
ar
X

iv
:c

s/
05

07
02

3v
1

 [
cs

.A
I]

 8
 J

ul
 2

00
5

Two-Dimensional Cellular Automata and the

Analysis of Correlated Time Series

Lúıs O. Rigo Jr.

Valmir C. Barbosa∗

Universidade Federal do Rio de Janeiro

Programa de Engenharia de Sistemas e Computação, COPPE

Caixa Postal 68511

21941-972 Rio de Janeiro - RJ, Brazil

Abstract

Correlated time series are time series that, by virtue of the underlying

process to which they refer, are expected to influence each other strongly.

We introduce a novel approach to handle such time series, one that models

their interaction as a two-dimensional cellular automaton and therefore

allows them to be treated as a single entity. We apply our approach to

the problems of filling gaps and predicting values in rainfall time series.

Computational results show that the new approach compares favorably

to Kalman smoothing and filtering.

Keywords: Correlated time series, Two-dimensional cellular automata.

1 Introduction

Let P be a set comprising p members, and for each i ∈ P consider the sequence
Xi = 〈x1

i , . . . , x
T
i 〉, where xt

i is a real number for 1 ≤ t ≤ T . In this paper we
consider scenarios in which the sequences X1, . . . , Xp are correlated time series,
that is, the t that provides indices into each sequence is a time parameter, and
moreover for distinct i and j the constituents of Xi cannot be assumed to be
independent of those of Xj.

Typical situations in which such a scenario arises are those in which P stands
for a set of points in geographic space (assumed flat, for simplicity) and each Xi

stands for a series of periodic measurements related to some natural process at
point i, such as rainfall, temperature, and several others. Important problems
related to the processing of such time series are the estimation of missing values
and also the prediction of values before they are measured. The former problem

∗Corresponding author (valmir@cos.ufrj.br).

1

http://arxiv.org/abs/cs/0507023v1

is normally posed on the set of full sequences, that is, after they have each
acquired T entries, even though some of these entries may in fact be tags for
missing values, henceforth called gaps. The latter problem, in turn, can be posed
for each point i at all instants t = 2, . . . , T and requires that xt

i be predicted
after only t− 1 instants have elapsed.

Despite the fact that X1, . . . , Xp are dependent on one another, the usual ap-
proach to either of the two problems mentioned above is to handle each sequence
separately via some of the several known methods of time-series completion or
prediction, as the case may be [8]. According to this approach, filling a gap in
sequence i at time t (that is, estimating the missing xt

i) results from a function
of the non-gap values in Xi. Likewise, predicting xt

i is achieved as a function
of x1

i , . . . , x
t−1
i . To the best of our knowledge, no approaches have yet been put

forward that allows for the expansion of such dependencies to reflect the under-
lying reality that the p sequences are in fact correlated time series. Clearly, an
approach resulting from such an expansion would compute the missing xt

i as a
function of the non-gap values in all of X1, . . . , Xp or yet predict the value of
xt
i as a function of the first t− 1 values in all the p sequences.
Our contribution in this paper is to introduce a new approach to the treat-

ment of correlated time series. Our approach can be used for both gap filling and
value prediction. Qualitatively, it relies on expanding the dependencies alluded
to above so that the inherent correlation between constituents of distinct time
series is taken into account. As its core premise, we postulate the existence of
functions f1, . . . , fp such that, for 1 ≤ i ≤ p and t > 1, xt

i = fi(x
t−1
1 , . . . , xt−1

p).
In essence, this is to say that we do take inter-series dependencies into account,
but do so in a sort of “memoryless” framework that lets values corresponding
to time t depend on past values only as far back as t− 1.

When the points in P are located in some two-dimensional space, as they
are in the examples mentioned above, the postulated functions f1, . . . , fp can be
regarded as the update functions of a hybrid two-dimensional cellular automa-
ton. We review these automata in Section 2, and from then on they provide the
abstraction to be used in the remainder of the paper. Given the appropriate
cellular automaton, we show in Section 3 how to use it for filling gaps in the
time series and also for predicting future values. Determining the cellular au-
tomaton, however, requires in essence that we find suitable functions f1, . . . , fp.
In Section 4, we formulate this problem as a problem of learning from examples
and show how to solve it by a genetic algorithm. We then proceed to a discus-
sion of computational results on rainfall time series in Section 5 and close in
Section 6 with concluding remarks.

