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Abstract

This paper presents a multiscale texture classifier that exploits the Gabor-like properties of the dual-tree
complex wavelet transform, shift invariance and 6 directional subbands at each scale, and uses a feature
vector comprising of a variance and an entropy at different scales of each of the directional subbands.
Experimental results demonstrate its robustness against noise and a higher classification accuracy than
a discrete wavelet transform based classifier.
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1. Introduction

Numerous methods have been proposed for texture feature extraction and classification (Tuceryan &
Jain, 1993). A comparative study (Randen & Husoy, 1999) suggests that for texture classification it is
preferable to extract texture features by learning discriminative texture features from texture samples.
Most approaches to texture analysis use a hybrid of different methodologies, making it difficult to cate-
gorize them. By considering the main methodology used in texture analysis, we can loosely classify them
into three main categories (Kim & Kang, 2007).

Statistical approach to texture analysis is motivated from the findings that the human visual system
recognizes textured objects based on the statistical distribution of their image grey levels via first-order,
second-order, or higher-order statistics (Julesz et al., 1973), (Julesz, 1962). The most commonly used
method is the grey-level co-occurrence matrix (Haralick et al., 1973), which estimates texture properties
related to the second-order statistics. It is worth pointing out that although statistical textural features
are usually used to classify texture regions, most of them are extracted explicitly or implicitly based on
a statistical representation of texture.

Model-based approach to texture analysis views textures as mathematical image perceptual models.
The key problems with this approach is how to choose a suitable model for characterizing the selected
textures and how to estimate the parameters of these models based on some criteria. Another concern
is that an intensive computation is usually required to determine the model parameters. The derived
parameters are used as the features to capture the perceived essential qualities of the texture. Commonly
used texture models include the autoregressive model (AR) (Randen & Husoy, 1999),(Cariou & Chehdi,
2008), Markov random field (MRF) (Cohen et al., 1991), and Wold decomposition model (Liu & Picard,
1996). AR model is a linear model derived from the training samples via a least-mean-squares fitting.
Using cliques MRF attempts to describe the relationship of texture pixels within a region of interest. Its
optimization is based on maximizing the posteriori probability. Wold decomposition model is a perceptual
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texture model that decomposes textures into deterministic and non-deterministic fields, that correspond
to regular textural component and random textural component, respectively. Usually, these models can
capture the local contextual information in a texture image. However, themodel parameters are optimized
based on an image representative features instead of its discriminative features.

Signal processing approach to texture analysis includes multichannel Gabor filter, wavelet transform,
finite impulse response (FIR) filter, etc.Gabor filter is appealing because of its simplicity and support from
neurophysiological experiments (Faugeras, 1978). Gabor filters have been used for texture segmentation
despite being based on texture reconstruction (Jain & Farrokhnia, 1991), (Arivazhagan et al., 2006). A
general filter bank is often too large because it is designed to capture general texture properties. However,
textures can be classified by only a small set of filters, which gives rise to the filter selection problem.
For example, a neural network system has been used to select a minimum set of Gabor filters for texture
discrimination while keeping the performance at an acceptable level compared to the case without filter
selection (Jain & Karu, 1996). In these filtering methods, texture images are usually decomposed into
several feature images through projection by using a set of selected filters. These filters are often based
on representation such that textures are reconstructed with the minimum information loss. On the other
hand, our proposed approach extracts features that maximizes the separation or discrimination among
different textures. The wavelet based methods are similar to Gabor based methods with the Gabor filters
replaced by Discrete Wavelet Transform (DWT) (Wang et al., 1998), (Laine & Fan, 1993), (Arivazhagan
& Ganesa, 2003), (Arivazhagan & Ganesa, 2003, 1), (Muneeswarana et al., 2005), (Kim & Kang, 2007),
(Kokare et al., 2007), (Hiremath & Shivashankar, 2008). Since the DWT is shift variance, a shift in the
signal degrades the performance of DWT based classifiers.

