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ABSTRACT 

The iterative closest point (ICP) algorithm is an efficient algorithm for robust rigid registration of 3D 

data. Results provided by the algorithm are highly dependent upon the step of finding corresponding 

pairs between the two sets of 3D data before registration. In this paper, a look up matrix is introduced 

in the point matching step to enhance the overall ICP performance. Convergence properties and 

robustness are evaluated in the presence of Gaussian and impulsive noise, and under different data 

set sizes. The new algorithm has been evaluated on 3D medical data. It has been applied successfully 

to register closed surfaces acquired using different medical imaging modalities. 

Keywords: surface registration, ICP algorithm, point matching, medical data. 
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1. INTRODUCTION 

The registration of 3D data sets is an important task in both Computer Vision and 

Photogrammetry, especially for satellite and air photography, or in the medical field. A detailed 

overview of image registration techniques can be found in (Zitová and Flusser, 2003). Medical 

diagnosis can be assisted using monomodal or multimodal image registration. In monomodal 

registration, data are obtained from a single imaging technique. The main interest of this mode is to 

highlight differences between the data registered: evolution or remission of a disease, impact of a 

treatment on a patient over a period of time, comparison of medical and reference data (atlas), etc. 

On the other hand, multimodal registration merges complementary information obtained from at least 

two imaging modalities of the same patient (Elsen et al., 1993). For example, (Kagadis et al., 2002) 

present a comparative study of surface registration of SPECT (Single Photon Emission Computed 

Tomography) images, which provide information about the functional activities of an organ, and CT 

(Computed Tomography) images, which offer organ anatomy description. In radiology, medical 

image registration is a visualisation tool which significantly facilitates the early detection of tumours 

and other diseases, and helps to improve the diagnosis accuracy (Kneuaorek et al., 2000).  

Registration is also used in functional analysis and surgical planning. It is employed in surgery to 

carry out a precise planning in order to prepare/or and simulate complex surgical procedures 

(Sylvain, 2000; Ourselin, 2002). Another application of registration in the medical field consists in 

reconstructing 3D models (Kneuaorek et al., 2000; Matabosch et al., 2005). It facilitates the 

acquisition of several views of the body to be digitized, and can also assist the use of atlas or normal 

or pathological data bases (Cuadra et al., 2004).  

Different methods proposed for medical image registration have been discussed in (Maintz and 

Viergever, 1998; Wan and Li, 2003), with some targeting medical surface registration, such as in 

(Audette et al., 2000). Rigid surface registration is used for the determination of correspondence 
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functions between different sets of structured 3D data points representing the same surface. It gives 

the estimation of motion parameters that bring the two surfaces into alignment.  

The iterative closest point (ICP) algorithm, originally proposed by (Besl and McKay, 1992), is one 

of the most popular methods used for estimating the rigid transformation of roughly aligned 3D data 

sets. It is widely used for the rigid registration of surfaces (Akca, 2004; Liu, 2004) when: 

1. dense data is assumed, 

2. a good initial estimate is available, 

3. selected scene points from the scene surface have correspondences in the reference surface. 

The most important step of the ICP algorithm consists in choosing corresponding (closest) points 

within the two 3D data sets. Since the accuracy of the search for correspondence points affects the 

estimation of the transformation parameters for registration, the output of this step has a major 

impact over the following stages, and influences the overall performance of the algorithm. This step 

depends upon both the selection of the points of the two surfaces, and the method used for finding 

the correspondence of the selected points. The Original ICP algorithm (Besl and McKay, 1992), 

denoted OICP in this paper, searches for the closest point in the reference surface for each point in 

the scene surface without any restrictions. 

Widespread interest in 3D surface registration using the OICP algorithm has motivated the 

scientific community to propose new techniques for enhancing the different steps of the original 

algorithm. Many variants have been developed to speed up the convergence and/or improve the 

performance of the different phases of the algorithm. A good review of these variants can be found in  

(Rusinkiewicz and Levoy, 2001). There has been significant interest regarding the selection of points 

used for the estimation of transformation parameters. In (Chetverikov et al., 2002), the Trimmed ICP 

improves both the rapidity and the accuracy of the transformation parameter estimation by selecting 

only a predefined number of estimated matched pairs for the calculation of the ‗optimal motion‘. 

