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Fast Linear Discriminant Analysis using

Binary Bases

Feng Tang and Hai Tao

Department of Computer Engineering
University of California
Santa Cruz, CA, USA
{tang|tao}@soe.ucsc.edu

Abstract

Linear Discriminant Analysis (LDA) is a widely used technique for pattern classi-
fication. It seeks the linear projection of the data to a low dimensional subspace
where the data features can be modelled with maximal discriminative power. The
main computation in LDA is the dot product between LDA base vector and the data
point which involves costly element-wise floating point multiplication. In this paper,
we present a fast linear discriminant analysis method called binary LDA (B-LDA),
which possesses the desirable property that the subspace projection operation can
be computed very efficiently. We investigate the LDA guided non-orthogonal binary
subspace method to find the binary LDA bases, each of which is a linear combina-
tion of a small number of Haar-like box functions. We also show that B-LDA base
vectors are nearly orthogonal to each other. As a result, in the non-orthogonal vec-
tor decomposition process, the computationally intensive pseudo-inverse projection
operator can be approximated by the direct dot product without causing significant
distance distortion. This direct dot product projection can be computed as a linear
combination of the dot products with a small number of Haar-like box functions
which can be efficiently evaluated using the integral image. The proposed approach
is applied to face recognition on ORL and FERET dataset. Experiments show that
the discriminative power of binary LDA is preserved and the projection computation
is significantly reduced.

Key words: Linear discriminant analysis, image representations, non-orthogonal
binary subspace.
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1 Introduction and background

By finding the feature space that can best discriminate an object from others,
discriminative methods have been successfully used in pattern classification
applications including face recognition [2], image retrieval [17], tracking [10].
Linear discriminant analysis (LDA) is a widely used discriminative method. It
provides a linear projection of the data into a low dimensional subspace with
the outcome of maximum between-class variance and minimum within-class
variances. LDA has been used for face recognition which is commonly called
“Fisherface” [2].

1.1 Review of linear discriminant analysis

Linear Discriminant Analysis (LDA)is a class specific discriminative subspace
representation that utilizes supervised learning to find a set of base vectors,
denoted as wi, in such a way that the ratio of the between- and within-class
scatters of the training sample set is maximized. This is equivalent to solving
the following optimization problem:

Eopt = arg max
E=[e1,e2,...,eK ]

|ETSbE|
|ETSwE| (1)

where {ei|1 ≤ i ≤ K} are the LDA subspace base vectors, K is the dimension
of the subspace. Sb and Sw are the between- and within-class scatter matrices,
with the following forms,

Sb =
c∑

i=1

Mi(µi − µ)(µi − µ)T (2)

Sw =
c∑

i=1

∑

xk∈Xi

(xk − µi)(xk − µi)
T (3)

where c is the number of classes, x ∈ RN is a data sample, Xi is the set of
samples with class label i, µi is the mean for the all the samples in class-
i, Mi is the number of samples in the class i. The optimization problem in
Eq.(1) is equivalent to the generalized eigenvalue problem: Sbx = λSwx, for
λ 6= 0. The solution can be obtained by applying an eigen-decomposition to
the matrix S−1

w Sb, if Sw is non-singular. The base vectors E sought in the above
equation correspond to the first M most “significant” eigenvectors of S−1

w Sb

that corresponds to the K largest eigenvalues {λi|1 ≤ i ≤ K}. These base
vectors are orthogonal to each other. There are at most c − 1 eigenvectors
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corresponding to nonzero eigenvalues, since the rank of Sb is bounded by
c − 1. Therefore, the reduced dimension by LDA is at most c − 1. A stable
way to compute the eigen-decomposition is to apply SVD on the scattered
matrix. In the case when the number of training samples is smaller than the
dimensionality of the samples, the scatter matrices will be degenerated and
will lead to the so called “small sample size” (SSS) problem. The SSS problem
can be solved by incorporating a PCA step into the LDA framework [2]. PCA
is used as a preprocessing step for dimensionality reduction so as to discard the
null space of the within class scatter matrix of the training data set. Then LDA
is performed in the lower dimensional PCA subspace [2]. Many methods [6, 9,
11, 7, 3, 23] have been proposed to solve this problem. In this paper, we focus
on reducing the computational cost of LDA and assume the SSS problem is
well solved by applying PCA on the data. The subspace spanned by the base
vectors E is called LDA subspace. For a given test sample x, we can obtain
its representation in LDA subspace by a simple linear projection ETx.

