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Abstract

This paper presents a non-parametric discrimination strategy based on texture features characterised by one-dimen-

sional conditional histograms. Our characterisation extends previous co-occurrence matrix encoding schemes by con-

sidering a mixture of colour and contextual information obtained from binary images. We compute joint distributions

that define regions that represent pixels with similar intensity or colour properties. The main motivation is to obtain a

compact characterisation suitable for applications requiring on-line training. Experimental results show that our

approach can provide accurate discrimination. We use the classification to implement a segmentation application based

on a hierarchical subdivision. The segmentation handles mixture problems at the boundary of regions by considering

windows of different sizes. Examples show that the segmentation can accurately delineate image regions.

� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Previous works have shown that histograms

can be used as powerful descriptions for non-para-

metric classification (Unser, 1986a; Valkealahti
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and Oja, 1998; Ojala et al., 1996, 2000; Hofmann

et al., 1998; Puzicha et al., 1999). In contrast to

parametric features (Haralick, 1979), histograms

contain all the information of distributions avoid-

ing the problem of feature selection. In general, the

development of a method for automatic feature

selection is not trivial since optimal performance
requires a careful selection of features according

to particular types of textures (Ohanian and

Dubes, 1992; Jain and Zongker, 1997; Sullis,
ed.
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1990; Ng et al., 1998). However, histograms can-

not be directly used as texture descriptors; the

computation and dimensionality impose prohibi-

tive computational resources for applications

(Rosenfeld et al., 1982; Augusteijn et al., 1995).
The computation of histograms of low-dimension-

ality is considered as an open problem (Unser,

1986a; Valkealahti and Oja, 1998; Rosenfeld

et al., 1982; Ojala et al., 2001).

In addition to make texture descriptors useful

for applications, the reduction of histogram�s
dimensionality has two important implications.

First, it avoids sparse histograms due to insuffi-
cient training data. Secondly, if histograms are

compact, it is possible to consider more complex

pixels interdependencies increasing the discrimina-

tion power. It is important to notice that if the his-

togram reduction is effective, we should expect

good discrimination with similar features than

the ones used to codify the high dimension descrip-

tion. As such, it is important to distinguish be-
tween the effectiveness of the reduced process

and the additional power obtained by including

more complex pixel interdependencies.

A powerful approach to histogram reduction is

to perform a quantisation to adapt the histogram

bins according to the distribution (Puzicha et al.,

1999). In (Valkealahti and Oja, 1998; Ojala et al.,

2001) the adaptation is defined by using techniques
of vector quantisation (Gersho and Gray, 1992).

Results on texture discrimination have shown that

this is a very powerful technique to reduce multi-

plex (i.e., >2) co-occurrences. However, although

a tree structure can be used to handle the complex-

ity required by the encoder, yet the encoder re-

quires a significant number of operations and

sample data. The search uses more memory that
a full search vector quantisation and the process

can lead to sub-optimal solutions (Gersho and

Gray, 1992).

In this paper, we simplify histograms by con-

sidering combinations of the random variables

defining the joint probability function (i.e., grey

tone or colour dependence) (Unser, 1986a; Rosen-

feld et al., 1982; Ojala et al., 2001). In (Rosenfeld
et al., 1982), and later (Unser, 1986a), histograms

define the probability of the differences of grey

levels for pixel pairs. The motivation is that these
operations define the principal axes of the second

order joint probability function (Unser, 1986a).

However, they have had an unpredictable success

in applications (Schulerud and Carstensen, 1995;

Chetverikov, 1994). The main caveat of this repre-
sentation is that, in general, random variables in a

texture do not define Gaussian independent distri-

butions. Additionally, although the average error

of the difference is well approximated by the

factorised probability (Ojala et al., 2001), the

difference operation loses spatial information and

histograms can become bad approximations of

joint probability functions. In order to maintain
spatial information, we propose to encode the tex-

ture�s random structure by computing joint proba-

bilities defining the dependence between pixels

forming regions sharing intensity or colour prop-

erties. To reduce dimensionality, statistical distri-

butions are computed for binary images. We

combine joint distributions of binary values and

the probability of intensity values to define a
collection of histograms. These histograms are

normalised, thus they can be used for non-para-

metric texture discrimination independently of

the size of the sampled region (Puzicha et al.,

1999).