Additional features, such as curvature and moment invariants, can also be used to improve the 
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correspondence search (Sharp et al., 2002; Bendels et al., 2004). However, in this paper, no 

additional information is assumed to be available for the correspondence search. The Picky ICP 

(Zinsser et al., 2003) rejects all points previously estimated to correspond to one reference point, 

except the one with the smallest distance. This approach reduces convergence problems that may 

arise using the original ICP algorithm, when a common reference point is assigned to multiple points 

in the scene surface. However, this affects the performance of the algorithm negatively in noisy 

situations, since many points are discarded in the estimation step. 

Following (Rusinkiewicz and Levoy, 2001), different ICP variants can be classified according to 

six different criteria:  

1) Selecting subsets from the given 3D data sets. 

2) Finding correspondence points. 

3) Weighting the estimated correspondence pairs. 

4) Rejecting false matches. 

5) Assigning an error metric. 

6) Minimizing the error metric. 

This paper focuses on the second part: the search for pair correspondences from the two 3D 

surface data sets. The aim is to enhance the performance of the correspondence search step of the 

OICP algorithm. In order to have a fair comparison, the OICP, PICP and CICP algorithms presented 

here differ only by this second correspondence search step. Here, we call PICP algorithm the OICP 

algorithm used with the Picky ICP method for finding correspondence points. The use of a new 

comprehensive look up matrix is investigated and evaluated. The proposed CICP (C for 

comprehensive) algorithm ensures unique matches of correspondence pairs.  

The paper is organized as follows. First, the original OICP and PICP algorithms are summarized. 

The new CICP algorithm is then described and details of the performance analyses are given. In the 

following section, the performance improvement of the CICP algorithm is evaluated using medical 
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data. The new version of the algorithm is then used to register medical data from two different 

medical imaging modalities. Finally some concluding remarks are given. 

2. OVERVIEW OF THE ICP ALGORITHM 

2.1. OICP overview 

Let us assume that the given two surfaces to be registered can be described as point sets; the 

scene data points, P, with Np points, {pi,  i=1, …, Np}, and the reference data points, M, with Nm 

points, {mj,  j=1, …, Nm}. Depending upon the sampling of the surfaces, Np is not necessarily equal 

to Nm. Furthermore, the point pi of the scene surface does not necessarily represent an exact 3D 

correspondence to the point mi of the reference surface. However, the search space is determined by 

the size of the scene data set; i.e., Np. The OICP algorithm can be summarized as follows: 

A. Initialization: 

1) Let the initial scene surface P0, be equal to P. 

2) Define the maximum number of iterations kmax. 

3) Initialize the translation vector and the rotation matrix as follows:  
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with the initial coefficient of the translation vector and rotation matrix set as follows:  tu = 0,  ru,v = 0 

if u ≠ v, and ru,u = 1, u =1,2,3, v=1,2,3. This corresponds to zero translation and no rotation. 

B. Iterations: 

1) For each point pi ( i=1, .... , Np) of the scene P, compute the closest point mjM from the model 

using the Euclidian distance. Let im̂  be the point on M corresponding to the minimum distance 

to pi. 
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2) Using the selected correspondence pairs, compute the transformation, rotation (R) and 

translation (T), that minimizes the mean square error (MSE) of the estimated correspondence 

pairs: 

 MSE = 




pN

i

ii

p

T)R(ˆ
N

1

2
pm

1
. (2) 

Different close-form solution techniques of the original ICP algorithm can be used, i.e., 

quaternion (Horn, 1987; Mukundan, 2002) or single value decomposition (Arun et al., 1987). 

The resulting transformation from the minimization of the above equation at step k will be 

denoted Rk and Tk. This step also provides the minimum distances which correspond to the 

matched pairs. 

3) Compute P = Rk  P0 + Tk and restart a new iteration if the change in the MSE is above a 

predefined threshold , and if the maximum number of iterations kmax is not reached. If not, stop 

the iterations and exit. 

2.2. PICP specifications 

The PICP is similar to the OICP as it manipulates the correspondence search vectorially. A method 

of rejecting duplicate points is added to the first step of the OICP algorithm: 

1a) For each point pi ( i=1, .... , Np) of the scene P, compute the closest point mjM from the 

model using the Euclidian distance. Let im̂  be the point on M corresponding to the minimum 

distance to pi, 

1b) Among the resulting corresponding pairs, if more than one scene point pi is assigned to the 

same model point mj, then select pi that corresponds to the minimum distance. 

