. O. Ilesanmi, Methods for image denoising using con-
volutional neural network: a review, Complex & Intelligent Systems
7 (5) (2021) 2179–2198, https://doi.org/10.1007/s40747-021-00428-4.

[7] B. Farhang-Boroujeny, Adaptive filters: theory and applications, John
Wiley & Sons, 2013, https://doi.org/10.1002/9781118591352.ch9.

[8] S. G. Chang, B. Yu, M. Vetterli, Adaptive wavelet thresholding for im-
age denoising and compression, IEEE Transactions on Image Processing
9 (9) (2000) 1532–1546, https://doi.org/10.1109/83.862633.

[9] L. I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise
removal algorithms, Physica D: Nonlinear Phenomena 60 (1-4) (1992)
259–268, https://doi.org/10.1016/0167-2789(92)90242-F.

25

https://doi.org/10.1109/TIP.2017.2651365
https://doi.org/10.1109/cvpr.2016.186
https://doi.org/10.1109/JPHOT.2017.2779149
 https://doi.org/10.1186/s42492-019-0016-7
https://doi.org/10.1007/s40747-021-00428-4
https://doi.org/10.1002/9781118591352.ch9
https://doi.org/10.1109/83.862633
https://doi.org/10.1016/0167-2789(92)90242-F


[10] A. Buades, B. Coll, J.-M. Morel, A review of image denoising algorithms,
with a new one, SIAM Journal on Multiscale Modeling and Simulation
4 (2) (2005) 490–530, https://doi.org/10.1137/040616024.

[11] K. Zhang, W. Zuo, Y. Chen, D. Meng, L. Zhang, Beyond a gaus-
sian denoiser: Residual learning of deep cnn for image denoising,
IEEE transactions on image processing 26 (7) (2017) 3142–3155,
https://doi.org/10.1109/TIP.2017.2662206.

[12] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, Y. Fu, Residual dense
network for image super-resolution, in: IEEE Conference on Com-
puter Vision and Pattern Recognition, IEEE, 2018, pp. 2472–2481,
https://doi.org/10.48550/arXiv.1802.08797 .
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