The main computation in LDA is the dot product of a data vector with all the
LDA base vectors which involves element-by-element floating point multipli-
cations. This can be computationally expensive especially when the original
data is of high dimension or when there are many LDA base vectors.

1.2 Haar-like features and non-orthogonal binary subspace

Fig. 1. Three typical one- and two-box functions. (a) and (b) are one-box functions
and (c) is a symmetric two-box function.

In recent years, Haar-like box functions became a popular choice as image
features due to the efficiency [21, 22]. Examples of such box functions are
shown in Fig. 1. Formally, the binary function is defined as : f(u, v) ∈ {0, 1},
1 ≤ u ≤ w, 1 ≤ v ≤ h, w and h are the dimension of the binary function. The
single Haar-like box function is defined as:

f(u, v) =





1 u0 ≤ u ≤ u0 + w′ − 1,

v0 ≤ v ≤ v0 + h′ − 1

0 otherwise

(4)

where w′, h′ are the size of the white box in Fig. 1, u0, v0 are the left up
corner of the white box. For some symmetric objects like human faces, we can
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similarly define the vertically symmetric two-box binary function as:

f(u, v) =





1 u0 ≤ u ≤ u0 + w′ − 1,

v0 ≤ v ≤ v0 + h′ − 1

1 w − u0 − w′ + 1 ≤ u ≤ w − u0,

h− v0 − h′ + 1 ≤ v ≤ h− v0

0 otherwise

(5)

For an image of w×h pixels, there are h(h+1)w(w+1)/4 one-box base vectors
and h(h+1)w(w− 1)/16 symmetric two-box base vectors, we will denote this
binary box dictionary as D.The main advantage of using these base functions
is that the inner product of a data vector with each of them can be performed
by several integer additions, instead of N floating point multiplications, where
N is the dimension of the base vectors. This is achieved by computing the
integral image fint(i, j) of the original image f(i, j), which is defined as

fint(i, j) =
i∑

m=1

j∑

n=1

f(m,n) (6)

The dot product of the image with a one-box base function is the summation
of a rectangular area of the image, which can be computed efficiently as

bottom∑
i=top

right∑
j=left

f(i, j) = fint(bottom, right)− fint(bottom, left− 1)−

fint(top− 1, right) + fint(top− 1, left− 1)

(7)

where f(·, ·) is the image function, fint(·, ·) is the integral image of f . top,
bottom, left, right are the coordinates that define the rectangular area. This
technique has been used in many applications [21, 22, 20, 19, 8, 16, 13].
These binary box functions are generally non-orthogonal and the subspace
spanned by binary box base vectors is called a non-orthogonal binary subspace
(NBS) [19]. Tao et al. [19] propose to use an optimized orthogonal matching
pursuit (OOMP) approach to find the set of binary base vectors to represent
an image (details about OOMP will be addressed in section III). They show
that an image can be approximated using NBS with arbitrary precision. As a
result, it can be used to accelerate a wide variety of applications such as fast
normalized cross correlation, fast object recognition. This has motivated us to
investigate whether it is possible to use binary features to construct a subspace
that has similar discriminative power as LDA but with significantly reduced
computation as NBS. In [18], a similar approach has been use to accelerate
the principal component analysis using NBS.
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1.3 Our approach

This paper presents a novel subspace representation that has similar discrim-
inative power as LDA, and at the same time, the classification process can
be computed very efficiently using NBS. The idea is to represent each LDA
base vector as a linear combination of Haar-like box functions. As the result,
the dot product between the data vector and LDA bases can be computed
efficiently using integral image. Main contributions of this paper include:

• A novel efficient discriminative subspace representation called binary LDA
which has comparable classification performance as LDA but with much
reduced computation.