For the purpose of pattern discrimination, linear Fisher discriminant (Duda et al., 2001) can incorpo-
rate feature extraction, dimensionality reduction and discrimination. However its linear optimal solution
heavily depends on the assumption that the input patterns have equal covariance matrix. This assump-
tion is usually not true for real data. To overcome this limitation, a kernel version of the Fisher discrim-
inant is recently developed for nonlinear discriminative feature extraction. The optimal solution of the
kernel Fisher discriminant corresponds to the optimal Bayesian classifier which accounts for the mini-
mization of the classification (Bayesian) error rate (Schölkopf & Smola, 2002), (Mika et al., 1999). But
these methods are computationally expensive.

Since the dual-tree complex wavelet transform (DT-CWT) (Kingsbury, 2001) is a special case of the
Gabor filters with complex coefficients it has the directional advantages of the Gabor filters but requiring
less computation. Furthermore, it is better than DWT as it is approximately shift invariance and has good
directional selectivity in two dimensions. Thus, we propose a computationally efficient multiscale texture
classifier using DT-CWT which exploits these advantages. The proposed multiscale texture classifier
utilises the benefits of the multiresolution structure of DT-CWT for multiscale feature extraction.

The paper is organized as follows. Section 2 presents DT-CWT. Section 3 presents the proposed mul-
tiscale texture classifier, and the learning and classification of texture features for different classes. The
experimental results and discussions are presented in Section 4. Finally, Section 5 concludes the paper.

2. Dual-tree complex wavelet transform

Standard DWT’s suffer from shift dependence, i.e., the decomposition of image energy between levels of
a multiscale decomposition can vary significantly if the original image is shifted prior to decomposition. In
order to address the problem of shift variance, complex wavelets have been proposed. A complex wavelet
is a set of two real wavelets with a 90◦ phase difference.

DT-CWT is obtained by filtering an image separably: 2 trees are used for the rows of the image and 2
trees for the columns in a quad-tree structure with 4:1 redundancy. The 4 quad-tree components of each
DT-CWT coefficient are combined by simple arithmetic sum and difference operations to yield a pair of
complex coefficients (Kingsbury, 2001). This produces 6 directionally selective subbands for each scale
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Fig. 1. The real and imaginary parts of the impulse response of the DT-CWT filters for the 6 directional subbands: (a) real, −15◦; (b) real,
−45◦; (c) real, −75◦; (d) real, 75◦; (e) real, 45◦; (f) real, 15◦; (g) imaginary, −15◦; (h) imaginary, −45◦; (i) imaginary, −75◦; (j) imaginary,
75◦; (k) imaginary, 45◦; and (l) imaginary, 15◦.

of the 2-dimensional DT-CWT at approximately ±15◦,±45◦ and ±75◦ (Kingsbury, 2001). The impulse
responses of the filters for the 6 directional subbands are shown in Fig. 1.

Since DT-CWT produces complex coefficients (Ri,s, Ci,s) for each directional subband at each scale, we
use the magnitude of the coefficients, i.e.,

Mi,s =
√

R2
i,s + C2

i,s (1)

where s refers to scale, i ∈ {±15◦,±45◦,±75◦} is a set of 6 subbands and Mi,s is magnitude of the coeffi-
cients of subband i at scale s. Fig. 2 shows a sample texture image from the MIT VisTex database (MIT
Vison and Modeling Group, 1998) and its Mi,1,Mi,2 and Mi,3. For visualization purpose the magnitude of
all subbands have been normalized to [0, 1].

3. The proposed texture classifier

We propose a texture classifier which comprises a texture training stage and a texture classification
stage. In the texture training stage, S level DT-CWT is applied to the training texture samples from
different texture classes.The subbands ofS levelDT-CWTareused to formadiscriminative feature vector
for the multiscale texture classifier. The mean feature vector of the extracted feature vectors for each
texture class is calculated and stored in a database for texture classification. In the texture classification
stage, for the query texture sample S level DT-CWT is applied to extract discriminative query feature
vector. The extracted query feature vector is compared with the mean feature vectors in the feature
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Fig. 2. Magnitude of DT-CWT coefficients in 6 subbands for a texture sample (Fabric.0013) from the MIT VisTex database. The first image
is the original image, the next 6 images are Mi,1, the following 6 images are Mi,2, and the final 6 images are Mi,3. For each group of 6
images, the subbands are arranged from left to right in the following directions: −15◦,−45◦,−75◦, 75◦, 45◦, 15◦.
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database to find the target texture class. The comparison between two feature vectors is performed using
a modified Euclidean distance.

