
Symmetric Hash Functions for Secure

Fingerprint Biometric Systems

Sergey Tulyakov

Faisal Farooq ∗

Praveer Mansukhani

Venu Govindaraju

CUBS, SUNY at Buffalo, Amherst, NY 14228

Abstract

Securing biometrics databases from being compromised is one of the most important

challenges that must be overcome in order to demonstrate the viability of biometrics

based authentication. In this paper we present a novel method of hashing fingerprint

minutia and performing fingerprint identification in the hash space. Our approach

uses a family of symmetric hash functions and does not depend on the location of

the (usually unstable) singular points (core and delta). In fact, most approaches

of hashing minutia and developing a cancellable system described in the literature

assume the location of the singular points. Others assume a pre-alignment between

the test and the stored fingerprint templates. These assumptions are unrealistic

given that fingerprints are very often only partially captured by the commercially

available sensors. The Equal Error Rate (EER) achieved by our system is about

3%. We also present the performance analysis of a hybrid system that has an EER

of about 2% which is very close to the performance of plain matching in the minutia

space.

Preprint submitted to Elsevier Science 25 June 2006

Key words: Biometrics, Fingerprints, Hashing, Security, Cancellable Biometrics

1 Introduction

Securing a biometric template is a critical step in the successful implementa-

tion of biometric based authentication systems. Typically biometric templates

are stored unprotected in a central database. Even if the stored templates

are encrypted, matching continues to be performed using decrypted templates

where the decryption process itself can be compromised. Password based au-

thentication systems often come under attacks (e.g., man-in-the-middle) dur-

ing transfer over a network or database hijack wherein the whole password

database can be compromised [1]. To prevent such attacks, plaintext pass-

words are hashed, and only the hash values are stored in the database and

transmitted across networks. A hash function H is a transformation that takes

an input m and returns a value h (called the hash value). Thus, h = H(m).

Hash function H is said to be a one-way function if it is hard to invert, that

is, given a hash value h, it is computationally infeasible to find some input x

such that H(x) = h [1].

Biometric based authentication systems face challenges similar to password

systems. We have developed a method for biometric data which is similar to

password encryption and hashing. Biometric identification is performed using

hashed biometric data instead of the original template. Figure 1 illustrates

the system for fingerprint biometrics. Fingerprints are obtained by a online

∗ Corresponding author
Email address: ffarooq2@cubs.buffalo.edu (Faisal Farooq).

2

Fingerprint verification

Image

Image

Fingerprint enrollment

Minutiae

Minutiae

h , h
11 12

h , h
21 22

h’ , h’
11 12

h’ , h’
21 22

Hashes

Hashes

Fingerprint
Hash

Database

Store

Match

Fig. 1. Securing fingerprint information

scanner, the minutia locations are found and hashes of minutia subsets are

constructed. The operations of finding minutiae and hashes can potentially be

incorporated into scanner. Only the hashes then will need to be transmitted

and stored in the database. During verification, new hash values are produced

by the scanner and are matched with those stored in the database. Matching

can be performed either on the client or on the server. In this paper we ex-

tend our earlier work [2] by introducing additional methods of securing and

personalizing the hash for fingerprint data.

2 Challenges

The hash value for text passwords completely changes even if a single character

in a password is changed. Hashing is still feasible in case of passwords because

the authentication is an all-or-none system and access is granted only if the

entire password entered is correct. Also, in password protected systems, in

case the password database is compromised, a new set of passwords can be

generated or set up. Biometric systems though proven to be more secure and

efficient than password protected systems, are probabilistic and not all-or-

none like passwords. Authentication is based on scores that can vary anywhere

between 0−100%.In case biometric data is hashed, even a slight change in the

3

acquisition of the biometric can lead to a totally different hash value which

might not match the original within the same matching threshold as that of

unhashed ones. Thus, the hash-based system should possess the following:

• similar fingerprints should have similar hash values

• different fingerprints should not have similar hashes

• rotation and translation of original template should not have a big impact

on hash values

• possibly partial fingerprints should be matched

3 Previous Work

The situation we are facing here is analogous to a password based authentica-

tion system where we would like successful authentication even if the password

provided is almost same. Is it possible to construct a person authentication

algorithm if we allow the password to change slightly? Error correcting codes

[3] have succesfully been utilized in such situations of recovering changed data

and their use might be appropriate here. Indeed, Davida et al.[4] presented an

authentication algorithm based on error correcting codes. In this algorithm,

error-correcting digits are generated from the biometric data and some other

verifying data, and stored in the database. During authenticating stage, pos-

sibly changed biometric data is combined with stored error-correcting digits

and error correction is performed. The amount of correction required serves as

a measure of the authentication success. This algorithm was later modified as

fuzzy commitment scheme in the work of Juels and Wattenberg[5] and some of

its properties were derived. Kuan et al. [6] presented a method for extracting

cryptographic keys from dynamic handwritten signatures. A similar approach

4

for face templates was presented by Kevenaar et al. [7] in which they generate

binary feature vectors from biometric face data that can be protected by using

helper data introduced into this bit sequence.

None of these approaches can directly be extended to fingerprints. Fingerprint

data with minutia positions as features presents additional challenges for de-

signing hashes. Minutia sets of two fingerprints usually do not coincide, it is

nearly impossible to introduce some order in minutia set, and global transfor-

mation parameters are usually present between corresponding minutiae. Error

correcting codes require that the original sequence be in some ordered fashion

in order to locate and then try to correct the errors in the modified sequence. A

fuzzy vault algorithm (Juels and Sudan [8]) improves upon fuzzy commitment

scheme in trying to solve first two challenges and also uses error-correcting

codes. The security of the algorithm relies on the addition of chaff points, or,

in the case of fingerprint vault, false minutia points. The attacker would try

to find a subset of points well intersecting with non-chaff point set. Thus more

chaff points provides better security, but arguably worse vault unlocking per-

formance. The application of fuzzy vault to fingerprint identification appeared

in the work of Clancy et al.[9]. That paper showed realistic expectations on the

numbers of chaff points and associated attack complexity. The algorithm used

the asssumption that fingerprints are aligned, and corresponding minutiae had

similar coordinates. Uludag and Jain [10] proposed a fuzzy vault scheme by

adding extra chaff points and securing the template by a standard 128-bit AES

algorithm. It still requires pre-aligning the test and stored fingerprint and the

achieved FAR on a test set of 100 fingerprint is ∼ 20%. Moreover, Tuyls et

al [11,12] propose a technique that assumes complete alignment of template

and test biometric data in addition to assuming minimal effect of noise on the

5

securing functions. Soutar et al. [13] took another approach to secure finger-

print biometrics. The algorithm operates on images by constructing special

filter in Fourier space encoding key data. The data can be retrieved only by

presenting similar fingerprint image to the decoder. The matching procedure

is correlation based, thus translations of images are possible but not rotations.

More recently, Uludag and Jain[14] presented an advancement of the earlier

algorithm with a genuine accept rate of ∼ 72%. However, the alignment is

highly prone to error, and does not work on poor quality or partial images.

4 Motivation

The main difficulty in producing hash functions for fingerprint minutiae is

the inability to somehow normalize fingerprint data, for example, by finding

specific fingerprint orientation and center. If fingerprint data is not normalized,

then the values of any hashing functions are destined to be orientation/position-

dependent. The way to overcome this difficulty is to have hash functions as

well as matching algorithm deal with transformations of fingerprint data.