• An LDA guided NBS method to obtain the binary LDA bases each of which
is a linear combination of binary box functions.

• Theoretical analysis of the properties of B-LDA bases and the associated
subspace projection.

• The application of the binary LDA method to face recognition.

The rest of the paper is organized as follows: in section 2, we formulate the
B-LDA problem as an optimization problem. The proposed solution - LDA
guided NBS method to find the B-LDA base vectors is discussed in section
3. In section 4, we conduct theoretical analysis of the properties of B-LDA
bases. The speed improvement is shown in section 5. Experimental results are
demonstrated in section 6. Section 7 concludes the paper.

2 The problem formulation

In the original LDA, the problem is formulated to find the linear subspace
that can best discriminate the data within class from other classes. While in
the proposed binary LDA, we aim at finding a subspace representation that
can preserve the discrimination power of the traditional LDA and at the same
time, reduce the computation cost involved in the floating point dot product.
We then formulate the binary LDA as follows:

Wopt = arg max
W=[w1,...,wK ]

|WTSbW|
|WTSwW| − β

∑

i

c(wi) (8)

subject to : wi =
∑

j

αjbj

where bj is a binary box function from the dictionary D, examples of the
base vectors in D are shown in Figure 1. αj is the coefficient and c(wi) is the
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computational cost of the projection of a data vector to the base vector wi.
Basically, the objective function consists of two terms: the first term is the
discriminative power term which is the ratio of the between- and within-class
scatters; the second term is the computation cost term, with β as a positive
weight to control the relative importance of the two terms. Since the B-LDA
base vectors are represented as a linear combination of a small number of box
functions, there is no guarantee that they are orthogonal to each other, so the
B-LDA subspace is a non-orthogonal subspace. The relation between LDA
and B-LDA subspaces is illustrated in Figure 2.

Fig. 2. Relation of LDA subspace (orthogonal) and B-LDA subspace (non-orthogo-
nal).

3 Basis pursuit

In this section, we will first show the basis pursuit method used in NBS and
why it cannot be directly applied to solve our problem. Then the LDA guided
NBS method will be presented as the approximate solution to our problem of
Eq. 6.

3.1 OOMP for basis pursuit

Base vectors for most orthogonal subspaces can be obtained in a principled
way with mathematical decompositions or factorizations. But the problem
of searching for the best subspace representation in a set of predefined non-
orthogonal base vectors is known to be NP-hard [4]. Two of the popular greedy
solutions to this problem include: the matching pursuit (MP) [12] and the
optimized orthogonal matching pursuit (OOMP) method [14, 15]. The authors
of [19] use OOMP to select the binary base vectors for NBS because it can
provide a more accurate approximation of the input image than MP with the
same number of base vectors.

Optimized orthogonal matching pursuit (OOMP) used in NBS [19] to find the
base vectors is a technique for computing adaptive signal expansion by itera-
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tive selection of base vectors from a dictionary. Such a dictionary D = {bi}i∈I

is usually non-orthogonal (binary box functions in our paper). Suppose Λ de-
notes the set of indices of the selected bases, the OOMP algorithm iteratively
selects base vectors BΛ = [bl1 , ...,bl|Λ| ] from D according to the following pro-
cedure: Suppose that at iteration k the already selected k base vectors are
defined by the index set Λk = (li)

k
i=1. To find the next base vector in iteration

k + 1, the OOMP prescribes to select the index lk+1 that minimizes the new
approximation error:

εk+1 = min
i

|〈γi, εk〉|
‖γi‖ , ‖γi‖ 6= 0, i ∈ Λ̄k (9)

where εk = x − RBΛk
(x) is the approximation error using BΛk

and γi =

bi−RBΛk
(bi). RBΛ

(x) = BΛ(BT
ΛBΛ)−1BT

Λx is the reconstruction of the signal

x using the non-orthogonal base vectors Λk. Λ̄k is the subset of indices that
are not selected in the previous iteration k, i.e. Λ̄k = I − Λk. An efficient
implementation of this optimization can be achieved by the forward adaptive
bi-orthogonalization [1]. In essence, OOMP is a greedy algorithm that finds
a sub-optimal decomposition of data vector using minimum number of base
vectors in D.