We use the non-parametric classification to

implement a segmentation application based on a

hierarchical quadtree scheme. Hierarchical strate-
gies have been very effective for image segmenta-

tion. The hierarchical approach has two main

advantages. First, it performs a fast partition by

considering regions rather than individual pixels

in fixed overlapping windows. The partition is de-

fined by considering regions of different sizes at

different levels of the hierarchy. The second advan-

tage is that it reduces classification errors due to
mixture of features computed in a fixed window

size. This is convenient to delineate accurate region

borders (Ojala et al., 2000; Hsu, 1978; Dutra and

Mascarenhas, 1984; Marceau et al., 1990; Briggs

and Nellis, 1991; Ma and Manjunath, 1997). These

properties have been exploited in algorithms of

segmentation based on intensity (Horowitz and

Pavlidis, 1976; Wu, 1992), motion (Szeliski and
Shum, 1996; Lee, 1998) and texture information

(Ojala et al., 2000; Chen and Pavlidis, 1979). Our

segmentation is based on the technique presented
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in (Chen and Pavlidis, 1979), but it divides an

image using non-parametric classification.
2. Statistical characterisation of textures

The interdependence of pixels in a texture can

be defined by the joint probabilities computed

for random variables associated to pixel intensi-

ties. Given n discrete random variables c(x1),
c(x2), . . .,c(xn) at positions x1,x2, . . .,xn, the nth-

order density function defines the probability that

the variables take the values c1,c2, . . .,cn, respec-
tively (Papoulis, 1991). That is, f(c1, . . .,cn;x1, . . .,
xn) = P{c(x1) = c1, . . .,c(xn) = cn}. Here, c takes

values within the range of possible grey levels or

colours. Since textures are stationary processes,

then distributions can be expressed independently

of their position. Thus, f(c1, . . .,cn;x1, . . .,xn) de-

pends on the distance between x1 and any other

variable xi. That is, f(c1, . . .,cn;s2, . . .,sn) for si =
jxi � x1j. This function represents the probability

of obtaining the grey level values c1,c2, . . .,cn at

distances s1,s2, . . .,sn measured from x1. The gen-

eral form can be limited to different orders to de-

fine alternative texture descriptors. For example,

co-occurrence matrices (Haralick et al., 1973a;

Kovalev and Petrou, 1996; Strand and Taxt,

1994) are defined by considering only two points.
That is,

f ðc1; c2;sÞ for s ¼ jx2 � x1j ð1Þ
for values of s defining neighbourhoods of 3 · 3 or

4 · 4 pixels. These descriptors have powerful dis-

crimination properties. However, the computation

of the probability for each combination c1 and c2
requires a large number of samples and computa-

tions. Previous works have considered simplifica-

tions obtained by replacing the dependence on

the values c1 and c2 for arithmetical combinations

(Unser, 1986a; Rosenfeld et al., 1982; Ojala et al.,

2001). For example difference histograms (Ojala

et al., 2001) are defined as

f ðc1; c2 � c1;sÞ ð2Þ

This equation characterises the same information

as Eq. (1), but the changes in intensities are given

relative to the value at x1. This can be simplified by
considering that all the possible values of c1 have

the same probability of occurrence and that the

probabilities of P{c(x1) = c1} and P{c1 � c2 = a}
are independent. In this case

f ðc1; c1 � c2;sÞ ffi f ða;sÞ for a ¼ c1 � c2 ð3Þ
This description can be extended to large neigh-

bourhoods or to differences of higher order. The

main advantage is that it is simpler than Eq. (1),

thus it can make the classification faster and it re-

quires less training data. The main drawback is

that many combinations of values c1, c2 map into
the same value of a, thus information about per-

mutations is lost. Additionally, dependence on

intensity information is lost making classification

on small regions difficult. In the next section we

present a characterisation that simplifies Eq. (1)

keeping dependence in intensity information. Pre-

vious works have shown the importance of inten-

sity values for classification (Dubuisson-Jolly and
Gupta, 2000).
3. Conditional histograms