4.1 Minutiae based matching

In fingerprint based biometric authentication systems, minutiae based match-

ing has become a de-facto standard.A fingerprint is made of a series of ridges

and furrows on the surface of the finger. The uniqueness of a fingerprint can

be determined by the pattern of ridges and furrows as well as the minutiae

points. Minutiae points are local ridge characteristics that occur at either a

ridge bifurcation or a ridge ending. Correlation based techniques have proven

6

to be inefficient and at times infeasible being highly sensitive to translation

and rotation. The task of fingerprint matching requires that the two prints be

aligned in the best possible alignment. After alignment, the number of match-

ing minutiae points determine how good the match is. In our work we use

ideas similar to [15] and [16] to combine results of localized matchings into

the whole fingerprint recognition algorithm. Localized matching consists of

matching minutia triplets using such features as angles and lengths between

minutia points. For each minutia feature vector of length 3 (x,y,θ) and its two

nearest neighbours, a secondary feature vector of length 5 is generated which

is based on the Euclidean distances and orientation difference between the

central minutia and its nearest neighbours. Matching is performed on these

secondary features. In contrast, for localized matchings in this work we keep

only limited information about matched neighborhoods, so that minutia po-

sitions cannot be restored. Global matching is essentially finding a cluster of

localized matchings with similar rotation(r) and transformation(t) parame-

ters. It seems that proposed algorithm of Uludag and Jain[?] might also use

this 2-stage technique. Unlike fingerprint vault algorithm[9] our algorithm per-

forms hashing of not only enrolled fingerprint, but of test fingerprint also. Thus

hashing can be incorporated into scanner, and original fingerprint data will

never be transmitted nor stored in the database.

4.2 Symmetric Hash Functions

As described earlier, a small change in the input to a hash function changes

the hash value considerably. This change could be information missing from

the original input, added noise to the input or a change in the order of the

7

input. A certain class of hash functions can, however, be formulated that are

invariant to the order in which the input pattern is presented to the hash

function. Such hash functions are known as order-independent or symmetric

hash functions. Consider an input sequence X = x1x2x3 . . . xn. We can have

two hash functions

H(X) = k1x1 + k2x2 · · · + knxn, k1 �= k2 · · · �= kn (1)

Hm
sym(X) = x1

m + x2
m · · ·+ xn

m (2)

As we observe, if the order of the input is changed to X = x2x3xn . . . x1, 1

yields a different hash value where as 2 remains unchanged. We can generate

similar hash functions that are symmetric.Moreover, arbitrary combinations

of more than one hash function yield other hash functions. Thus, we can have

a whole family of symmetric hash functions by combining together elemen-

tary symmetric functions of 2: Hsym,f(X)′ = f(H1
sym(X), ..., Hn

sym(X)). This

property of the symmetric hash functions can be exploited to our purpose in

the fingerprint minutiae or any set of unordered points.

5 Hash Functions of Minutia Points

We represent minutia points as complex numbers {ci}. We assume that two

fingerprints of the same finger can have different position, rotation and scale,

coming from possibly different scanners and different orientation of finger on

scanner. Thus the transformation of one fingerprint to the other can be de-

scribed by the complex function f(z) = rz + t (Figure 2). In our approach we

construct hash functions and corresponding matching algorithm, so that this

8

transformation function is taken into account. Additionally we cannot set spe-

cific order of minutiae, so we want our hash functions be independent of this

order. Thus we consider symmetric complex functions as our hash functions.

Fig. 2. Transformation of minutiae as represented in the complex plane.

Specifically, given n minutia points {c1, c2, . . . , cn} we construct following m

symmetric hash functions

h1(c1, c2, . . . , cn) = c1 + c2 + · · ·+ cn

h2(c1, c2, . . . , cn) = c2
1 + c2

2 + · · ·+ c2
n

. . .

hm(c1, c2, . . . , cn) = cm
1 + cm

2 + · · ·+ cm
n

(3)

If the number of hash functions m is less than the number of minutia points n

participating in the construction of hash function, it is not possible to restore

original minutia positions given hash values.