3.1. Feature extraction

Denote Mi,s(x, y) as the magnitude of complex coefficient in directional subband i and scale s, and
(x, y) is the spatial location for the corresponding subband with 1 ≤ x ≤ I , 1 ≤ y ≤ J . We define a
variance vi,s and an entropy ei,s (Laine & Fan, 1993) as the features for Mi,s, i.e.,

µi,s =
1

IJ

I
∑

x=1

J
∑

y=1

Mi,s(x, y) (2)

vi,s =
1

IJ

I
∑

x=1

J
∑

y=1

(Mi,s(x, y) − µi,s)
2 (3)

ei,s =− 1

IJ

I
∑

x=1

J
∑

y=1

Mi,s(x, y)2 log(Mi,s(x, y)2) (4)

The variance vi,s is used to measure the spread of the grey-level distribution. It is expected to be large
if the grey levels of the image are widely spread out. This feature is used to estimate the contrast of the
texture. The entropy ei,s is used to measure the randomness of the grey-level distribution. It is expected
to be high if the grey levels are distributed randomly throughout the image. More features can be used
for texture classification (Laine & Fan, 1993), however we find that these two features are sufficient to
produce a good performance.

The two features are extracted to form a feature vector ~fk,t for test image k from a known texture class
t, i.e.,

~fk,t =
[~v±[a,b,c],1 · · ·~v±[a,b,c],s ~e±[a,b,c],1 · · ·~e±[a,b,c],S]√

2S
(5)

where a = 15◦, b = 45◦, c = 75◦, S is the number of scales used in DT-CWT, and

~v±[a,b,c],s =
[v−a,s v−b,s v−c,s vc,s vb,s va,s]

√

v2
−a,s + v2

−b,s + v2
−c,s + v2

c,s + v2
b,s + v2

a,s

(6)

~e±[a,b,c],s =
[e−a,s e−b,s e−c,s ec,s eb,s ea,s]

√

e2
−a,s + e2

−b,s + e2
−c,s + e2

c,s + e2
b,s + e2

a,s

(7)

At each scale we extract 12 features, 6 for ~v±[a,b,c],s and 6 for ~e±[a,b,c],s. Thus, ~fk,t is a vector with 12S
elements.

3.2. Texture learning and classification using DT-CWT

In order to perform a supervised texture classification using DT-CWT, the following learning stage for
the texture classifier is required:
(i) Decompose a training texture image using S levels of DT-CWT and normalize each subband by its

energy;
(ii) For each scale s, use Eq. (5) to generate the feature vector for each directional subband;
(iii) Repeat steps (i) and (ii) for all sample images in the same texture class;
(iv) Generate themean and variance of the feature l for each texture class t, i.e., fm t,l andσt,l, respectively,

for the training samples and store them in the database;
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(v) Repeat the above steps for each different texture image in the training stage.
After the features havebeen learned for each texture class, the following classification stage is performed:
(i) Decompose an unknown texture image using S levels of DT-CWT and extract its feature vector

using step (i) and (ii) of the learning stage, denoting the feature vector by ~fu;

(ii) Calculate the distance between ~fu and the mean feature vector ~fmt of each class t using

Dc = d(~f t, ~fmt) (8)

where d( ) is distance or discrimination function and

~fmt =
1

L

L
∑

k=1

~fk,t (9)

where L is the number of texture samples used in training;
(iii) Assign the unknown texture to texture class t̃ if Dt̃ < Dt for all t̃ 6= t.

The discrimination function is

d(~fu, ~fmt) =
12S
∑

l=1

(fu
l − fmt,l)

2

σt,l

(10)

where fu
l is the feature l of the test image, and σt,l is the standard deviation of the feature fmt,l. Eq. (10)

means that features with small variances are more informative than features with high variances, and
thus it enhances features with small variances and degrades those with high variances.

4. Experimental results and discussion

The effectiveness of the proposed texture feature extraction approach to texture classification is evalu-
ated by performing supervised classification of several test images with varying texture complexities from
two commonly-used natural texture image databases: MIT VisTex database (MIT Vison and Modeling
Group, 1998) and Brodatz album (Brodatz, 1966). Each texture image has a size of 512 × 512, with 256
grey levels. Each image is globally histogram equalized and normalized to [-1,1] to ensure that the tex-
tures are not trivially discriminable simply based on the local mean or local variance. Different portions of
the input patterns of each texture class are selected and used for training the texture classifier. We avoid
using the texture patterns on a texture border for training because these patterns are not representative
of the texture.