We can describe the interdependence of pixels in

a texture by considering ideas of binary feature

selection. Previous works have shown that binari-
sation can be very effective to characterise the spa-

tial dependence of pixels in images (Wang and He,

1990; Chen et al., 1995; Hepplewhite and Stonham,

1997; Ojala and Pietikäinen, 1999). As suggested in

(Ojala et al., 2000), we use the joint distribution of

binary patterns. However, in order to be able to

locate a texture embedded in different images, we

use a global threshold strategy (Chen et al.,
1995). A global threshold divides an image into re-

gions with similar intensity properties. Thus, we

can expect that the joint probabilities computed

in a binary image to contain much of the informa-

tion about the spatial structure of the texture.

If c1 and c2 represent binary features at x1 and

x2, then the structural information given by the

permutations in two locations can be written as

f ðc1jc1; c2;sÞ for s ¼ jx2 � x1j ð4Þ

This represents the probability that a pixel has

intensity c1 conditioned to the intensities of
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neighbouring pixels. Since we consider binary fea-

tures, the second-order spatial and intensity inter-

dependencies of neighbouring pixels are defined by

the four histograms

f1ðc1;sÞ ¼ f ðc1j0; 0;sÞ
f2ðc1;sÞ ¼ f ðc1j0; 1;sÞ
f3ðc1;sÞ ¼ f ðc1j1; 0;sÞ
f4ðc1;sÞ ¼ f ðc1j1; 1;sÞ

ð5Þ

This description can be extended to large neigh-

bourhoods or n-order interdependencies. That is,

f ðc1jc1; c2; . . . ; cn;s2; . . . ; snÞ for si ¼ jxi � x1j
ð6Þ

Thus a texture is characterised by 2n one-dimen-

sional histograms per binary feature. For colour

or multispectral images, we can maintain a low

dimensionality by considering each colour compo-

nent separately. Thus, for an image with m chro-

matic components, we have m2n histograms.
Although it is possible to consider directly the

colour components in the definition of the

histograms, in general, it is better to perform a

pre-processing such that each component has a

higher discriminatory ability. For example, if

c1,R, c1,G and c1,B are the red, blue and green val-

ues of an image (i.e., m = 3) then the description in

Eq. (6) can be extended to

f ðc1jjc1; c2; . . . ; cn;s2; . . . ; snÞ ð7Þ
for

c1;1 ¼ ðc1;R þ c1;G þ c1;BÞ=3
c1;2 ¼ c1;R � c1;B
c1;3 ¼ ð2c1;G � c1;R � c1;BÞ=3

ð8Þ

These definitions can obtain a set of components

with discriminatory ability as good as that ob-

tained by the Karhunen Loeve transformation

(Ohta et al., 1980).
4. Classification

In general, the classification performance de-

pends on the discrimination approach. Numerous

discrimination approaches are possible (Devijver
and Kittler, 1982; Schalkoff, 1992) and classifiers

can improve the results at the expense of complex-

ity, computational resources and requirements in

the size and quality of the training data. However,

it is beyond the scope of this work to evaluate clas-
sification schemes. We are interested in evaluating

the discrimination properties of conditional den-

sity histograms. We have chosen to use a non-

parametric classification based on the dissimilarity

between the histograms of the training classes and

the histograms of the sample to be assigned to the

class. The non-parametric approach is particularly

suitable for low dimensionality feature spaces and
can provide good classification results with relative

low computational resources (Puzicha et al., 1999).

In non-parametric discrimination techniques,

histograms define the feature vectors that form

the basis for the classification. Thus, each element

in the histogram corresponds to the value of a fea-

ture and a texture class is characterised by m2n fea-

tures per binary operator. An important difference
with previous approaches is that in our classifier

we assume that training samples define the same

distribution. That is, instead of forming different

distributions for each training sample, we incre-

ment the estimate of a single collection of distribu-

tions for each texture class. Thus, the training data

of a class characterises a single point in the feature

space, making the classification to be more depen-
dent on the selection of good texture characterisa-

tion rather than on the power of the classifier. If

we included a sophisticate classifier that can distin-

guish between no-linear separable classes defined

by several features, then we would compensate

for poor features by using complex discrimination

for disperse collections in the feature space. Thus,

the performance would be directly related to the
size of the training data and to the complexity of

the classifier and not to the quality of the features.