Suppose that the another image of the fingerprint is obtained through above

described transformation f(z) = rz + t, thus locations of corresponding minu-

tia points are c′i = f(ci) = rci + t. Hash functions of the transformed minutiae

can be rewritten as

9

h1(c
′
1, c

′
2, . . . , c

′
n) = c′1 + c′2 + · · ·+ c′n

= (rc1 + t) + (rc2 + t) + · · · + (rcn + t)

= r(c1 + c2 + · · · + cn) + nt

= rh1(c1, c2, . . . , cn) + nt

h2(c
′
1, c

′
2, . . . , c

′
n) = c′21 + c′22 + · · · + c′2n

= (rc1 + t)2 + (rc2 + t)2 + · · · + (rcn + t)2

= r2(c2
1 + c2

2 + · · ·+ c2
n)+

2rt(c1 + c2 + · · ·+ cn) + nt2

= r2h2(c1, c2, . . . , cn)+

2rh1(c1, c2, . . . , cn) + nt2

. . .

(4)

Let us denote the hash values of the minutia set of one fingerprint as hi =

hi(c1, c2, . . . , cn) and hash values of corresponding minutia set of another fin-

gerprint as h′
i = hi(c

′
1, c

′
2, . . . , c

′
n). Equations 4 now become

h′
1 = rh1 + nt

h′
2 = r2h2 + 2rth1 + nt2

h′
3 = r3h3 + 3r2th2 + 3rt2h1 + nt3

. . .

(5)

Equations 5 have two unknown variables r and t. If we take into account

errors introduced during fingerprint scanning and minutia search, the relation

between hash values of enrolled fingerprint {h1, . . . , hm} and hash values of

10

test fingerprint {h′
1, . . . , h

′
m} can be represented as

h′
i = fi(r, t, h1, . . . , hn) + εi (6)

The matching between hash values of enrolled fingerprint {h1, . . . , hm} and

hash values of test fingerprint {h′
1, . . . , h

′
m} consists in finding r and t that min-

imize errors εi. During algorithm implementation we considered minimization

of error functions ε =
∑

αi|εi|, where weights αi were chosen empirically.

6 Global Fingerprint Matching Using Hash Functions

It turns out that trying to use hash functions with respect to the minutia set

of whole fingerprint is impractical. Even the small difference in minutia sets of

two prints of the same finger will produce significant difference in hash values.

Additionally, the higher order hash values tend to change greatly with the

small change in positions of minutia points.

To overcome these difficulties we considered using hash functions for matching

localized sets of minutia, and global matching of two fingerprints as a collec-

tion of localized matchings with similar transformation parameters r and t.

As in base fingerprint matcher[16] the localized set is determined by a par-

ticular minutia and few of its neighbors. The hashes are calculated for each

localized set. Total hash data extracted from fingerprint is a set of hashes

{hi,1, . . . , hi,m}, i = 1, . . . , k, where k is the total number of localized minutia

sets.

During matching of two hash sets we first perform a match of all localized

sets in one fingerprint to all localized sets in another fingerprint. The matches

11

with highest confidences are retained. Then, assuming in turn that a partic-

ular match is a correct match, we find how many other matches have similar

transformation parameters. The match score is composed from the number of

close matches and confidences of those matches.

7 Experimental Analysis

7.1 Dataset

We tested our system on FV C2002’s DB1 database. The dataset consists of

110 different fingers and 8 impressions for each finger. There are a total of 880

fingerprints(388 pixels by 374 pixels) at 500 dpi with various image quality. We

followed the protocols of FV C2002 to evaluate the FAR(False Accept Rate)

and FRR(False Reject Rate). For FRR the total number of genuine tests is

(8∗7)
2

∗ 100 = 2800. For FAR, the total number of impostor tests is (100∗99)
2

=

4950.