3. THE PROPOSED CICP ALGORITHM 

In previous variants of the OICP algorithm, the search procedures for corresponding pairs of points 

are based on a line-by-line (vector) search within a P-M distance matrix described in Table 1, where 
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di,j is the distance between pi and mj. Duplicate matches may hence occur, since multiple mj 

(columns) can be assigned to different pi (lines). The PICP variant ensures unique matches by 

rejecting all duplicate pairs, except the one with the smallest distance. This can be described as a 

line-by-line followed by a column-by-column search within the P-M distance matrix. Unfortunately, 

this may lead to the exclusion of good markers from the estimation procedure. To overcome this 

drawback, a more comprehensive search is needed.  

A novel effective evaluation metric is introduced for correspondence search, called comprehensive 

lookup matrix measure. This measure ensures that every selected point on the scene surface has a 

unique match in the reference surface. 

Table 1: The P-M distance matrix in which the Euclidian distance (di,j) between each scene point ( pi) and every 

model point (mj) is calculated. 

 m1 m2 … mNm 

p1 d1,1 d1,2  d1,Nm 

p2 d2,1 d2,2  d2,Nm 

:     

pNp dNp,1 dNp,2  dNp,Nm 

 

The CICP is different in that it sorts the di,j distances in ascending order within the entire P-M 

distance matrix. Moreover, the point mj is not considered to be a correspondence to pi if either mj or 

pi has been previously assigned a correspondence. This ensures that each point in the scene surface 

will have a different association in the reference surface. 

The CICP is the only ICP algorithm that makes use of all scene points in the search procedure to find 

the best and unique correspondence pairs. In other words, the P-M distance matrix is introduced to 

comply with the fact that a rotation is a bijective (one to one) function. Previous ICP 

implementations are based on vector not matrix analysis of the assignment problems. In this case, 

some elements in M may be mapped by more than one element in P, yielding surjection 

correspondences and incorrect estimations of rotation parameters. When the number of points in the 

two sets to be registered is not the same, the CICP algorithm considers the one with a smaller number 
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of points as a scene data set to ensure bijectivity of the resulting correspondence pairs. To reduce the 

computation time introduced by the matrix search procedure, matrix to vector conversion or fast 

assignment algorithms are used. The CICP algorithm replaces step 1 of the OICP algorithm by:  

1) For each point piP, (i=1, ..., Np), the algorithm computes the Euclidian distance di,j to each 

point mjM, (j=1, ..., Nm). Then, for Np times, the algorithm: 

a. looks for the location (i,j) that corresponds to the minimum distance di,j in the current look 

up matrix, 

b. assigns pi to mj as a correspondence pair, 

c. removes this correspondence pair from future consideration by eliminating the i
th

 row and 

j
th

 column. 

Instead of leaving the decision of rejecting worse pairs till the end of each iteration as in (Zinsser et 

al., 2003), the CICP algorithm makes such a decision at the end of every selection of correspondence 

pairs. In addition to improving the rotation parameters estimation, such an approach improves the 

accuracy and the convergence of the ICP algorithms, as shown in the following sections. 

4. ESTIMATION OF TRANSFORMATION PARAMETERS USING QUATERNION 

For comparison reasons, the method presented in the OICP algorithm (Besl and McKay, 1992) 

for the estimation of the transformation parameters is used for the other two candidates. Following 

this method, rotation is expressed by a unit quaternion, t

3210
]qqq[qRq 


, and translation is 

expressed by a vector t

654
]qq[qTq 


. A rigid transformation can then be constructed by the two 

vectors: t
T]qRq[q


 which is no longer a quaternion but a vector in 7

 . 

Assuming that 
k

M̂  is the rearranged reference data set obtained from the closest point research step: 

- both Pk and 
k

M̂ data sets have the same number of points (Np), 
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- point correspondences are known, which means that for each iteration i, the point pi 

corresponds to point 
i

m̂ of the iteration k. 

The anti-symmetric matrix is then formulated using the cross covariance matrix )( k
 of the Pk and 

k
M̂ : 

 
tkkk )()()(
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Pk and the corresponding reference data set 
k

M̂ . 