An advantage of computing features incremen-

tally is that we can obtain an estimate of the distri-

butions with a small number of training samples

avoiding sparse histograms. It is well known that

histograms with few entries per bin produce a poor

performance in non-parametric tests (Ojala et al.,
1996; Puzicha et al., 1999). In some applications,

it is important to be able to classify by using re-

duced training data. For example, in image editing
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or region tracking applications, it is important to

minimise the number of times the user selects sam-

ples to delineate a region of interest. Additionally,

in these applications, training cannot be performed

off-line, thus we have to minimise the time spent in
computing features and in creating the texture

database.

In non-parametric classification techniques,

there are alternative ways to define the dissimilar-

ity between histograms. Valuable experimental

work has evaluated the performance of alternative

dissimilarity measures for k-NN classifiers (Ojala

et al., 1996; Puzicha et al., 1999). The results sug-
gest that the performance depends on several fac-

tors such as the size of the training data, type of

features, type of images and particular applica-

tions. In general, when histograms are not sparse

(e.g., by using marginal distributions or by consid-

ering many training samples (Puzicha et al.,

1999)), the difference in performance is not signi-

ficant for most measures. For small sample data,
it is better to use measures based on statistics or

aggregate measures less sensitive to sample noise.

Since we are using only one set of histograms per

class, thus we expect (and in fact this is part of

the motivation to reduce dimensionality) to have

histograms with a significant number of entries

per bin. Thus, we choose to use the L1 norm that

provides a good classification with a small compu-
tational load. In the case of windows with few

pixels, the performance can be maintained if the

number of bins is reduced. This can be achieved

by adaptive binning, but this is computationally

expensive (Ojala et al., 1996). In a simpler strategy,

we constrain the similarity measure to bins that

have a significant number of entries.

By considering Eq. (6), a test sample S is as-
signed to the class of the model Mj that minimises

the absolute difference between corresponding bins

in each histogram.

DðS;MjÞ ¼
Xm2n

h

X

i

jfShðcijc1; c2; . . . ; cn; s2; . . . ; snÞ

� fMj;hðcijc1; c2; . . . ; cn; s2; . . . ; snÞj ð9Þ

The fist summation indicates all the histograms
whilst the second summation iterates for each

bin. The sub-index h is used to index the histogram
of the sample and the model. This definition mea-

sures whether the pixels in two textures have simi-

lar intensities with similar spatial organisation.

That is, the value of D(S,M) will be small if the

intensity values of the two textures are similar
and they are grouped into regions of similar

contrast.
5. Segmentation

We used the classification to implement a seg-

mentation application based on a top-down hier-
archical subdivision. This approach searches for

an optimum partition by dividing the image in a

quad-tree homogenous decomposition. This com-

prises three steps. First, a region is classified. Sec-

ondly, it is partitioned and each partition is

classified. Finally, it is necessary to measure the

homogeneity of the partition. If the region is

homogenous, then the whole region is assigned
to the same class and the subdivision is stopped.

If the region is not homogenous, the region is

subdivided. The subdivision is repeated until the

image region is equal to one pixel.

In a hierarchical approach, the segmentation

performance depends on the classification and on

the ability of computing an optimum partition.

An optimal partition divides the image into re-
gions of roughly uniform texture. Thus, the suc-

cess depends on performing an appropriate

decision about the homogeneity of a region.

Unfortunately, there has not been a practical eval-

uation of homogeneity measurements that could

help us to choose an optimum partition frame-

work. We base our criterion of homogeneity in

two heuristic rules. First, we consider that classifi-
cation at boundaries contains a mixture of two

textures (i.e., non-homogeneous). Accordingly,

we subdivide regions that have at least one neigh-

bouring region of a different class. This criterion of

subdivision delineates the boundaries between tex-

ture regions. The second criterion of homogeneity

is based on the classification in successive levels

of the quad-tree. Similar to (Ojala et al., 2000),
we measure the uniformity by computing the dif-

ferences between histograms of the four sub-

blocks in the subdivision. However, we do not
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measure the variance of the sub-blocks, but the

confidence that we have in the result.