7.2 Experimental Setup

We carried out experiments with different configurations, using different num-

ber of minutia points(n) and hashing functions(m). We tried out the configu-

rations as follows

(1) n = 2, m = 1: For each minutia point we find its nearest neighbor, and

the hash function h(c1, c2) = c1+c2
2

(2) n = 3, m = 1: For each minutia point we find two nearest neighbors and

12

the hash function h(c1, c2, c3) = c1+c2+c3
3

(3) n = 3, m = 2: For each minutia point find three nearest neighbors, and

for each minutia triplet including original minutia point construct two

hash functions using the formula hm(c1, c2, . . . , cn) = cm
1 + cm

2 + · · · + cm
n

where m = 1, 2.

We use similar formulae for directions.

Configuration 3 for the experimental setup can be explained as follows: Given

a minutia triplet represented by complex numbers (c1, c2, c3), we find the cen-

ter of the triangle formed by this triplet. The center is represented by the

complex number T = c1+c2+c3
3

. Such triangle centers for all minutia triplets

are now used for hashing, performing the alignment between the template

and the test fingerprint and also to calculate the matching scores. Thus, if

a fingerprint is represented in the minutia space by a set of minutia points

{m1, m2, . . . , mn}, this operation maps it into a new space where it is now

represented as a set of triangle centers {T1, T2, . . . , Tk} . The task of reversing

this hash function would be to find out the actual minutia point locations given

these triangle centers. We compared performance with fingerprint matching

algorithm developed in [16] and using same set of fingerprints with identically

extracted minutiae points. Also, since in configurations 1 and 2 we simply get

another set of minutia points, we used matching algorithm of [16] to perform

matching.

13

7.3 Results

Currently achieved equal error rate (point where FAR = FRR) of proposed

algorithm is ∼ 3%. The equal error rate (EER) for plain matching is ∼ 1.7%.

The ROC characteristics of the baseline system and the different configura-

tions of our system are shown in figure 3.

Fig. 3. ROC Curves for the baseline system[16] and the different experimental con-

figurations.

As noted the accuracy of the secure system is slightly lesser than the base-

line system. Nevertheless, the benefits of securing fingerprint data can easily

outweigh the performance loss in many applications. Performance loss would

mean more strict decisions on matching, and more frequent repeat matching

attempts. Arguably many people will trade off the assurance on their finger-

print template privacy for the inconvenience of performing repeat fingerprint

scan.

14

8 Security of Proposed Algorithm

The main purpose of the proposed algorithm is to conceal original fingerprint

and minutiae locations from an attacker. Is it possible to reconstruct minutia

positions given stored hash values? Since the number of hash values for each

local minutia set is less than number of these minutiae, it is not possible to get

locations using only information of one local set. On the other hand, it seems

possible to construct a big system of equations involving all hashes (hashes

of only first order might be considered for linearity). The biggest problem in

constructing such system is that it is not known which minutia participated

in the creation of particular hash value.

x

ox x

x
o

x

o
x

x

x o

x

x

ox
x

x

o

x

x

(a) (b)

(c)

Fig. 4. Different number of minutiae(crosses) can participate in the creation of two

triplet centers(circles).

The problem is illustrated in figure 4. Two triplet centers are formed from

4, 5 and 6 minutia points. Thus during constructing an equation system for

finding minutia positions, we have a problem of deciding how many minutiae

should be, in addition to matching minutia to triplet centers.

Hill-climbing type attacks[17] will probably have more difficult time to make

a match since varying minutia position might have effect on few triplets, thus

influencing matching score in a more complex way. Also, we think, that even

if attack succeded and match is found, the resulting minutiae locations will

15

be different from original. In this situation, change of hashing algorithm will

make reconstructed fingerprint unmatchable. Brute force search on all nearest

neighbors of a triangle center for the above method could be computation-

ally feasible, however, using higher order hashes instead of simply neighboring

minutiae can render these attacks ineffective. If the minutia positions are float-

ing point and not integers, then brute force is computationally intractable.