The elements of the anti-symmetric matrix are then used to construct the following matrix: 
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where t
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]AAA[ , Auv is the u

th
, v

th
 element of matrix A, and 

3
I is a 33   identity matrix. 

The optimal rotation is hence determined by calculating the eigenvector  
t

3210k
q q qqqTr   that 

corresponds to the maximum eigenvalue of the matrix
k

Q . The rotation matrix can then be 

formulated as follows: 
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Finally, the optimal translation vector is calculated based on the obtained optimal rotation: 

 
pkm̂k

)Tr(qTrqTt  . (6) 

5. PERFORMANCE ANALYSIS 

In this paper, the new CICP algorithm will be compared to the OICP and PICP. The PICP 

algorithm has been chosen as a benchmark since it is the only algorithm that addresses point to point 
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assignment (bijectivity) by discarding duplicate matching points. The robustness of the CICP 

algorithm will be studied under the presence of noise, with both synthetic and real medical data.  

5.1. Noise generation 

Real data are usually corrupted by noise caused by a wide range of sources, e.g. detector variations, 

environmental variations, transmission or quantization errors, etc. Here, the performance of the 

selected ICP algorithms is investigated under the effect of Gaussian and impulsive noise. In order to 

test the performance of the different algorithms in terms of estimating transformation parameters 

for the registration of surfaces affected by noise, noise is added to the scene data and then a known 

transformation (to be recovered) is applied. 

5.1.1. Gaussian noise 

Gaussian noise is added to the original data by the following method: 

1) Transform all points of the data set from Cartesian to spherical coordinates (notations are shown 

on Figure 1): 

 pi(x, y, z)  ρi (θ, φ)   i= {1, …, Np}. (7) 
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Figure 1: Cartesian to spherical coordinates transformation of star-like shape closed surfaces.  
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The transformation can be carried out without over determination for star-like shape closed 

surfaces where every radius launched from the origin crosses the surface in only one point. This 

is the case for medical closed surfaces used here for validation, as indicated on Figure 1. 

2) Add noise to each resulting ρi  i= {1, …, Np} : 

 ρi = ρi + | ρi - μρ | 
 20

10
/dB_SNR  rand(.) (8) 

where ,ρ
N

1
μ

pN

i

i

p

ρ   rand(.) is a random Gaussian number generator with mean zero and 

variance one, and SNR_dB is the required signal to noise ratio in dB. 

3) Transform points back to Cartesian coordinates. 

5.1.2. Impulsive noise 

Impulsive noise is commonly referred to as outliers. In this case, a set of h% of the data points is 

assumed to be corrupted by impulsive noise. To generate outliers, replace step 2 of Gaussian noise 

generation by: 

2a) Randomly selecting h% of the total data points. 

2b) Modifying each selected point: ρj  j= {1,..., Np   h /100} 

 ρj = ρj   (1+  ) (9) 

where  represents the distribution of the outliers relative to the points of the original data set. 

5.2. Performance parameters 

To compare the performance characteristics of the CICP algorithm to OICP and PICP algorithms, 

three parameters are taken into consideration: the mean square error (MSE) between the registered 

data sets, the percentage of correct matches and the influence of differently sampled meshes. 

5.2.1. Mean square error 

The convergence property of the algorithm can be estimated by computing the mean square error 

(MSE) between the reference and the registered data sets, at each iteration of the algorithm. Since the 
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orientation is usually not known for both registered surfaces, the MSE can be computed by moving 

from Cartesian to spherical coordinates. When elements of the resulting 2D mesh have no data 

because of the resampling introduced by the Cartesian to spherical coordinates conversion, surface 

completion methods are applied to estimate the missing data (for example the method previously 

proposed by (Almhdie et al., 2004)). 

In this paper, the MSE is considered as an error metric. It is computed as the mean square difference 

between the corresponding elements of the resulting 2D regular meshes obtained after conversion to 

spherical coordinates of the two reference and scene closed surfaces. This choice is imposed by the 

medical application that usually tends to minimize the distance between the two registered surfaces. 

Whereas the CICP calculates global MSEs, i.e, mean square error between the two surface data sets, 

the OICP and PICP calculate local MSEs, i.e., mean square error between estimated corresponding 

points. Therefore, making comparisons based on local MSE (Zinsser et al., 2003) is not valid since 

not all the points are always taken into consideration. 

5.2.2. Percentage of correct matches 

Correct matches analysis can be carried out only when the exact orientation of the two data sets to be 

registered is known, e.g. for validation purposes using simulated or known data. Under such a 

hypothesis, the percentage of correct associations of corresponding points from the scene and 

reference surfaces is counted at each step of the algorithm. Since each piP is a transformed point of 

mjM, then an association is defined as ―correct‖ when j = i, that is to say mi = im̂  is assigned to pi. 