Twelve images containing similar textural patterns (thus making classification more difficult) from each
of the MIT VIS-Tex database and Brodatz album as respectively shown in Fig. 3 and Fig. 4 are used. A
hybrid texture database is formed by including all the twenty-four texture samples from both databases.
Each texture image is divided into two non-overlapping parts of size 256 × 512, one for training and one
for testing. Overlapped samples are generated from the training texture images using a sliding window
of size K ×K which is moved with shifts of ∆ in both the horizontal and vertical directions. The number
of test samples varies with the value of ∆. The value of ∆ is set to 4 to give a reasonable overlap between
two test samples, thus a total of 3072 texture samples are used in training for each class. After training,
another 3072 samples are used to evaluate the performance of the texture classifier.

The performance of a texture classifier is measured using a confusion matrix (Kohavi & Provost, 1998)
CM. CM is a L × L matrix for L different texture classes and CM(i, j) refers to the classification rate
when samples from class i are identified as class j. Two figure of merits are used in conjunction with CM:
average correct classification rate accr and average false classification rate afcr, where

accr =
1

L

∑

∀(i,j),i=j

CM(i, j) (11)
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Fig. 3. Texture samples from the MIT VisTex database: Brick.0001 (m1); Leaves.0003 (m2); Fabric.0001 (m3); Fabric.0007 (m4); Fabric.0009
(m5); Fabric.0013 (m6); Fabric.0014 (m7); Fabric.0017 (m8); Fabric.0018 (m9); Metal.0001 (m10); Metal.0002 (m11); and Metal.0005 (m12).

afcr =
1

L × (L − 1)

∑

∀(i,j),i6=j

CM(i, j) (12)

We performed experiments to evaluate the effects of the number of scales S and Gaussian noise on the
proposed multiscale texture classifier using DT-CWT. In order to make comparisons with DWT, the same
structure of the proposed multiscale texture classifier is applied to DWT where the features are extracted
from the high-pass subbands. DWT produces three subbands at each scale which are directional at 0◦,
45◦ and 90◦. The same features as in Eq. (3) and (4) are used for each directional subband. For each scale
and for S levels of DTW, 6 (i.e., 3 × 2) features are extracted, giving a total of 6S features.

In general DWT based texture feature descriptors use similar features as defined in Eq. (3) and (4)
but with different formulations, e.g., (Arivazhagan & Ganesa, 2003), (Arivazhagan & Ganesa, 2003, 1),
(Muneeswarana et al., 2005). Thus, if we show that our proposed feature vector performs better in DT-
CWT than in DWT, then it is highly expected that if the features used in DWT based classifiers are
employed in our DT-CWT based multiscale classifier then they will also perform better.

4.1. The effects of the number of scales

Using the images from the MIT VisTex database (MIT Vison and Modeling Group, 1998), the first

experiment determines the effects of the number of scales S used for the feature vector ~fk,t. The top half
of Table 1 shows the confusion matrices for different values of S. The results for the MIT VisTex database
in Table 2 shows that the accr for S = 1 is 94.8% while the afcr is as high as 0.5%. When S = 2 the
accr increases to 99.3% while the afcr decreases to 0.1%. A further improvement is achieved with S = 3
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Fig. 4. Texture samples from the Brodatz album: D4 (b1); D6 (b2); D17 (b3); D20 (b4); D21 (b5); D24 (b6); D28 (b7); D52 (b8); D53 (b9);
D55 (b10); D65 (b11); and D77 (b12).

where the accr and afcr are respectively 100% and 0%. Fig. 5 (a) and (b) respectively show with solid
lines the accr and afcr with respect to the number of scales used. It is clear that S = 3 gives the best
correct classification with low false classification.

The same test is applied to the twelve images from the Brodatz album (Brodatz, 1966) as shown in
Fig. 4. The lower half of Table 1 shows the confusion matrices for different values of S. The results for the
Brodatz album in Table 2 shows that the accr for S = 1, 2, 3 are respectively 96.2%, 99.9% and 100%.
The afcr for S = 1, 2, 3 are respectively 0.3%, 0.01% and 0%. The accr and afcr with respect to the
number of scales used are shown with solid lines in Fig. 5 (c) and (d), respectively. It is clear that S = 3
gives the best correct classification with low false classification.