2 Two-dimensional cellular automata

Cellular automata are discrete-time abstract devices [4]. They were introduced
decades ago as models of computation and are currently thought by many to
be the quintessential model for the emergence of complex behavior in several
domains, including various of the fundamental processes of nature [11]. The one-

2

dimensional variants of cellular automata have been the ones to be most widely
and deeply studied [10]. They are for this reason the best known variants, even
though the two-dimensional variant known as the Life game is highly popular
[1].

In this section we steer our review directly toward the two-dimensional case,
which is the one that, as we will see, relates closely to the time-series problems
we are considering. Normally a two-dimensional cellular automaton is defined
by placing a simple processing element (a cell) at each of the nodes of a two-
dimensional grid. In this brief review we start with a more general cell placement
and let one cell exist for each of the members of P , which is henceforth used to
denote the set of cells as well. Each cell i has a neighborhood within P , which
is a subset of P that we denote by Ni and necessarily includes i itself. We let
ni = |Ni|.

Each cell i is a simple automaton whose state at discrete time t, for t ≥ 1,
we denote by sti and let be given by one of the members of a discrete set S

(common to all cells). Starting at the initial states s11, . . . , s
p
1, the p cells evolve

synchronously in time in such a way that, for t > 1, sti is a function of every
st−1
j such that j ∈ Ni. This function is the so-called update rule for cell i; if we
denote it by gi and let Ni = {j1, . . . , jni

}, then the evolution of the cell’s state
is such that sti = gi(s

t−1
j1

, . . . , st−1
jni

).

As we look back on the time series X1, . . . , Xp introduced in Section 1, the
correspondence between Xi and the state sequence 〈s1i , . . . , s

T
i 〉 becomes clear if

only we allow each xt
i occurring in Xi to be approximately represented by the

integer giving the interval into which xt
i falls in some discretization of its range.

This given, all that the correspondence requires is that we equate each xt
i with

sti, and similarly each fi with gi, provided S is the set of integers implied by the
underlying discretization .

We then see that, in principle, two-dimensional cellular automata provide
a suitable abstraction of our new approach to handling correlated time series.
The crux of the approach, therefore, is now shifted toward finding appropriate
functions g1, . . . , gp. Each gi is a map leading from Sni to S, so the number
of different possibilities for gi is ss

ni
, where s = |S|. This quantity becomes

unthinkably large very quickly as ni is increased, so finding gi may very quickly
become an impossible task. Also, it is conceivable that representing gi once it
is determined requires as much as O(sni) space, which also grows exponentially
with ni.

One common approach to try and curb such explosive growth is to follow
Life’s update-rule style and adopt the so-called outer-totalistic update rules [7].
We say that gi is outer-totalistic if it is a function of st−1

i and of the sum of
the remaining ni − 1 states of the cells in Ni at time t− 1. What we do in this

paper is to partition Ni \ {i} into the qi ≥ 1 sets N
(1)
i , . . . , N

(qi)
i , respectively

of sizes n
(1)
i , . . . , n

(qi)
i , and then to generalize outer-totality as follows. The

update rule gi is made to depend on st−1
i and on qi sums of states at time t− 1,

each computed inside one of the sets N
(1)
i , . . . , N

(qi)
i . Once this is done, the

3

number of distinct possibilities for gi becomes sn
(1)
i

...n
(qi)

i
s1+qi

; the worst-case

space required for representing gi, likewise, becomes O(n
(1)
i . . . n

(qi)
i s1+qi).

However, it is very important to note that, once an outer-totalistic rule style
is adopted, the correspondence between the set of p time series and the syn-
chronous evolution of the two-dimensional cellular automaton on p cells has
to be reexamined carefully. The reason is that this correspondence depends
crucially on the set S that summarizes the discretization of the original real
numbers, but adding up members of S retains no meaning in the time-series
setting. We then henceforth assume that, even though S remains an invariant
set, the meaning of each of the s intervals it represents depends on which quan-
tity is being referred to. If such a quantity is one of the original time-series
elements, then the intervals’ meaning is as we have discussed. But when we
refer to a sum of states for outer-totality, then we assume that first the sum is
computed on the original real numbers and only then is discretization applied. If
the number of states to be summed up is z, then the range of such discretization
is z times that of the individual numbers.