This measurement is a straightforward indicator of the performance of the correspondence pair 

search method, as it reflects the quality of the correspondence pair estimation. 

5.2.3. Influence of differently sampled meshes 

In many classical situations, the size of the measured data (scene) and the size of the model data 

(reference) are different. Situations where the scene data are composed of a subset of the reference 
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data are tested here to evaluate the influence of sampled meshes of different sizes on the performance 

of the three ICP algorithms. The performances are compared by considering the number of iterations 

needed for the three ICP algorithms to converge. 

6. CICP ALGORITHM EVALUATION 

The CICP algorithm was tested under a noise-free situation as well as with Gaussian noise (with 

SNR of 10 dB and 20 dB) and outliers (with percentage of outliers of 10%, 15% or 20 % of the data 

set) conditions. The convergence properties and the accuracy of the proposed CICP algorithm have 

been evaluated using a real medical data set, since it is hard to find standard test data in the literature 

to compare performances of methods. 

6.1. Material 

The experiment considers a set of 922 points of real data of a human left lung as a reference surface 

(Figure 2a). The set of points is obtained from medical images acquired by perfusion scintigraphy, 

and is then transferred to a console for segmentation. The scene data set is simulated by rotating 

arbitrarily the reference scene data. The rotation was limited to 30° around the three main axes since 

the ICP algorithm is designed to refine rotation estimations of roughly registered data sets (for 

example, after computing the main inertia directions of each pair of data sets). In this experiment, 

results are chosen using a rotation of 29°, 4° and +8° around the x-axis, y-axis and z-axis, 

respectively (Figure 2b). To evaluate the repeatability of the results obtained using the left lung scene 

data, thirty other randomly selected rotations were applied on the reference data; the results obtained 

were equivalent to those presented below. The three OICP, PICP and CICP algorithms were tested to 

register the reference surface (Figure 2a) with the scene surface (Figure 2b), corrupted with Gaussian 

(Figure 2c) and outlier noise (Figure 2d). In order to compare the convergence and stability of the 

algorithms, here, the MSE threshold does not stop the iterative procedure and the maximum number 

of iterations is set to 100. The number of points in the reference and scene data sets is equal. 
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(a) (b) (c) (d) 

Figure 2. Left lung data: a) Reference surface, b) Scene surface (rotation 29°, 4° and 8° around the x-axis, y-

axis and z-axis, respectively, noise free), c) Scene surface ( rotation, 10 dB Gaussian noise ), d) Scene surface 

(rotation, 5% outliers ). 

6.2. Gaussian noise influence 

The MSE between the reference and registered surfaces is measured at each iteration of the OICP, 

PICP and CICP algorithms, considering scene surface (Figure 2b) degraded with Gaussian noise 

(Figure 2c). In all the Gaussian noise tests, the MSEO value represents the mean square error between 

the reference surface and the scene surface prior to applying the known transformation that will be 

estimated using the registration procedure. It is used as a performance indicator of the comparison.  

Table 1 presents some numerical results of the performance of the three algorithms at convergence. 

The first row of the table indicates the number of iterations reached at convergence, i.e., when the 

MSE error between the two registered surfaces becomes stable. The second row presents the 

percentage of points of the scene and reference surfaces that match correctly at convergence. Finally, 

the last row gives the computation time (expressed in seconds) needed to reach convergence. 

Numerical results are provided for values of SNR set respectively to 10 and 20 dB (columns 2 and 

3), and for noise free data (column 4). For each noise situation, the values obtained with the CICP, 

PICP and OICP algorithms are provided. 

Table 1: Performance results at convergence (left lung data, Gaussian noise) 

 SNR= 10 dB SNR= 20 dB Noise free 

 CICP PICP OICP CICP PICP OICP CICP PICP OICP 

Max. # of iterations 16 32 23 15 28 22 15 26 21 

% of correct matches 90.8 84.2 85.5 99.3 99.2 99.5 100 100 100 

Computation time (s) 35.9 28.1 24.2 33.2 25 23 25.5 16.5 16.7 
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Table 1 shows that the CICP algorithm converges faster in terms of number of iterations, even 

though the search procedure is more complex for the CICP than for the OICP and PICP algorithms. 

Due to the complexity of the search procedure, the duration of one iteration is longer for the CICP 

algorithm than for the other ones. Nevertheless, the reduction in the number of iterations yields a 

global computation time of the same order for the CICP algorithm. 