The confusion matrices for the DWT are shown in Table 3 for the two test sets of images. The results
when compared with those of the DT-CWT based classifier (as shown in Table 2) show that the discrim-
ination power of DT-CWT is higher than DWT. The overall classification of DT-CWT and DWT with
respect to the number of scales used are shown in Fig. 5. It is clear from Fig. 5 and Table 2 that the DT-
CWT based texture classifier outperforms the DWT based texture classifier by having high accr and low
afcr for both sets of texture images. The exception occurs when S = 3 for the Brodatz album where the
performance of both algorithms are the same.

Increasing the number of scales beyond S = 3 may improve the performance of the proposed classifier.
However, the decimated wavelet transform halves the size of a subband at each new coarser scale. This
effect results in not having sufficient discriminating data beyond some scales. For instance, if the size of the
texture image is 64× 64, when S = 4 the coarser scale has 4 coefficients to extract features. This number
may not be sufficient for discriminative feature extraction. This drawback may be overcome by using more
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Table 1
Confusion matrices for DT-CWT for different number of scales used S on texture samples of class mn from the MIT VisTex database and
of class bn from the Brodatz album with ∆ = 4, i.e., 3072 training and test samples.

MIT VisTex database

S=1 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12

m1 100 0 0 0 0 0 0 0 0 0 0 0

m2 1.6 97.3 0 0 0 0 0 1.2 0 0 0 0

m3 0 0 99.6 0 0 0 0 0 0 0 0 0.4

m4 4.4 0 0 95.6 0 0 0 0 0 0 0 0

m5 0 0 0 0 82.6 0 0 0 17.4 0 0 0

m6 0 0 0 0 0 100 0 0 0 0 0 0

m7 0 0 0 0 0 0 100 0 0 0 0 0

m8 0 0 0 0 0 0 0 100 0 0 0 0

m9 0 0 0 0 0 0 0 0 62.8 0 37.2 0

m10 0 0 0 0 0 0 0 0 0 100 0 0

m11 0 0 0 0 0 0 0 0 0 0 100 0

m12 0 0 0 0 0 0 0 0 0 0 0 100

S=2 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12

m1 100 0 0 0 0 0 0 0 0 0 0 0

m2 0 100 0 0 0 0 0 0 0 0 0 0

m3 0 0 100 0 0 0 0 0 0 0 0 0

m4 0 0 0 100 0 0 0 0 0 0 0 0

m5 0 0 0 0 100 0 0 0 0 0 0 0

m6 0 0 0 0 0 100 0 0 0 0 0 0

m7 0 0 0 0 0 0 100 0 0 0 0 0

m8 0 0 0 0 0 0 0 100 0 0 0 0

m9 0 0 0 0 0 0 0 0 100 0 0 0

m10 0 0 0 0 0 0 0 0 0 91.5 0 8.5

m11 0 0 0 0 0 0 0 0 0 0 100 0

m12 0 0 0 0 0 0 0 0 0 0 0 100

S=3 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12

m1 100 0 0 0 0 0 0 0 0 0 0 0

m2 0 100 0 0 0 0 0 0 0 0 0 0

m3 0 0 100 0 0 0 0 0 0 0 0 0

m4 0 0 0 100 0 0 0 0 0 0 0 0

m5 0 0 0 0 100 0 0 0 0 0 0 0

m6 0 0 0 0 0 100 0 0 0 0 0 0

m7 0 0 0 0 0 0 100 0 0 0 0 0

m8 0 0 0 0 0 0 0 100 0 0 0 0

m9 0 0 0 0 0 0 0 0 100 0 0 0

m10 0 0 0 0 0 0 0 0 0 100 0 0

m11 0 0 0 0 0 0 0 0 0 0 100 0

m12 0 0 0 0 0 0 0 0 0 0 0 100

Brodatz album

S=1 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12
b1 100 0 0 0 0 0 0 0 0 0 0 0