Adopting our generalized outer-totalistic style substitutes an exponential
dependency on qi for one on ni. While we expect this to have substantial impact
on the search for gi, representing each of g1, . . . , gp may still be overly costly.
However, being as they are necessarily learned from examples, each of these
functions is in all likelihood only approximately representable, as the diversity
of examples to represent them otherwise is itself exponentially large with qi
and not very many examples are in general available. Moreover, whichever
examples we have to work with are derived from in-situ measurements, which
are themselves subject to error.

Based on these considerations, we split the determination of the update rule
gi into two phases. The first phase promotes the learning from examples of

Ni together with the value of qi and the sets N
(1)
i , . . . , N

(qi)
i . We note that the

number of possible outcomes for fixed ni amounts to what is called the (ni−1)th
Bell number [2]. We postpone discussing this phase until Section 4.

The second phase is the determination of gi itself once Ni, qi, and the sets

N
(1)
i , . . . , N

(qi)
i have been determined. This determination is dependent upon

the specific problem to be solved, as for example the problems of gap filling and
value prediction discussed in Section 1. In any event, we choose to represent gi
as a table Ti to be computed from the input corpus available for the problem
at hand. Each row in this table corresponds to a possible input to gi (but not
conversely, since many possible inputs are likely to be unrepresented in that
corpus), that is, to a sequence of 1 + qi integers. Also, the table has three
columns, denoted as follows at row r: Iri is the input itself, Or

i is an output on
that input, and Cr

i is a count related to the occurrence of the pair (Iri , O
r
i) in

the input corpus (it is meant to account for the aforementioned possibility of
data inconsistency).

In what follows, we discuss how to build and use this table in the cases
of gap filling and of value prediction. The neighborhood Ni and the partition

4

of Ni \ {i} into N
(1)
i , . . . , N

(qi)
i are assumed to be known and to remain fixed

throughout.

3 Gap filling and value prediction

3.1 Gap filling

For gap filling we assume that the sequence 〈s1i , . . . , s
T
i 〉 is known beforehand for

every i ∈ P , and also which entries are tags for gaps. These p sequences can then
be regarded as referring to actual data coming from T successive measurement
rounds performed on some underlying process at the p points.

The first step is to build the tables T1, . . . , Tp, which is achieved as follows.
For t = 2, . . . , T and i = 1, . . . , p, if sti is not a gap then we check whether the
input to cell i corresponding to time t−1 depends on none of the gaps that may
exist in st−1

1 , . . . , st−1
p . In the affirmative case, we compute the qi sums that

the partition dictates. If the resulting input is already present in Ti with sti as
output on some row r, then we simply increment Cr

i . If it is not present, then
a new row r is added to Ti with Iri given by that input, Or

i = sti, and Cr
i = 1.

Having completed all p tables, we proceed to filling gaps. We do so by
stepping t upward from 2 through T and for each value of t examining each cell
i such that sti is a gap. If the input to the cell can be obtained from st−1

1 , . . . , st−1
p

without involving any gaps, then we let r be the row of Ti for which Iri is closest,
by Hamming distance, to this input. If more than one row exists, then we pick
the row r among them for which Cr

i is greatest. Having selected the appropriate
r, we fill the gap by letting sti = Or

i . We then revise all p tables to reflect this
new value and move on to the next value of t.

Notice that some gaps may remain unfilled, including at least those for t = 1.
In Section 5 we consider a few alternatives to try and tackle this.

3.2 Value prediction

For value prediction we start with the p values s11, . . . , s
1
p that correspond to

t = 1 and build the tables T1, . . . , Tp incrementally as t is stepped upward from
2 through T . We assume that none of s11, . . . , s

1
p are gaps, even though this

cannot in general be guaranteed (cf. Section 5 for further alternatives). As in
Section 3.1, we regard these p initial values as coming from measurement data on
some underlying process. We also assume that p new values (possibly including
gaps) become available at each new value of t. Our task is to try to predict
them before they become available.