6.2.1. MSE comparison 

Figure 3 shows the evolution of the mean square error computed at the end of each iteration of the 

OICP, PICP and CICP algorithms. In this figure, the horizontal lines represent the MSE values (for 

SNR of 10 dB and 20 dB and noise free situations) between the two data sets before applying the 

transformations whose parameters are estimated by the three variants of the ICP registration 

algorithm. Under a noise free situation, the CICP algorithm approaches the pre-known MSEO in a 

fewer number of iterations, compared to the OICP and PICP algorithms. Similar results are obtained 

for 10 and 20 dB amounts of Gaussian noise on the scene data. In all scenarios, although the search 

of correspondence points within the CICP is computationally expensive, it needs a much lower 

number of iterations to converge. In addition, the CICP approaches the MSEO closer than the OICP 

and PICP algorithms.  At SNR of 10 dB, we note that the CICP algorithm gives a better 

approximation to the mean square error between the two data sets before and after registration. The 

OICP and PICP algorithms, however, give lower MSE values at the end of the iterative process. This 

situation which could seem profitable at first approximation, corresponds to a particular 

configuration of the noise on the original data. 
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Figure 3. Left lung data registration, convergence comparison in the case of Gaussian noise. Solid horizontal lines 

represent MSE0 values. 

6.2.2. Correct matches evaluation 

Figure 4 shows the percentage of correct matches at each iteration of the OICP, PICP and CICP 

algorithms. It can be seen that the CICP gives the highest number of correct matches, in fewer 

iterations, compared to both OICP and PICP algorithms, for the Gaussian noise situation tests 

undertaken. As the signal to noise ratio decreases, this superiority in achieving more correct matches 

becomes even clearer. 

 

Figure 4. Left lung data registration, accuracy performance with 10 and 20 dB Gaussian noise addition. 
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6.2.3. Influence of differently sampled meshes 

To test the behavior of the algorithms when the reference and scene surfaces contain a different 

number of points, the scene data are constructed as a partial set of the reference left lung data, 

selecting randomly from 70 % to 100 % of the reference data. The scene data are assumed to have 

been degraded by a Gaussian noise of SNR of 10 dB. Figure 5 shows that the CICP always 

converges faster than the other two algorithms in terms of number of iterations. As the PICP 

algorithm uses only the correspondence search part of the Picky ICP, the results presented here do 

not reflect the performance of the complete version of the Picky ICP, which is assumed to perform 

better than the OICP algorithm. However, the partial version of the Picky ICP has been used for 

comparison since it is known as a method that addresses duplicate assignment problems. 

 

Figure 5. Left lung data. Number of iterations at convergence stage as a function of the rate of the scene data set 

number of points over the reference data set number of points (considering data corrupted with 10 dB Gaussian 

noise). 

 

6.3. Impulsive noise influence 

This section presents results for the case of scene data corrupted with impulsive noise. Table 2, 

constructed similarly to Table 1, reports the numerical results of the OICP, PICP and CICP 

algorithms when convergence is reached. 
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Table 2: Performance results at convergence (left lung data, impulsive noise). 

 Outliers= 10 % Outliers= 15 % Outliers= 20 % 

 CICP PICP OICP CICP PICP OICP CICP PICP OICP 

Max. # of iterations 17 29 22 16 30 23 17 31 21 

% of correct matches 96.5 92.6 92.8 95 89.2 89.8 91.4 84.1 85.2 

Computation time (s) 26.5 16.6 14.3 24.9 17.2 15 26.7 17.5 13.7 
 

6.3.1. MSE comparison 

Figure 6 presents the convergence property of the three algorithms in the presence of outliers. The 

CICP shows a good resilience to outliers even without adding a point rejection mechanism as 

introduced with the PICP algorithm. As with the results obtained with Gaussian noise, the CICP 

algorithm reaches convergence in fewer iterations than the other algorithms evaluated. It also 

approaches closer the pre-known MSEO. This result indicates that the error between the two 

registered surfaces at the final stage is reduced with the new CICP algorithm. 

 

Figure 6. Left lung data registration, convergence comparison in the case of impulsive noise. Solid horizontal lines 

represent the MSEO value. 

6.3.2. Correct matches evaluation 

The results presented in Figure 7 for the case of impulsive noise show the superiority of the CICP 

algorithm in finding higher correct associations of corresponding points of the scene and reference 

surfaces. One can note that the number of correct matches found with the CICP algorithm in the case 

of 15 % of outliers is greater than the number of correct matches obtained with the PICP and OICP 

algorithms in the case of only 10 % of outliers. 
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Figure 7. Left lung data registration, accuracy performance in the case of impulsive noise. 