3.2 LDA guided NBS

The search space for the optimization problem in Eq.6 is extremely large
because the solution can be any base vector that is a linear combination of
any box functions b from the binary feature dictionary D. Even for a small
image of size 24× 24 used in our experiments, there are 134998 box functions
in D. Suppose each B-LDA base vector is represented by 10 box functions, the
number of possible choices of box functions for a single B-LDA base vectors
is C10

134998. This makes it impractical to find the global optimal solution.

One possible solution is to apply the LDA on the training data to obtain k
LDA base vectors [e1, ..., ek], then employ NBS to approximate each of these
LDA base vectors with a given precision, and use the approximated vectors
as the B-LDA base vectors [w1, ...,wk]. But the problem with this solution is
that the approximation errors (ei −wi) are generally not represented by any
of the B-LDA base vectors, this leads to an inaccurate subspace.

To overcome this problem, we propose a LDA guided NBS method to find
a sub-optimal solution efficiently. In the LDA guided NBS, we denote the
selected B-LDA base vectors up to iteration k as Wk = [w1,w2, ...,wk]. This
set is empty at the beginning. We start from the original LDA procedure to
obtain the first principal component that captures the majority of the data
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variance. We call the first principal component the Pre-LDA vector, denoted
as w−

1 . NBS is then applied to approximate this vector as w1 =
∑N1

j=0 cj,1bj,1.
Then, in iteration k, the data X is projected to the subspace spanned by
the already selected B-LDA bases Wk−1, and LDA is applied on the residual
of the data X − RWk−1

(X) to obtain the next Pre-LDA w−
k which is again

approximated using NBS. The approximation of Pre-LDA at iteration k is
called the k-th B-LDA base vector. This procedure iterates until the desired
number of B-LDA bases have been obtained The flow of LDA guided NBS
method is shown in Fig. 3

Fig. 3. The LDA guided NBS algorithm.

Generally, it takes a large number of box functions to represent each Pre-
BLDA perfectly. However, the computational cost term in the objective func-
tion prefers a solution with fewer box functions. To make the optimization
simpler, we enforce a computational cost constraint by finding the minimum
number of box functions that satisfy:

(1− τ)||w||2 ≤ ||w−||2 ≤ ||w||2 (10)

where w−
1 is the reconstruction of w−

1 using binary box functions. τ ∈ [0, 1] is
the approximation error threshold that controls the precision. A smaller value
of τ tends to produce a more accurate approximation. N is the dimension
of the base vector. Fig. 4 demonstrates the selected box functions used to
approximate the first iteratively selected LDA base vectors. The comparison
of LDA, pre-BLDA and B-LDA base vectors are shown in Fig. 5.
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Fig. 4. Some of LDA-guided OOMP selected box functions to approximate the first
binary LDA base vector.

Since these bases are linear combinations of binary box functions, there is no
guarantee that they are orthogonal to each other. As a result, the reconstruc-
tion process becomes PW(x) = (WTW)−1WTx. This pseudo-inverse projec-
tion can be approximated using direct dot product (DNP): PW(x) = WTx.
Experiments show that this approximation does not cause much performance
deduction. In the next section, we will denote that the error between the di-
rect dot product signal representation in B-LDA subspace and that in LDA
subspace has an upper bound.

Fig. 5. Comparison of the original LDA bases, pre-LDA bases, binary LDA bases
(τ = 0.8), binary LDA bases (τ = 0.5), from left to right.