For each new value of t, first the p tables are updated in exactly the same
fashion as in Section 3.1. For this update, each of st−1

1 , . . . , st−1
p corresponds to

an actual measurement value, unless t > 2 and that value is in fact a gap, in
which case the value predicted for instant t − 1 is used instead. Then we let
i = 1, . . . , p and predict that the upcoming sti will have value O

r
i , where r is the

row of Ti selected also as in Section 3.1. Clearly, the assumed absence of gaps

5

for t = 1 ensures that a prediction can be made at all subsequent instants for
all cells.

4 Determining a cell’s neighborhood and its par-

tition

As we noted earlier, the determination of cell i’s neighborhood Ni and of the

partition {N
(1)
i , . . . , N

(qi)
i } is approached as learning from examples in a training

set. The example corpus we use as training set comprises, for each cell i, the
sequence 〈s1i , . . . , s

T
i 〉, which may contain gaps. For each i, we start with a set

Mi ⊆ P of size mi such that i ∈ Mi, and a fixed value for ni such that ni ≤ mi.
We then proceed to selecting Ni from the size-ni subsets of Mi that include
i as a member. Starting at such a superset Mi is a means of ensuring that
the eventual Ni will comply with certain requirements pertaining to the nature
of the time series at hand, as for example those related to a physical region’s
geography. We also set an upper bound on the eventual value of qi; this upper
bound is denoted by ui and is intended to set limits on the exponential behavior
that is inherent to Bell-number growth.

For fixed Ni, qi, and {N
(1)
i , . . . , N

(qi)
i }, a score related to such neighborhood

and partition can be computed from the assumed set of examples as follows.
First we build the table Ti; this is done as in Section 3.1, so examples for which
Ni contains gaps are skipped. If Ti ends up having L distinct inputs among its
rows, then the score is the number in the interval [0, 1] given by

ϕ(Ni) =
1

Z

L
∑

l=1

wlC
l
i , (1)

where Ni refers to the triple 〈Ni, qi, {N
(1)
i , . . . , N

(qi)
i }〉. In (1), Cl

i is the great-
est of the Cr

i ’s in Ti that correspond to the lth distinct input, while wl is an
application-related weight, as will be exemplified in Section 5. The Z dividing
the summation is needed to keep the score within [0, 1] and is given by the sum
of wlC

r
i for r ranging over the entire Ti and l indicating which of the L distinct

inputs row r corresponds to.
The score ϕ(Ni) grows with the internal consistency of Ni vis-à-vis the

set of examples. In other words, cell i’s neighborhood and its partition lead
to a higher score in proportion to how consistently occurrences of the same
input to i within the examples imply the same output. We may then view the
problem of determining the cell’s neighborhood and its partition as the problem
of optimizing ϕ(Ni) over all the possibilities for Ni.

Such an optimization problem is of course highly unstructured and also non-
differentiable, so in this paper our approach to solving it is to employ a genetic
algorithm that operates on individuals representing the various possibilities for
Ni and seeks the one that is fittest according to the measure of fitness given
by ϕ(Ni). We take each individual to be a sequence of mi − 1 integers, each

6

corresponding to each of the members of Mi \ {i} (the potential neighbors of
cell i, itself excluded). Of these integers, mi − ni are 0 and indicate the cells
that are not in the set Ni \ {i} according to this individual. The other ni − 1
integers come from the set {1, . . . , ui}, each indicating the partition set to which
the corresponding cell belongs; the number of distinct integers occurring amid
these ni − 1 integers is the value of qi according to this individual.

The genetic algorithm we use in our experiments of Section 5 is one of the
common variants of the generational genetic algorithm [5]. It goes through a
fixed number of generations, each comprising a fixed number of individuals, and
at the end outputs the fittest individual ever encountered. Each new generation
is obtained from the previous one by first performing an elitist step whereby
a fraction of that generation’s fittest individuals is copied directly to the new
one. Then the new generation is filled by individuals selected from the pre-
vious generation after they undergo either crossover (as a pair) or mutation
(individually).