6.3.3. Influence of different sampled meshes 

The results presented in Figure 8 are related to situations where the number of scene data points 

(corrupted by 20 % of impulsive noise) is reduced compared to the number of reference data points. 

The CICP algorithm needs fewer iterations than the other two algorithms to reach convergence. This 

is observed whatever the percentage (between 70 % and 100 %) of the number of points of the 

reference data set used to build the scene data set. In comparison with the OICP algorithm, the 

reduction factor in terms of number of iterations oscillates from 1.4 to 1.8. 

 

Figure 8. Left lung data. Number of iterations at convergence stage as a function of the rate of the scene data set 

number of points over the reference data set number of points (considering data corrupted with 20 % of 

outliers). 
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7. MULTIMODAL MEDICAL DATA REGISTRATION 

Two experiments are reported in this section. The first one considers the registration of the left lung 

surface presented previously with a reference atlas of the left lung. The second test consists in 

registering two sequences of eight surfaces of the left ventricle of the heart, acquired from two 

different medical imaging modalities. 

7.1. Left lung surface to reference atlas 

In this experiment, the scene surface corresponds to the real left lung data shown in Figure 2a. The 

reference surface is a lung atlas obtained by segmenting manually under physician supervision the 

left lung of data provided by the Visible Human Project (creation of complete, anatomically detailed, 

three-dimensional representations of a male human body from transverse CT images of one 

millimeter intervals). The atlas data set consists of 1150 points, compared to the scene left lung data 

composed of 922 points. The motion parameters that ―best‖ align the lung data set with the atlas are 

estimated using the three OICP, PICP and CICP algorithms. The corresponding registered data 

are 

displayed in Figure 9. 

For the experiment carried out, the MSE threshold  between the reference surface and the 

registered scene surface is set to a low value (10
–3

), and the maximum number of iterations (kmax) is 

not limited. This ensures that the estimation of the motion parameters is reached. The algorithm stops 

when the estimated motion parameters are constant within several iterations. With lung atlas and 

lung data, the CICP, PICP and OICP algorithms achieve convergence in 31, 135 and 84 iterations, 

respectively, and the elapsed time is 72.9, 127.2 and 93.4, respectively. In this case, even though the 

computation time per iteration is higher for the CICP algorithm, the reduction in the number of 

iterations yields a global reduced computation time compared to the OICP and PICP algorithms. 

In Figure 9, after stability of transformation parameters is reached, the CICP algorithm (Figure 

9d) gives a better registration of the two data surfaces (Figure 9a), compared to the OICP (Figure 9b) 
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and PICP (Figure 9c) algorithms. This qualitative result was confirmed by a physician, expert in the 

field of medical imaging. Further experiments will be conducted to quantify these preliminary results 

precisely. 

    

(a) (b) (c) (d) 

Figure 9. Initial views: lung atlas (reference surface, black) and lung data (scene surface, red). Registered data 

using (b) OICP, (c) PICP, (d) CICP algorithms. 

7.2. Sequences of the left ventricle of the heart 

In this experiment, data consist of two sequences of eight surfaces of the left ventricle (LV) of the 

heart reconstructed within a cardiac cycle. Examinations were carried out on the same patient using 

successively two medical imaging modalities within a short period of time, in order to assume the 

LV deformations to be reproducible and hence medical comparisons applicable. The first sequence is 

composed of eight LV surfaces obtained after automatic segmentation from nuclear medicine 

imaging (NMI), known to be a ―gold standard‖ examination for cardiac observation (Figure 10 a). 

The second LV sequence is provided by a new multidimensional ultrasound technique (US) called 

LV4D for Left Ventricle in 4 Dimensions (Bonciu et al., 2001) (Figure 10 b). The objective is to use 

the NMI examination to validate the new ultrasound method. The evolution of the NMI and US LV 

volumes as a function of time provides a global comparison of the reconstructed surfaces, as shown 

on Figure 11. Such figures have been used previously to compare globally the LV surfaces 

reconstructed using the two modalities. Experiments were carried out with data obtained on a patient 

with a pacemaker (Debrun et al., 1999) and on a mechanical phantom (Debrun et al., 2005), in order 

to ensure heart beat regularity and volume deformation reproducibility. However, the lack of 
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registration does not allow local comparisons, since the two surface absolute orientations are not 

known. 