We consider the uncertainty in classification as

the ratio between the similarity values of the two

textures in the database that are most similar to
the distribution computed from a region. We

denote as j� the element that minimises D(S,Mj)

and we denote as DðS;Mj� Þ the corresponding

minimum value. We denote as j+ the class that

minimises D(S,Mj) when the element j
�
is not con-

sidered. Thus, DðS;MjþÞ denotes the distance value
for the class j+. The uncertainty of classifying S is

defined as

UðS; j�Þ ¼ DðS;MjþÞ
DðS;Mj� Þ

ð10Þ

This measure will be close to one if the classifica-

tion is vague. The uncertainty in the classification

decreases when the difference between classifica-

tion distances increases. Thus, the subdivision

must minimise the uncertainty in the entire image.

We perform the subdivision based on the compar-

ison between the uncertainty of the region and

the uncertainty of the new regions. However, this
comparison cannot be based on the uncertainty

between different levels in the quad-tree. Since

each level of the quad-tree has regions of smaller

size, then the uncertainty in lower levels is always

higher.

In order to evaluate the subdivision, we con-

sider the uncertainty when regions are classified

by considering the class in the upper level and
the new classification in the low level. If S1, S2,

S3 and S4 are the regions in a subdivision, then

the change in uncertainty due to a splitting opera-

tion can be measured as

UðS1; j�Þ þ UðS2; j�Þ þ UðS3; j�Þ þ UðS4; j�Þ
� ðUðS1; j�1Þ þ UðS2; j�2Þ þ UðS3; j�3Þ þ UðS4; j�4ÞÞ

ð11Þ

where j� minimises in the upper level and, j�1;
j�2; j

�
3 and j�4 minimise each one of the new sub-re-

gions. The sub-division is performed if the abso-
lute difference in Eq. (11) is lower than a fixed

threshold. The basic idea is to subdivide the region

only if it is composed of several textures. In this

case, the classification obtained by smaller regions
composing a mixture has less uncertainty than

when we consider a single class for the whole

region.

Although uncertainty is capable of giving a use-

ful measure of homogeneity, still it is extremely
difficult to classify small blocks in an image. If

the window is to small, then it probably does

not contain sufficient information to characterise

the region, thus increasing the probability of

misclassification (Ojala et al., 2000). In order to

obtain an accurate delineation of texture regions,

we reduce the number of potential classes. When

the subdivision is due to a boundary and the win-
dow size is smaller than a fixed threshold, the clas-

sification is made by considering only the texture

classes of current and neighbour regions. That

is, we assume that there are not new regions smal-

ler than the fixed threshold, thus the segmentation

can be stopped and the subdivision can only

be used to delineate the existing coarse regions.

The threshold size determines the minimum data
necessary to obtain a good classification and it

is strongly dependent on the number of texture

categories. As more classes are included, the

probability of misclassification of small data in-

creases. Thus, the threshold should be increased

such that, the classification of regions is made by

including enough information. The threshold

should be set to the minimum window size for
which the classification obtains reliable results.

This value is an input parameter of the classifica-

tion application.
6. Experimental results and examples

6.1. Experimental data

In order to assess the discrimination capabili-

ties, we have performed two experimental tests

based on the data presented in (Valkealahti and

Oja, 1998; Ojala et al., 1996, 2001; Ohanian and

Dubes, 1992). The first test (Valkealahti and Oja,

1998; Ojala et al., 2001) defines 32 texture catego-

ries from selected images of the Brodatz collection.
The second test (Ojala et al., 1996; Ohanian and

Dubes, 1992) defines 16 texture categories from

four types of images.