b2 0 59.1 29.7 0 11.2 0 0 0 0 0 0 0

b3 0 0 96.0 0 0 0 0 4.0 0 0 0 0

b4 0 0 0 100 0 0 0 0 0 0 0 0

b5 0 0 0 0 100 0 0 0 0 0 0 0

b6 0 0 0 0 0 100 0 0 0 0 0 0

b7 0 0 0 0 0 0 100 0 0 0 0 0

b8 0 0 0 0 0 0 0 100 0 0 0 0

b9 0 0 0 0 0 0 0 0 100 0 0 0

b10 0 0 0 0 0 0 0 0 0 100 0 0

b11 0 0 0 0 0 0 0 0 0 0.3 99.7 0

b12 0 0 0 0 0 0 0 0 0 0 0 100

S=2 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12

b1 100 0 0 0 0 0 0 0 0 0 0 0

b2 0 100 0 0 0 0 0 0 0 0 0 0

b3 0 0 99.2 0 0 0 0.4 0.4 0 0 0 0

b4 0 0 0 100 0 0 0 0 0 0 0 0

b5 0 0 0 0 100 0 0 0 0 0 0 0

b6 0 0 0 0 0 100 0 0 0 0 0 0

b7 0 0 0 0 0 0 100 0 0 0 0 0

b8 0 0 0 0 0 0 0 100 0 0 0 0

b9 0 0 0 0 0 0 0 0 100 0 0 0

b10 0 0 0 0 0 0 0 0 0 100 0 0

b11 0 0 0 0 0 0 0 0 0 0 100 0

b12 0 0 0 0 0 0 0 0 0 0 0 100

S=3 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12

b1 100 0 0 0 0 0 0 0 0 0 0 0

b2 0 100 0 0 0 0 0 0 0 0 0 0

b3 0 0 100 0 0 0 0 0 0 0 0 0

b4 0 0 0 100 0 0 0 0 0 0 0 0

b5 0 0 0 0 100 0 0 0 0 0 0 0

b6 0 0 0 0 0 100 0 0 0 0 0 0

b7 0 0 0 0 0 0 100 0 0 0 0 0

b8 0 0 0 0 0 0 0 100 0 0 0 0

b9 0 0 0 0 0 0 0 0 100 0 0 0

b10 0 0 0 0 0 0 0 0 0 100 0 0

b11 0 0 0 0 0 0 0 0 0 0 100 0

b12 0 0 0 0 0 0 0 0 0 0 0 100
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Table 2
Classification rates of the proposed classifier in (%) using DT-CWT and DWT for the MIT VisTex database, the Brodatz album, and the

Hybrid database.
MIT VisTex database Brodatz album Hybrid database
DT-CWT DWT DT-CWT DWT DT-CWT DWT

S accr afcr accr afcr accr afcr accr afcr accr afcr accr afcr

1 94.8 0.5 76.5 2.1 96.2 0.3 77.8 2.0 90.4 0.4 76.4 1.0

2 99.3 0.1 92.3 0.7 99.9 0.01 92.4 0.7 99.1 0.03 90.7 0.4

3 100 0 98.1 0.2 100 0.0 100 0.0 100 0.0 99.0 0.04

4 99.8 0.01 94.1 0.5 100 0.0 98.3 0.2 99.9 0.004 93.8 0.3
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Fig. 5. Comparison between the classification rates of DT-CWT (solid lines) and DWT (dashed lines) for different databases: (a) average
correct classification for the MIT VisTex database; (b) average false classification for the MIT VisTex database; (c) average correct classification
for the Brodatz album; (d) average false classification for the Brodatz album; (e) average correct classification for the Hybrid database; and
(f) average false classification for the Hybrid database.

features or use non-decimated wavelet transform. The effect of this phenomenon and the effectiveness of
the proposed classifier for inter-database discrimination are evaluated on the Hybrid texture database.
The results are shown in Fig. 5 (e) for accr, Fig. 5 (f) for afcr and in Table 2. It is clear from Fig. 5 (e) and
(f) that the proposed classifier in DT-CWT domain outperforms the proposed classifier in DWT domain.
It is noticeable that, the proposed classifier in DT-CWT domain does not degrades its performance as
much as in DWT domain while S increases. The proposed classifier provides 100% performance when
S = 3 but the performance degrades for S > 4.