We perform selection randomly in proportion to the individuals’ linearly
normalized fitness scores. That is, if K is the fixed size for each generation,
then the kth fittest individual, with 1 ≤ k ≤ K, is selected with probability
proportional to

Φ−

(

Φ− 1

K − 1

)

(k − 1), (2)

where Φ is a parameter indicating how likely the fittest of the K individuals is
to be selected when compared to the least fit one.

The crossover of two individuals employs a random binary mask and yields
two offspring: the first inherits the integers marked 0 on the first parent by the
mask and those marked 1 on the second parent; the second offspring inherits
the complementary integers from each parent. Obviously it is possible for an
offspring to have more than ni−1 nonzero integers, in which case it is corrected
by setting randomly chosen nonzero integers to 0. As for the mutation of an
individual, it is performed on a randomly chosen integer by mutating it into any
member of {0, . . . , ui} (i.e., the corresponding cell may be removed from cell i’s
neighborhood, if it is there to begin with, or be assigned to any of the possible
partition sets).

5 Computational experiments

The problem domain we have selected for illustrating our approach is that of
rainfall time series. The results we report in this section refer to the eastern
Atlantic basin in Brazil [3], shown in the maps of Figure 1. This region contains
551 measurement sites, of which 207 have a gap fraction of no more than 0.1.
All series refer to daily measurements on the twenty-year period of 1981–2000,
so T = 7305. All data are available as fixed-point numbers and we have chosen
S = {0, . . . , 9} in such a way that 0 corresponds to the absence of rainfall
and the remaining 9 values correspond to equally wide intervals of increasingly
large rainfall figures within the appropriate range (recall from Section 2 that

7

#

#

#
#

#

#

#

##

#

#
#

#
#
#

#

#
##

#

#
##
##

#
#

##
#

#
#
##

#
#
#

#

#

#
#

#
#

#

#

#

#

#

##

#
##

##
#

#

###

#
##

#
##

#
#

#

#

#

#

#
#

#

#

#
#
#
#

#
#
#
#
#

###
#

#

#
#

#

#

#
#

#
#

#

##

#
##

#
#

#
#

#
#

#
#
##

#
#

#

#
#
#

#
#

#

#
##

#
#

#

#
#

#

#
#

##
#

##

#
##

#

#

#

#

#
#

#
##

#

#
#

#

#
##

#
#

##
##

##

##

#
#

#
#
#
#

#

#

#

#

#

##
#
##

#
#

#
#

#
####

##
#

(a) (b)

Figure 1: Brazil’s eastern Atlantic basin. Rainfall measurement sites are shown
as filled circles: the 10 sites in part (a) constitute the set P , while the 207
sites in part (b) are those out of which neighborhoods may be determined dur-
ing the genetic algorithm. Thick lines delimit sub-basins, thin lines represent
watercourses.

this range may refer to individual rainfall figures or to combined figures for
outer-totality).

The training set we use with the genetic algorithm of Section 4 is selected
from the 207 time series by first choosing 10 of them to constitute the set
P (cf. Figure 1) and then randomly choosing 5% of the non-gap entries from
each of these 10 series and turning them into gaps. The entries replaced by
these artificially added gaps constitute the test set we use for evaluating the
performance of the overall approach. We note that, even though P contains
only 10 cells, each cell’s potential neighborhood may include, in principle, any
of the 207 cells. This is in slight disaccord with our description in preceding
sections, but we proceed in this way in order to avoid an excessively large
experiment.

Not all rainfall intervals are represented equally in the training set. In fact,
there is an almost overwhelming predominance of the low-end interval 0, which
represents the absence of rain precipitation. Such imbalance is known to be
problematic as far as the learning performed by the genetic algorithm is con-
cerned, so we use the weights appearing in (1) to compensate. Specifically, if we
recall that L is the number of distinct inputs occurring in Ti, and furthermore
that Cl

i is the greatest count occurring in Ti for the lth input, then we let wl

be obtained from the following linear normalization of those counts. Let us first
say, for simplicity’s sake, that C1

i is the least of the L counts, and so on through

8

 0.9
 0.905

 0.91

 0.915
 0.92

 0.925
 0.93

 0.935

 0.94
 0.945

 0.95

 0 10 20 30 40 50 60 70 80 90 100

F
itn

es
s

Generation

Figure 2: Evolution of the fitness of (1) for one of the cells in P .