The float positions of minutia could be estimated by the minutia extraction

algorithm, or , in case of integer positions, these positions might be randomly

perturbed. Another method might be to reduce the number of information

bits in the hash value as compared to the actual fingerprint template thus

making it infeasible to do a brute force attack even on the whole fingerprint

image. Whereas these methods only utilize the fingerprint minutiae, in the

following sections we present methods to use additional information (keys,

personal hashes etc.) that actually harden the fingerprint hash.

9 Cancellable Biometric

The proposed hashing of fingerprint templates eliminates the possibility of

an intruder learning original minutia positions. Though we consider it as an

extremely difficult task, an intruder might construct an artificial template

producing similar hash values, but having different minutia positions. Thus

we need to expand our algorithm to make fingerprint hashes cancelable. This

can be achieved by reenrolling persons using different set of hash functions.

In order to enhance the security, systems often implement a two-level authen-

tication where a user in addition to the biometric provides a key which is

stored in a card or by entering on a keypad. Also, this key can be reissued in

16

case of a potential compromise. In this section we present ways to increase the

security of the hashing method by an exponential factor. This can be done

by embedding a secret key into the hashing process. The key may be based

on a token that the user carries or a password that the user remembers. It

may even be based on another biometric, thus making the key personal. To

achieve a cancellable biometric algorithm we need to provide a way to auto-

matically construct and use randomly generated hash functions. Presented set

of hash functions is an algebraic basis in the set of polynomial symmetric func-

tions. Thus, we were able to express hash functions of transformed minutia

set through original set of symmetric functions. This is a clue to constructing

other similar hash functions. Essentially we can take arbitrary algebraic ba-

sis of symmetric polynomials of degree less than or equal to m, {s1, . . . , sm}
as our hash functions. Then the hash functions of the transformed minutiae,

si(rc1+t, . . . , rcn+t), will still be symmetric functions of the same degree with

respect to variables c1, . . . , cn. Thus, hashes of transformed minutia could be

expressed using original hashes, s′i = si(rc1+t, . . . , rcn+t) = Fi(r, t, s1, . . . , sm)

for some polynomial functions Fi. These equations will allow matching local-

ized minutia sets, and finding corresponding transformation parameters.

Fig. 5. Associating the minutiae triplets with hash functions.

17

9.1 Two-factor Authentication

Let us assume that we compute a hash value for each triplet of minutiae

(c1, c2, c3). For each such triplet, we can choose from one of several symmetric

hash functions such as

h1(c1, c2, c3) = (c1 + c2 + c3)

h2(c1, c2, c3) = (c1c2 + c2c3 + c1c3)

h3(c1, c2, c3) = c1c2c3

h4(c1, c2, c3) = (c1 − c2)
2 + (c2 − c3)

2 + (c1 − c3)
2 etc.

Any linear combination of these functions will also yield a symmetric hash

function. Thus for any triplet, we have several functions h1, h2 . . . hk from

which we can derive the transformation. Instead of choosing the hash func-

tion in a deterministic way, the complexity of the transformation and hence

the resulting security can be multiplied if we could choose several of these

hash function simultaneously and in some random order. Thus for each triplet

T1, T2 . . . TN we associate a corresponding hash function H1, H2 . . .HN . The

association can be based on a secret key K. The key specifies the association

between the triplet T and the corresponding hash H as shown in Fig. 5.

Fig. 6. Triangles as points in the parameter space.

However, in order to successfully verify the individual at a later instance, the

resulting triplets T ′
1,T

′
2 must also be associated with identical hash functions.

18

The problem occurs because we do not know the association between T1,T
′
1

before hand. To overcome this each triangle or triplet T can be represented

parametrically by specifying three parameters such as - two sides and one

angle, or one sides and two angles etc. Let us represent these by p1, p2, p3 in

general. Thus each possible triangle now exists as a point in this parametric

space as in Fig. 6.

Fig. 7. Associating the hash functions with cells in the parameter space.