        
1 2 3 4 5 6 7 8 

(a): Nuclear Medicine Imaging LV surfaces (reference data). 

        
1 2 3 4 5 6 7 8 

(b): Ultrasound imaging LV surfaces before registration (scene data). 

        
1 2 3 4 5 6 7 8 

(c): Ultrasound imaging LV surfaces after registration. 

Figure 10. Registration of two sequences of eight LV surfaces acquired from Nuclear Medicine and 

Ultrasound imaging. 

 

Even though the patient relative orientation varies inevitably between NMI and US examinations, 

it is reasonable to consider that it remains the same relative to an absolute reference system of 

coordinates during each examination. Thus, the transformation parameters to be estimated are 

expected to be equivalent for all registered pairs of the corresponding surfaces. Differences in 

parameter values may occur because of the noise level that alters data, usually with a significant ratio 

in medical imaging (due for example to the resolution of the imaging techniques, the quality of the 

segmentation algorithms that produce surfaces, etc.). 

Table 3 indicates the (,,) Euler angle values (columns 2 to 9), estimated using the CICP 

algorithm with the eight NMI and US LV volumes shown in Figure 10a and Figure 10b. The last two 

columns (10 and 11) give the mean and standard deviation of the eight corresponding angle 

estimations. The results obtained for each pair of surfaces are globally coherent, except for the  

Euler angle. 
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Figure 11. Global comparison of NMI and US left ventricular volumes, delineated by the closed surfaces shown in 

Figure 10 (a and b), within a cardiac cycle. 

 

 and  angles are evaluated correctly ( = 20.4,  = 3.0,  = 6.8,  = 6.3, respectively) 

since estimating the rotation angles around the X and Y axes is relatively straightforward for LV 

shapes (refer to Figure 1 for notations). On the contrary, the  angle is found with a high degree of 

incertitude ( = 2.0,  = 21.0), yielding non significant  estimations without further study. This 

result is due to the shape of the LV, usually modeled by a semi-ellipsoid or a bullet, which presents a 

rotational symmetry around the Z axis and gives undefined  angle values. Some shape 

discontinuities (observed for pathological cases such as ischemia, left ventricle shape irregularities, 

local deformations due to the right ventricle influence, overdeveloped papillary muscles, etc.) might 

be helpful in estimating the  angle. Moreover, signal-post processing can be applied on the available 

 angle values in order to refine coarse estimations. In this case, more than eight different  

estimations would certainly be a prerequisite. 

Table 3: The estimated Euler angles used as rotation parameters for the registration of left ventricular surfaces 

reconstructed using NMI and US medical imaging modalities. 

Volume # 1 2 3 4 5 6 7 8   

 20.7 17.9 21.7 16.2 21.1 25.4 17.7 22.4 20.4 3.0 

 10.2 20.2 6.9 2.0 1.1 0.9 7.0 6.5 6.8 6.3 

 -23.2 47.3 -11.5 -8.3 2.1 11.9 -2.2 0.2 2.0 21.0 
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8. CONCLUDING REMARKS 

In this work, a novel enhanced implementation of the ICP algorithm is presented. The use of the 

complete look-up distance matrix during the point association procedure guarantees that unique 

matches are obtained for all points from the scene data. The substitution of a vector by a matrix 

based search of correspondence pairs ensures correct transformation parameter estimation used for 

rigid registration, in agreement with the bijective property of the rotation. Compared to other ICP 

implementations, the proposed CICP algorithm provides: a faster convergence, in terms of number of 

iterations, a more precise estimation of pair of points correspondence, and a better resilience to 

additive Gaussian noise and outliers. Even though all experiments carried out with the CICP show 

better convergence and stability than the other OICP and PICP reference algorithms, theoretical 

demonstration still remains to be developed. In addition to minimizing the number of ICP iterations, 

the computing time expansion due to the switch from vector to matrix search is limited. 

Improvements in computation time reduction are currently being investigated using valuable 

techniques known to solve assignment problems: LMedS (Least Median of Squares) estimator 

(Masuda and Yokoya, 1994), M-estimator (Trucco et al., 1999) and Minmax estimation (Jaulin and 

Walter, 2002). The accuracy of the proposed CICP has been investigated and promising results have 

been shown for 3D real medical data registration. This step is part of a more general research work 

aimed at comparing locally and validating quantitatively surfaces of star-like shape organs, 

reconstructed from different medical imaging modalities. 
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