Table 1

Average classification accuracies (%) over 10 experiments for 32

texture categories

Texture Accuracy

bark 100.00

beachsand 85.00

beans 100.00

burlap 100.00

d10 61.56

d11 95.63

d4 96.25

d5 96.88

d51 100.00

d52 100.00

d6 100.00

d95 100.00

fieldstone 76.25

grass 99.06

ice 63.13

image09 100.00

image15 96.56

image17 92.50

image19 100.00

paper 99.38

peb54 97.81

pigskin 92.50

pressdcl 100.00

raffia 100.00

raffia2 100.00

reptile 100.00

ricepaper 100.00

seafan 93.13

straw2 100.00

tree 92.19

water 100.00

woodgrain 100.00
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For the 32-category problem, texture samples

are obtained from a 256 · 256 image with 256 grey

levels. Each image is subdivided into 16 blocks of

64 · 64 pixels and each block is transformed into

three new blocks by 90� rotation, scale from the
45 · 45 pixels in the middle and by combining

rotation and scaling. This produces 2048 blocks.

Half of the data is selected by randomly choosing

8 blocks and the corresponding transformed

blocks. This data is used to define class histograms

and the remaining blocks to evaluate the classifica-

tion process.

The 16-category problem uses four types of
images containing four distinct textures. Two

types of textures are generated from fractal and

Gaussian Markov random field models. The

other two types were obtained from leather and

painted surfaces. Images are divided into 256

non-overlapping regions of 32 · 32 pixels. Only

200 regions of each image are selected to obtain

3200 samples. Performance is measured by con-
sidering the leave-one-out error. Thus, 3184

samples are used for training and 16 to assess the

discrimination.

6.2. Computation of features

In contrast to (Valkealahti and Oja, 1998)

where feature histograms are computed for each
texture block separately by considering a 4 · 4

neighbourhood, we obtain histograms for each

texture category by considering only a 2 · 2 neigh-

bourhood. Thus, the 32 training blocks of each

class are used to compute 4 · 4 conditional histo-

grams. The first collection of four represents the

class without any geometric transformation; the

second collection is used for the scale, and the last
two for rotation and combination of scale and

rotation. To obtain binary features, we use three

fixed thresholds with values of 128, 64 and 32.

Thus, each class is represented by 4 · 4 · 3 histo-

grams.

6.3. Classification results

Table 1 shows the average classification results

obtained for 10 random selected test sets for the

first test. The table shows the average for each class.
In general, the classification performance is very

good with exception of the classes: beachsand,
D10, ice and fieldstone. A detailed observation of

the results showed that most misclassifications for

these classes are for blocks obtained by the scale

transformation. Fig. 1 shows six examples of these

misclassifications. Fig. 1(a) shows a block of beach-

sand that was misclassified as the class grass. The

second texture in Fig. 1(a) shows an example of this

class. Fig. 1(b)–(f) shows other misclassifications
obtained for the scaling classes. The remarkable

similarity between the textures in Fig. 1 can explain

the misclassifications. Additionally, since scaling is

obtained from digital images, there is some lost in

resolution and as consequence aliasing produces



Fig. 1. Examples of misclassification. (a) Beachsand and grass, (b) ice and fieldstone, (c) D10 and tree, (d) fieldstone and peb54,

(e) peb54 and fieldstone and (f) pigskin and beachsand.
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new blocks with very similar values for neighbour-
ing pixels. Thus, spatial information obtained by

considering neighbouring pixels is not so good as

the original blocks.

Table 2 shows the global performance of the

classification. The table includes the results pre-

sented in (Valkealahti and Oja, 1998; Ojala et al.,

2001) for signed differences (Valkealahti and Oja,

1998), co-occurrences (Haralick et al., 1973b),
absolute differences (Ojala and Pietikäinen,

1996), Gaussian random field model (Van Gool

et al., 1985), reduced histograms (Ojala et al.,

2001) and channel histograms (Unser, 1986b). In

general, the accuracy of the proposed features

compares to the most successful techniques. How-

ever, it is important to notice that quantisation

and signed grey level distributions required 16th
and 9th order probabilities. We have used second

order joint probabilities in a 2 · 2 neighbourhood.

This makes the complexity adequate for applica-

tions requiring online training.