All triangles with similar geometries will lie close together in this parametric

space. Thus given any triplet T we determine the point P where it lies in the

parametric space. Any triplet T ′ that is geometrically similar will lie in close

proximity of P as shown by the circles in Fig. 6. Further we divide the param-

eter space into non-overlapping cells as in Fig. 7 (the cells are shown in 2D

for simplicity). To each cell we assign a specific hash function. The association

between the hash function and the cell are now contained in the secret key.

Assume two instances of the key are H2H4H8H1H3H1 and H3H2H7H3H1H6.

The length of the key is determined by how we subdivide the triangle space

into cells. Let us currently assume that there are c such cells in all. This

arrangement solves the original problem of triplet association. If a triplet T

19

Plain Secure Hybrid

Avg. points matched 25.90 57.50 24.55

EER% 1.7 3.0 2.0

Table 1

exists in the reference fingerprint and appears at T ′(T with slight distortion)

in another instance of the print, it falls in close proximity of the original triplet

in the triangle space. Due to the spatial proximity it also falls in the same cell

as the original triplet T and hence gets assigned the same hash function as

before due to quantization of the triangle space.

The proposed solution increases the security of the hashing function by ren-

dering them immune to brute force attack.

9.2 Personalizing and Reissuing

While the number of symmetric functions possible for each triplet is clearly

infinite, it is not clear at this point of time as to how many symmetric func-

tions can be chosen such that the transformation is still meaningful, but it

can be assumed to be some finite (perhaps large) number N . For somebody

who has the original biometric, the task of circumventing the system reduces

to trying out all of the N hash functions. By introducing the key K, there are

N possible hash functions for each cell in the triangle space. Thus the total

number of possible hash combinations is now N × N × N . . . (c times) = N c.

Thus by introducing the secret key K, we are exponentially multiplying the

total possibilities of hash functions and increasing the computational com-

20

plexity of a brute force attack by the same amount. This key can be based

on a biometric such as face or iris or its convolution by some signal. In case

of compromise of the database the keys can be reissued and different set of

hash functions chosen as shown earlier, thus rendering the biometric system

cancellable.

10 Performance Analysis

The loss in the accuracy of the secure system as compared to the plain version

could be attributed to various factors such as reduction in the number of

points being matched. It should be noted, however, that the total number of

hashed values is not reduced in the same proportion since the same minutia

can participate in the production of more than one triplet as described in

figure 3. Thus the total size of stored hash values can be even bigger than the

size of original fingerprint template. The decrease in the accuracy might be

caused by the loss in information when keeping reduced number of variables

based on minutia triplets. For every three neighboring minutia points we have

reduced the number of variables to 4 (2 complex numbers) instead of original

6. For example, the average number of minutia matched for a genuine match

in the baseline version was observed to be ∼ 25.9. In the secure version the

average number of triplet centers matched for genuine tests were ∼ 57.5. There

can be additional reasons for observed performance hit, such as difficulty in

matching localized hashed values

In order to evaluate the performance of the secure matching algorithm vis-a-

vis the plain matching, we carried out experiments where the transformation

parameters were acquired from our algorithm. These r and t parameters were

21

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1
ROC Curves

Plain
Hybrid
Secure

Fig. 8. Comparing the ROC curves of the plain, secure and hybrid systems.

then used as the transformation parameters for the plain version. For this

setup, an EER of ∼ 2.0% was achieved. This suggests that the scoring formulae

for the secure version requires improvement based on the current techniques.

Figure 8 shows the three curves. As we see the hybrid system performs better

than our baseline secure system, however, a slightly worse than the baseline

plain system. Table 1 gives a comparison between the three systems. The

comparable number of minutia matched in the plain version and the hybrid

system suggest that indeed the secure system performs as good in terms of

finding the tranformation parameters and matching the minutia. This suggests

that the performance decrease is in the scoring methodology.

11 Conclusions

In this paper we have presented a method to secure fingerprint templates by

using innovative symmetric hash functions. Such symmetric functions can be

utilized for any biometric modality where the information is unordered as in

the case of minutia on fingerprints.