4 Theoretical analysis of the B-LDA bases

As mentioned in the previous section, when the approximation error threshold
τ is 0, the B-LDA base vector is identical to the LDA base vector. When τ
increases, B-LDA base vectors deviate from the LDA bases and also become
more non-orthogonal. Non-orthogonality, which is often measured using co-
herence, will be defined in this section. We will prove that by approximating
the original projection process PW(x) = (WTW)−1WTx with the direct dot
non-orthogonal projection process (DNP): PW(x) = WTx, the resultant dis-
tance error of PW(x) is related to coherence and therefore τ . Based on this
property, we conclude that when τ is small, the information loss by using B-
LDA and DNP is also small, while the computational complexity is reduced
significantly. This was verified by our experiments on real datasets.
Definition 1. A µ-coherent base vector set W has coherence µ for 0 ≤ µ ≤ 1,
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if |〈wi,wj〉| ≤ µ for all distinct wi,wj ∈ W . Intuitively, for a µ-coherent dic-
tionary the angle between any pair of base vectors or the negation of the vectors
has to be larger than | cos−1 µ|. A 0 -coherent base vector set is orthogonal.
Lemma 1. If we denote B = |W| and µB ≤ 0.5, then there exists a set of
vectors ei, i = 1, ..., B, such that

• The ei’s form an orthonormal system;
• Span (e1, e2, ..., eB) = span (w1,w2, ...,wB);
• ||ei −wi||2 ≤ 8µ2B.

This lemma states that when the coherence satisfies the above conditions, we
can find an orthonormal system that has the same span as the non-orthogonal
base vectors. In addition, these orthonormal base vectors are very close to
the original non-orthogonal ones. The distance between corresponding base
vectors is a function of coherence. Proof can be found in [5].
Lemma 2. The angle θi between each non-orthogonal base vector wi and it’s
corresponding orthogonal base vector ei is smaller than θmax = 2 sin−1(2µ2B)1/2,
where B = |W |.

Proof. See the Appendix.

Theorem 1. By approximating the original projection process PW(x) = (WTW)−1WTx
with the direct dot non-orthogonal projection process (DNP) P̂W(x) = WTx,
the resultant distance error of PW(x) is bounded by a function of µ, i.e.,

||P̂W(x)||−||PW(x)|| ≤ g(µ) = (
√∑

i
c′i

2−1)||x|| ≤ (
√

1 + 2(B − 1)H + BH2−
1)||x|| where H =

√
8µ2B(1− 2µ2B).

Proof. See the Appendix.

5 Speed Improvement

Suppose the image size is m × n , TLDA denotes the time for computing the
LDA subspace projection coefficients and K denotes the number of LDA base
vectors. It will take m×n×K floating point multiplications and K×(m×n−1)
floating point additions to perform the projection operation, or

TLDA = K ×m× n× Tfm + K × (m× n− 1)× Tfa (11)

where Tfm is the time for a single floating point multiplication and Tfa is the
time for a single floating point addition.
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For B-LDA, the time for a single projection is denoted as TBLDA which consists
of two parts. One part is Tii, the time to construct the integral image. For an
m×n image, it will take m×n×2 integer additions with recursive implemen-
tation. This is performed only once for each image. The other part is the time
for the projection operation PW(x) = (WTW)−1WTx. When the bases are
nearly orthogonal to each other, we can approximate the projection coefficient
using the direct dot-product WTx. The B-LDA base vector wi (1 ≤ i ≤ K)
is represented as a linear combination of Ni box functions, wi =

∑Ni
j=1 cjbj.

The projection of x to wi can be written as 〈wi,x〉 =
∑Ni

j=1 ci,j 〈bj,x〉. Each
box function bj has nj boxes, where nj can be one or two. The 〈bj,x〉 can
be performed using 3× nj integer additions. Since cj is floating point, 〈wi,x〉
needs Ni floating point multiplications and Ni − 1 floating point additions.