CL
i being the greatest of them. Then we let

wl = W −

(

W − 1

L− 1

)

(l − 1), (3)

whereW is a parameter indicating the ratio of the largest weight to the smallest.
Clearly, weights set in this manner are such that the rarest rainfall interval
receives the largest weight (W), and so on through the most common interval
receiving weight 1.

Each of our runs of the genetic algorithm on cell i ∈ P produces 100 gen-
erations, each containing 1000 individuals. We also let Mi comprise nearest
neighbors by Euclidean distance in such a way that mi = 30. In addition, each
run uses ni = 20, ui = 15, an elite rate of 0.02, and a probability of 0.5 for
deciding between crossover and mutation. We also let Φ = 40 and W = 5 in (2)
and (3), respectively. A typical evolution of the fitness given by (1) is shown in
Figure 2.

Our results for filling or predicting the artificially inserted gaps that con-
stitute the test set are shown in Tables 1–4. Each table shows an overall hit
ratio (the fraction of gaps that are correctly filled or predicted) and also a hit
ratio for each of the possible intervals in S (the fraction of gaps within each
of the intervals that are correctly filled or predicted). These latter hit ratios
are only shown for intervals 0–4, since none of the other intervals is represented
in the test set. Tables 1 and 2 refer to gap filling, respectively by cellular au-
tomata and by Kalman smoothing [9]. Tables 3 and 4 refer to value prediction,
respectively by cellular automata and Kalman filtering [9]. Results of the two
Kalman procedures come from the code implemented in [6] with the number
of iterations parameter set to 10. Note that Kalman filtering and smoothing,
unlike our cellular automata, operate in a manner that is confined to each time

9

series individually. They also operate directly on the original fixed-point input
values; for the sake of comparing their results to those obtained by the cellular
automata, their outputs are first cast into the same intervals represented by the
set S.

As we remarked in Section 3, the two basic procedures described in that
section for gap filling and value prediction may be unsuccessful due to the fact
that cellular-automaton update rules are represented in the succinct, approxi-
mate format of the tables Ti. When this is the case, the results given in Tables 1
and 3 already reflect the following attempts at improvement. First, the 5 fittest
individuals output by the genetic algorithm are used in succession, as opposed
to using the one fittest individual only, until no gap is left unfilled or unpre-
dicted. If still not enough, then all 5 individuals are once again considered,
now with cell neighborhoods diminished by the removal of exactly one cell (the
one to have the least impact on the unweighted version of (1)). This process of
neighborhood diminishing proceeds while feasible.

In all four tables we use the recourse of highlighting strictly best figures with
a bold typeface. These refer to comparing Tables 1 and 2, and also Tables 3
and 4. Comparing all results in this manner reveals that our cellular automata
tend to perform better in overall terms than the corresponding Kalman proce-
dures. As we examine the rainfall intervals individually, the cellular automata
are seen to be still ahead, but now the Kalman procedures are best perform-
ers in several occasions as well. Notice, interestingly, that the entries in which
Kalman smoothing or filtering has a ratio superior to the corresponding cellu-
lar automaton refer invariably to intervals 0 or 1, which are by far the most
common rainfall intervals. The cellular automata, by contrast, are on occasion
successful in interval 2, too.

6 Concluding remarks

We have introduced two-dimensional cellular automata as an abstraction for
handling multiple correlated time series. The method that results from this
abstraction is based on learning succinct, approximate versions of the cellular
automata’s update rules from examples. This seems to be the first attempt
at handling correlated time series concomitantly so that problems such as gap
filling and value prediction can take into account the series’ interrelatedness.
The resulting cellular automaton, if successful, can then be regarded as an
approximate model of the physical reality underlying the observed data in the
time series.

We have provided computational results on the problems of gap filling and
value prediction in the domain of rainfall time series. These results compare
favorably to the preeminent procedures of Kalman smoothing and filtering, the
former applied on gap filling, the latter on value prediction.