Table 3 shows the result for the second test.

The table includes the results presented in (Ojala

et al., 1996; Ohanian and Dubes, 1992) for local
binary patterns (Wang and He, 1990), co-occur-
rences (Haralick et al., 1973b), grey level differ-

ences (Unser, 1986a) and classification based on

a combination of three different texture features

(Ohanian and Dubes, 1992). For the leave-one-

out classification, the classification accuracy for

conditional histograms was of 100%. In order to

highlight the advantage of conditional histograms,

we perform the same test by reducing the training
data. In our results good performance can be

maintained with only 10% to 5% of the data.

Table 4 shows the classification results for only

20 training samples and windows of 32 · 32 and

16 · 16. For the 32 · 32 case this represents the

10% of training data. When the window is reduced

to 16 · 16 only 2.5% of the original data is used.

Classification performance is maintained with less
training data because, as explained in Section 4,

histograms are computed by using data incremen-

tally. Thus, when we reduce training data, we are

not reducing the number of features, but the accu-

racy of the features. But since histograms are just

one dimensional, then they can be populated with

few data.



Table 2

Global performance for 16 texture categories

Average classification

Signed differences (LPB)

Second order 93.3

Fourth order 95.7

Eighth order 96.8

Co-occurrence matrices

Third order 90.8

Fifth order 93.8

Ninth order 94.4

Absolute differences

Second order 85.3

Fourth order 92.1

Eighth order 93.2

MRF

Seventh order 71.3

Combined features 90.0

Reduced histograms

TSOM, cosine transform 93.9

VQ, cosine transform 93.4

TSOM, grey levels 92.8

Channel histograms

Multi-dimensional 90.4

One-dimensional 78.2

Conditional histograms

Second order 94.91

Table 3

Global performance for 16 texture categories

Local binary patterns

LBP 81.40

LPB and contrast 87.62

LBP and covariance 185.03

Co-occurrence features

4 Features 188.25

9 Features 90.69

Grey level difference

DIFFX and DIFFY 96.56

Combined features MRF, Gabor, Fractal

4 Features 191.07

9 Features 195.41

Conditional histogram

32 · 32 (199 samples per class) 100.00

32 · 32 (20 samples per class) 1100.00

16 · 16 (20 samples per class) 195.69

Table 4

Average classification accuracy (%) for 16 texture categories

Texture 32 · 32 16 · 16

Fractal1 100.00 100.00

Fractal2 100.00 81.11

Fractal3 100.00 100.00

Fractal4 100.00 100.00

mrf1 100.00 100.00

mrf2 100.00 92.78

mrf3 100.00 100.00

mrf4 100.00 94.44

Leather1 100.00 100.00

Leather2 100.00 100.00

Leather3 100.00 100.00

Leather4 100.00 84.44

paint1 100.00 100.00

paint2 100.00 100.00

paint3 100.00 78.33

paint4 100.00 100.00

Results obtained by considering 20 training samples per class.
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6.4. Segmentation

Figs. 2 and 3 show selected examples of the seg-

mentation application for grey level and colour

images. In these examples, training data was ob-

tained by considering two windows of 32 · 32 for

each class. For each example, we show the segmen-

tation regions, the borders between classes and the
uncertainty in the classification. Uncertainty is

shown as a colour image whose change in bright-

ness represents the confidence of the classification

of each pixel. Brighter colours represent a high

degree of confidence, whilst darker colours show

areas whose classification is more uncertain. We

can see that in general large areas of uniform tex-

ture are classified in regions of large size with low
uncertainty, whilst high detailed areas are divided

into small regions with high uncertainty.

The examples show that texture features can be

used in applications to obtain well-delineated bor-

ders. Notice that as boundaries are refined, regions

reduce the confidence in the classification. Figs.

2(a) and 3(a) show two examples of segmentation

for synthetic images composed of grey level and
colour textures, respectively. Each image has a res-

olution of 256 · 256 pixels. We can observe that

the refinement of regions provides an analysis

capable of producing accurate segmentation re-

sults. In these examples, the colour information



Fig. 2. Examples of texture images. (a) Synthetic image

composed of five grey level textures, (b) image containing grey

level natural textures, (c) infrared band of a satellite image and

(d) intensity image.