TBLDA = Tii +
K∑

i=1

Ni∑

j=1

(3× nj × Tia + Ni × Tfm + (Ni − 1)× Tfa) (12)

where Tia is the time for one integer addition. As we can observe, TBLDA is
only dependent on the number of binary box functions which is often much
less than the dimension of the image. Note the dot product between the image
and box functions wT

j x can be computed using 3 or 7 integer additions using
integral image trick. For LDA, however, the time is proportional to the image
dimension. Since the number of operations in B-LDA is much smaller than
LDA, TBLDA is much less than TLDA, and the speed up is more dramatic with
higher dimensional data. Using B-LDA, the computation is reduced from O(N)
(N is the data dimension) to constant, which is only related to the number of
box functions used to approximate each LDA base vector.

Suppose m = n = 24, K = 15, then TLDA needs 24× 24× 15 = 8640 floating
point multiplications to compute the projection coefficients. Suppose the total
number of NBS base vectors used to represent all the B-LDA base vectors is
200, that is,

∑K
i=1 Ni = 200, then the B-LDA projection only needs between∑K

i=1 Ni = 200 and 2×∑K
i=1 Ni = 400 floating point operations. The speed up

is significant.

6 Experiments

We tested the proposed B-LDA method for face recognition. B-LDA is applied
on the training data to find the bases, then the testing images are projected
onto these bases to obtain the feature vector, the classification is achieved
using nearest neighbor. Extensive experiments are carried out on two popular
dataset ORL and FERET. Promising results have been obtained.
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6.1 ORL dataset

The ORL (Olivetti Research Laboratory) face database is used in our first
experiment. It contains 400 images of 40 individuals. Each image is originally
64× 64, but is down-sampled to 24× 24 in our application. Some images were
captured at different times and have different variations including expression
(open or closed eyes, smiling or non-smiling) and facial details (glasses or no
glasses). The images were taken with a tolerance for some tilting and rotation
of the face up to 20 degrees. We use 320 images (8 for each person) for training
to build a 15 dimensional B-LDA subspace and the other 80 for testing. Note
we handle the small sample size problem by first performing a PCA process
before LDA, and we approximate the product of PCA base vector and LDA
base vector as B-LDA base vector.

The B-LDA bases coherence µ and recognition performance are directly in-
fluenced by the approximation threshold τ in the LDA guided NBS. With a
higher threshold, which implies a less accurate approximation, the coherence
will increase and the bases become less orthogonal. When the base vectors are
more orthogonal (smaller τ), B-LDA base vectors become more similar to LDA
base vectors. We have listed the coherence of the B-LDA base vectors with
different τ in Table-1. To make the coherence easier to understand, we also
show the angle between the original LDA base vector and the corresponding
B-LDA base vector (denoted as θ in degrees). From section 4, we can easily
see θ = cos−1µ.

As can be seen from section 5, the key factor in determining the speed improve-
ment of B-LDA over LDA is the number of box functions used to approximate

the LDA base vectors. We denote
15∑
i=1

Ni as the total number of box functions

to represent the B-LDA bases, and denote K as the average number of box
functions used to approximate a single B-LDA base vector. As can be observed
from Table-2, the larger the approximation threshold, the less number of box
functions is needed, which means a less accurate approximation, but more
efficient.

In order to show the effectiveness of the B-LDA approach, we compare the
recognition performance of B-LDA and LDA in Fig. 6, 7, 8, 9, 10, 11. Fig. 6
shows the performance of LDA and B-LDA under different approximation
thresholds (τ). Note in this curve, the projection process is done using original
pseudo-inverse projection. As can be observed, roughly when τ is small, the
recognition performance is close to the LDA performance. This is because
the B-LDA subspace is more similar to the LDA subspace. Fig. 7 shows the
performance comparison of LDA and B-LDA using DNP, which is less accurate
but more efficient. To make the easier to see, we also show the performance
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Table 1
B-LDA base vectors properties with different approximation thresholds.