10

Table 1: Results for gap filling by cellular automata.
Hit ratio per interval

Cell Overall hit ratio 0 1 2 3 4
1 0.717 0.736 0.705 0.000 0.000
2 0.748 0.688 0.805 0.000
3 0.718 0.824 0.537 0.000
4 0.721 0.840 0.531 0.167

5 0.777 0.865 0.453 0.000 0.000
6 0.725 0.803 0.600 0.167

7 0.750 0.870 0.246 0.000
8 0.729 0.822 0.570 0.182

9 0.691 0.792 0.536 0.000 0.000 0.000
10 0.623 0.682 0.523 0.000

Table 2: Results for gap filling by Kalman smoothing.
Hit ratio per interval

Cell Overall hit ratio 0 1 2 3 4
1 0.344 0.000 1.000 0.000 0.000
2 0.397 0.917 0.005 0.000
3 0.485 0.550 0.374 0.000
4 0.633 1.000 0.000 0.000
5 0.216 0.015 1.000 0.000 0.000
6 0.654 1.000 0.000 0.000
7 0.191 0.016 1.000 0.000
8 0.658 0.972 0.000 0.000
9 0.654 1.000 0.000 0.000 0.000 0.000
10 0.477 0.415 0.633 0.000

11

Table 3: Results for value prediction by cellular automata.
Hit ratio per interval

Cell Overall hit ratio 0 1 2 3 4
1 0.708 0.729 0.685 0.250 0.000
2 0.723 0.643 0.795 0.000
3 0.699 0.782 0.553 0.250

4 0.712 0.797 0.594 0.000
5 0.768 0.844 0.488 0.000 0.000
6 0.720 0.815 0.567 0.000
7 0.732 0.844 0.261 0.000
8 0.723 0.814 0.570 0.182

9 0.711 0.802 0.571 0.125 0.000 0.000
10 0.617 0.708 0.450 0.000

Table 4: Results for value prediction by Kalman filtering.
Hit ratio per interval

Cell Overall hit ratio 0 1 2 3 4
1 0.507 0.484 0.562 0.250 0.000
2 0.430 1.000 0.000 0.000
3 0.337 0.000 1.000 0.000
4 0.633 1.000 0.000 0.000
5 0.223 0.030 0.977 0.000 0.000
6 0.497 0.475 0.567 0.000
7 0.446 0.533 0.072 0.000
8 0.677 1.000 0.000 0.000
9 0.654 1.000 0.000 0.000 0.000 0.000
10 0.674 1.000 0.000 0.000

12

Acknowledgments

The authors acknowledge partial support from CNPq, CAPES, and a FAPERJ
BBP grant.

References

[1] E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for Your

Mathematical Plays, volume 2. Academic Press, London, UK, 1982.

[2] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics.
Addison-Wesley, Boston, MA, second edition, 1994.

[3] HidroWeb: Hydrological Information System. http://hidroweb.ana.gov.br.
In Portuguese.

[4] A. Ilachinski. Cellular Automata. World Scientific, Singapore, 2001.

[5] M. Mitchell. An Introduction to Genetic Algorithms. The MIT Press,
Cambridge, MA, 1996.

[6] K. Murphy. Kalman filter toolbox for Matlab. http://www.cs.ubc.ca/

˜murphyk/Software/Kalman/kalman.html.

[7] N. H. Packard and S. Wolfram. Two-dimensional cellular automata. Jour-
nal of Statistical Physics, 38:901–946, 1985.

[8] A. S. Weigend and N. A. Gershenfeld, editors. Time Series Prediction.
Perseus Books, Reading, MA, 1994.

[9] G. Welch and G. Bishop. The Kalman filter. http://www.cs.unc.edu/

˜welch/kalman.

[10] S. Wolfram. Cellular Automata and Complexity. Addison-Wesley, Reading,
MA, 1994.

[11] S. Wolfram. A New Kind of Science. Wolfram Media, Champaign, IL,
2002.

13

	Introduction
	Two-dimensional cellular automata
	Gap filling and value prediction
	Gap filling
	Value prediction

	Determining a cell's neighborhood and its partition
	Computational experiments
	Concluding remarks