Fig. 3. Examples of colour texture images. (a) Synthetic image

composed of five colour textures, (b) satellite image with three

colour bands, (c) and (d) images containing colour natural

textures.
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produces a clearer delineation of regions since

small regions are more accurately classified. The

detailed evaluation of the segmentation results

shown that 98.7% and 99.2% of pixels in the grey

level and colour images, were correctly classified.

Although the difference between the results of the

final classification is very small, we can observe a

clear distinction in the uncertainty maps. We can
observe that whilst for the colour image a high

confidence in the classification results is main-

tained for regions of reduced size, grey level infor-

mation tends to produce less contrasted and

darker regions. Thus, when regions are small, the

lack of information increases the probability of

erroneous classification for grey level textures.
However, since the increase in probability is only

significant for small regions, then the error of the

whole segmentation process is small.

The example in Fig. 2(b) contains a grey level
image with four types of regions. Two types of re-

gions have a rather regular appearance with white

and black intensities, respectively. In spite of the

lack of texture, the intensity component in the

characterisation produces a successful classifica-

tion. Fig. 2(c) corresponds to the infrared band

in a multispectral LANDSAT image. A training

set was defined by selecting two regions as repre-
sentative members of urban and agricultural land

covers. In this example, we can see that the model

of texture developed can be used to accurately
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delineate textured regions. The uncertainty map

provides useful information for classification. For

example, although the top left region was classified

as urban area, the low confidence value shows that

it probably contains a different type of land cover.
In the same manner, small black regions in the red

areas indicate possible fields inside an urban area.

The results in Fig. 2(d) show an accurate segmen-

tation capable of discriminating between regions

of constant intensity and regions with textured

patterns.

Fig. 3(b) shows a similar example to Fig. 2(d).

In this case, the uncertainty is reduced due to col-
our data. We can observe an accurate segmenta-

tion even for small regions. Fig. 3(c) and (d)

show two examples of colour texture landscapes.

In Fig. 3(d), the green tones in two texture classes

produce a considerable similarity between some re-

gions. Accordingly, the segmentation process sub-

divides several times the regions that contain green

areas. Although small green regions have a large
uncertainty with respect to larger areas, the classi-

fication results lead to accurately delineated bor-

ders. The segmentation of the image in Fig. 3(c)

has a more clear distinction of classes. Thus, larger

regions with low uncertainty are obtained. We can

notice that in regions where rock and grass merge,

the uncertainty increases and the subdivision be-

comes finer in order to identify pure classes.
7. Conclusions and further work

We have proposed a characterisation of tex-

tures based on a mixture of colour and contextual

information obtained from binary features. The

characterisation defines one-dimensional histo-
grams that represent the conditional probability

of intensity values given the joint probabilities of

pixels in image regions. Experimental results show

that a non-parametric classification based on

conditional histograms produces a compact and

powerful set of features. High classification per-

formance is obtained by considering only second

order distributions. The compactness of the repre-
sentation has three main interests. First, com-

pactness is important to make texture analysis

practical. This is particularly relevant for applica-
tions requiring on-line database construction. Sec-

ondly, it avoids sparse histograms that can reduce

the classification performance. Finally, since the

number of bins is reduced, compactness minimises

the data required during the training step. We rein-
force this last point by considering training data

incrementally.

We have included examples that show the appli-

cation of the classification to region delineation

by means of a hierarchical subdivision. Examples

show that the classification is useful to obtain

well-delineated borders. The dependence of the

representation on intensity data is suitable to clas-
sify regions of small sizes. Our current work is con-

sidering the potential implications of incremental

training. We think that distributions can be used

to determine when training can be stopped and

to detect when training data agree with a single

distribution. If data do not agree with a single

distribution, then several classes should be used

to represent a texture. Additionally, we consider
extending the approach to applications on non-

supervised segmentation. There are recent studies

where efficient unsupervised segmentation is per-

formed using feature distributions (Ojala et al.,

2000).
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