τ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

µ 0.0238 0.0311 0.0489 0.0828 0.1323 0.1488 0.3280 0.2940

θ 0.9976 2.2417 2.8609 4.8743 5.2661 7.2187 14.1648 19.2949

K 81 50 33 22 15 10 7 3
15∑
i=1

Ni 1225 749 493 331 230 147 96 41

comparison between LDA, B-LDA pseudo-inverse projection and B-LDA DNP
with fixed τ in Fig. 8, 9, 10, 11.

0 5 10 15
10

20

30

40

50

60

70

80

90

100

Number of base vectors

R
ec

og
ni

tio
n 

ra
te

 (
%

)

Comparison of LDA, BLDA with different approximation threshold

LDA
B−LDA(approximation threshold=0.9)
B−LDA(approximation threshold=0.7)
B−LDA(approximation threshold=0.5)

Fig. 6. Performance compari-
son between LDA, B-LDA(using
pseudo-inverse projection) with
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Fig. 7. Performance compari-
son between LDA, B-LDA(using
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Fig. 10. Performance comparison
between LDA, B-LDA and
B-LDA(DNP) using different
number of base vectors. The
approximation threshold for
B-LDA is set to 0.7.
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Fig. 11. Performance comparison
between LDA, B-LDA and
B-LDA(DNP) using different
number of base vectors. The
approximation threshold for
B-LDA is set to 0.9.

6.2 FERET dataset

The second experiment is on a selected set of 500 frontal view images from
the the FERET dataset. These images were spatially aligned and scaled to
24 × 24 pixels. Using 342 training samples of 64 different persons, the B-
LDA base vectors are computed. The first 15 of these vectors are computed
and the first four of them are shown in Fig. 5. It can be observed that, like
LDA, B-LDA base vectors can capture the face structure. Each individual
base vector resembles some face shape. However, the B-LDA base vectors
appear to be blocky due to the approximation using box functions. Fig. 4
shows the features used to approximate the first pre-LDA base vector. Fig. 12
shows the classification performance using pseudo-inverse projection. As can
be observed, in general, the performance increases with the number of base
vectors being used. Even with the approximation error τ to be 0.8 (very coarse
approximation), the classification performance of B-LDA is comparable to
LDA.

To show the effectiveness of DNP, the coherence for B-LDA bases under differ-
ent approximation thresholds are computed, they are listed in Table 2. As can
be observed, the smaller the approximation thresholds (more accurate approx-
imation), the smaller the bases coherence, which means that the B-LDA base
vectors are more orthogonal to each other. As a result, the difference between
DNP and pseudo-inverse projection is small. Fig. 13 shows the recognition re-
sult by setting the approximation threshold τ = 0.5. As can be observed, the
difference is slight. Fig. 14 is the comparison of the recognition performance
using direct dot product (DNP) with different approximation thresholds. As
can be observed, the smaller the τ , the smaller difference between B-LDA
DNP and LDA.
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Table 2
B-LDA base vectors coherence µ with different approximation thresholds τ .

τ 0.2 0.5 0.8

µ 0.0085 0.0836 0.1731
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Fig. 12. Comparison of the LDA and B-LDA performance.
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Fig. 13. Comparison of the DNP with pseudo-inverse projection for face recognition
with τ = 0.5

The experiment for speed improvement is carried out on a Pentium IV, 3.2
GHz, 1G RAM machine, using C++ code. Fifteen base vectors are computed,
for both LDA and B-LDA, and the time to project images onto each subspace
is observed. The B-LDA used direct dot product projection. We tested 500
samples and use the average time of a single projection operation and the
results are listed in Table 2.
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Fig. 14. The recognition rate of B-LDA using the direct non-orthogonal projection
(DNP).

7 Conclusion

A novel efficient discriminative method called B-LDA is presented in this pa-
per. It inherits the properties of LDA in terms of discriminating data from
different class while take advantages of the computational efficiency of non-
orthogonal binary bases. We proposed an LDA guided NBS method to obtain
the B-LDA base vectors and applied the B-LDA to the face recognition. Ex-
periments show that the discriminative power of LDA is preserved and the
computation is significantly reduced.
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8 Appendix

Lemma 1. If we denote B = |W| and µB ≤ 0.5, then there exists a set of
vectors ei, i = 1, ..., B, such that

• The ei’s form an orthonormal system;
• Span (e1, e2, ..., eB) = span (w1,w2, ...,wB);
• ||ei −wi||2 ≤ 8µ2B.