22

We have successfully implemented a secure authentication system with perfor-

mance comparable to plain matching systems. We have also presented methods

to cancel and reissue the biometric and to personalize the hash values based

on keys that could potentially be derived from other biometric traits.

References

[1] B. Schneier, Applied Cryptography, John Wiley, New York, 1996.

[2] S. Tulyakov, F. Farooq, V. Govindaraju, Symmetric hash functions for

fingerprint minutiae, in: International Workshop on Pattern Recognition for

Crime Prevention, Security and Surveillance, Bath, UK, 2005, pp. 30–38.

[3] W. Peterson, E. Weldon, Error-Correcting Codes, 2nd Edition, MIT Press,

Cambridge, USA, 1972.

[4] G. Davida, Y. Frankel, B. Matt, On enabling secure applications through on-

line biometric identification, in: Proc. of the IEEE 1998 Symp. on Security and

Privacy, Oakland, Ca., 1998.

[5] A. Juels, M. Wattenberg, A fuzzy commitment scheme, in: ACM Conference

on Computer and Communications Security, 1999, pp. 28–36.

[6] Y. Kuan, A. Goh, D. Ngo, A. Teoh, Cryptogrpahic keys from dynamic

hand-signatures with biometric secrecy preservation and replaceability, in:

Auto ID 2005, Fourth IEEE Workshop on Automatic Identification Advanced

Technologies, 2005, pp. 27–32.

[7] T. Kevenaar, G. Schrijen, M. Veen, A. Akkermans, F. Zuo, Face recognition

with renewable and privacy preserving binary templates, in: Auto ID 2005,

Fourth IEEE Workshop on Automatic Identification Advanced Technologies,

2005, pp. 21–26.

23

[8] A. Juels, M. Sudan, A fuzzy vault scheme, in: IEEE International Symposium

on Information Theory, 2002.

[9] T. Clancy, D. Lin, N. Kiyavash, Secure smartcard-based fingerprint

authentication, in: ACM Workshop on Biometric Methods and Applications

(WBMA 2003), 2003.

[10] U. Uludag, S. Pankanthi, A. Jain, Fuzzy vault for fingerprints, in: Proc. of

the 5th International Conference on Audio and Video-based Biometric Person

Authentication, Rye Town, NY, 2005, pp. 310–319.

[11] J. Linnartz, P. Tuyls, New shielding functions to enhance privacy and prevent

misuse of biometric templates, in: Proc. of the 4th International Conference on

Audio and Video-based Biometric Person Authentication, Guildford, UK, 2003,

pp. 393–402.

[12] P. Tuyls, A. H. M. Akkermans, T. A. M. Kevenaar, G. J. Schrijen, A. M.

Bazen, R. N. J. Veldhuis, Practical biometric authentication with template

protection, in: Proc. of the 5th International Conference on Audio and Video-

based Biometric Person Authentication, Rye Town, NY, 2005, pp. 436–446.

[13] C. Soutar, D. Roberge, A. Stoianov, R. Gilroy, V. Kumar, Biometric encryption,

in: R. Nichols (Ed.), ICSA Guide to Cryptography, McGraw-Hill, 1999.

[14] U. Uludag, A. Jain, Securing fingerprint template: Fuzzy vault with helper data,

in: Proc. IEEE Workshop on Privacy Research In Vision, New York, 2006.

[15] R. Germain, A. Califano, S. Colville, Fingerprint matching using transformation

parameter clustering, IEEE Computational Science and Engineering 4 (4)

(1997) 42–49.

[16] T.-Y. Jea, V. S. Chavan, V. Govindaraju, J. K. Schneider, Security and

matching of partial fingerprint recognition systems, in: SPIE Defense and

Security Symposium, 2004.

24

[17] U. Uludag, A. Jain, Attacks on biometric systems: a case study in fingerprints,

in: SPIE-EI 2004, Security, Seganography and Watermarking of Multimedia

Contents VI, 2004.

25

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