Lemma 2. The angle θi between the non-orthogonal base vector wi and its cor-
responding orthogonal base vector ei is smaller than θmax = 2 sin−1(2µ2B)1/2,
where B = |W |.

Proof. From the lemma-1 in section IV-D, we have ||ei −wi|| ≤ 2(2µ2B)1/2,
since sin(θ/2) = 1

2
||ei −wi||/||wi|| = 1

2
||ei −wi|| ≤ (2µ2B)1/2, so θ ≤ θmax =

2 sin−1(2µ2B)1/2, as shown in Fig. 15.

Fig. 15. Relation between non-orthogonal base vector and its corresponding orthog-
onal base vector.

Theorem 1. By approximating the original projection process PW(x) = (WTW)−1WTx
with the direct dot non-orthogonal projection process (DNP) P̂W(x) = WTx,
the resultant distance error of PW(x) is bounded by a function of µ, i.e.,

||P̂W(x)||−||PW(x)|| ≤ g(µ) = (
√∑

i
c′i

2−1)||x|| ≤ (
√

1 + 2(B − 1)H + BH2−
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1)||x|| where H =
√

8µ2B(1− 2µ2B).

Proof. Suppose a unit data vector x is presented by ei’s as x = c1e1 + c2e2 +
... + cBeB, the DNP coefficients of x are c′i = 〈c1e1 + c2e2 + ... + cBeB,wi〉.
The distance error of DNP is

√∑B
i c′i

2 − 1. It’s obvious that:





cos θmax ≤ 〈ei,wi〉 ≤ 1 i ∈ [1, ..., B]

|〈ei,wj〉| ≤ sin θmax i, j ∈ [1, ..., B], i 6= j

where θmax is the angle defined in Lemma. Then, we have

c′i
2 =

∑
m,n

cm〈em,wi〉cn〈en,wi〉

=
∑

m=n=i
c2
i 〈ei,wi〉2 + 2

∑
m6=i

cmci〈em,wi〉〈ei,wi〉+
∑

m6=i,n6=i
cmcn〈em,wi〉〈en,wi〉

≤ c2
i + 2

∑
m6=i

cmci sin θmax +
∑

m6=i,n6=i
cmcn sin2 θmax

and

∑
i

c′i
2 ≤ ∑

i
(c2

i + 2
∑

m6=i
cmci sin θmax +

∑
m6=i,n6=i

cmcn sin2 θmax) =

∑
i

(c2
i + 2(

∑
m,n

cmcn − 1) sin θmax +
∑

m6=i,n6=i
cmcn sin2 θmax)

It’s easy to see, when
∑
i

c2
i = 1,

∑
m,n

cmcn is maximized if and only if c1 = c2 =

... = cB = 1√
B

. Then, we have

∑

i

c′i
2 ≤ ∑

i

c2
i + 2[B2(

1√
B

)2 − 1] sin θ + B sin2 θ = 1 + 2(B − 1) sin θ + B sin2 θ

According to the Lemma, θmax ≤ 2 sin−1(2µ2B)1/2,

sin2 θmax ≤ [sin(2 sin−1(2µ2B)1/2)]2

= [2 sin(sin−1(2µ2B)1/2) cos(sin−1(2µ2B)1/2)]2

= 8µ2B[1− sin2(sin−1(2µ2B)1/2)]

= 8µ2B(1− 2µ2B)
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so,

√∑

i

c′i
2 − 1 ≤

√
1 + 2(B − 1)H + BH2 − 1

where H =
√

8µ2B(1− 2µ2B).

so the squared distance error of DNP is bounded by:
√

1 + 2(B − 1)H + BH2−
1 where H =

√
8µ2B(1− 2µ2B).
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