4.2. The effects of noise

The effects of noise on the proposed texture classifier in the DT-CWT and DWT domains are evaluated
by adding Gaussian noise with zero mean and different variances to the test images. The classifier for
each texture class is trained on the samples without noise. The trained texture classifiers are then tested
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Table 3
Confusion matrices for DWT for different number of scales used S on texture samples of class mn from the MIT VisTex database and of
class bn from the Brodatz album with ∆ = 4, i.e., 3072 training and test samples.

MIT VisTex database

S=1 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12

m1 79.9 0 0 0 0.4 0 0 19.7 0 0 0 0

m2 0 100 0 0 0 0 0 0 0 0 0 0

m3 0 0 100 0 0 0 0 0 0 0 0 0

m4 0 0 0 100 0 0 0 0 0 0 0 0

m5 0 0 0 0 17.2 0 0 0 53.0 29.8 0 0

m6 0 0 0 0 0 76.8 23.0 0.1 0 0 0 0

m7 0 0 0 0 0 0 100 0 0 0 0 0

m8 88.0 0 0 0 0 0 0 12.0 0 0 0 0

m9 0 0 0 0 0 0 0 0 100 0 0 0

m10 0 0 0 0 0 0 0 0 57.8 42.2 0 0

m11 0 0 0 0 0 0 0 0 0 0 100 0

m12 0 0 0 0 0 0 0 0 9.0 0 0.7 90.4

S=2 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12

m1 85.0 0 0 0 0 0 0 15.0 0 0 0 0

m2 0 100 0 0 0 0 0 0 0 0 0 0

m3 0 0 99.2 0 0 0 0 0 0 0.8 0 0

m4 0 0 0 100 0 0 0 0 0 0 0 0

m5 0 0 0 0 100 0 0 0 0 0 0 0

m6 0 0 0 0 0 91.1 8.9 0 0 0 0 0

m7 0 0 0 0 0 0 100 0 0 0 0 0

m8 0.4 0 0 0 0 0 0 99.6 0 0 0 0

m9 0 0 0 0 0 0 0 0 100 0 0 0

m10 0 0 0 0 0 0 0 0 67.1 32.9 0 0

m11 0 0 0 0 0 0 0 0 0 0 100 0

m12 0 0 0 0 0 0 0 0 0 0 0 100

S=3 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12

m1 100 0 0 0 0 0 0 0 0 0 0 0

m2 0 100 0 0 0 0 0 0 0 0 0 0

m3 0 0 100 0 0 0 0 0 0 0 0 0

m4 0 0 0 100 0 0 0 0 0 0 0 0

m5 0 0 0 0 100 0 0 0 0 0 0 0

m6 0 0 0 0 0 100 0 0 0 0 0 0

m7 0 0 0 0 0 8.6 91.4 0 0 0 0 0

m8 1.6 0 0 0 0 0 0 98.4 0 0 0 0

m9 0 0 0 0 0 0 0 0 100 0 0 0

m10 0 0 0 0 0 0 0 0 0 100 0 0

m11 0 0 0 0 0 0 0 0 0 0 100 0

m12 0 0 0 0 12.2 0 0 0 0 0 0 87.8

Brodatz album

S=1 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12
b1 39.3 0 0 0 0 0 4.3 20.7 0 0 0 35.7

b2 0 28.9 71.0 0 0.1 0 0 0 0 0 0 0

b3 0 0 100 0 0 0 0 0 0 0 0 0

b4 0 0 0 100 0 0 0 0 0 0 0 0

b5 0 0 0 0 100 0 0 0 0 0 0 0

b6 0 0 0 0 0 100 0 0 0 0 0 0

b7 24.3 0 0 0 0 0 34.4 0 0 0 0 41.3

b8 13.5 0 0 0 0 0 0.1 86.3 0 0 0 0

b9 0 0 0 0 0 0 0 0 100 0 0 0

b10 0 0 0 0 0 0 0 0 0 100 0 0

b11 0 0 0 0 0 0 0 0 0 0 100 0

b12 16.9 0 0 0 0 0 34.1 3.6 0 0 0 45.3

S=2 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12

b1 99.9 0 0 0 0 0 0.1 0 0 0 0 0

b2 0 100 0 0 0 0 0 0 0 0 0 0

b3 0 0 100 0 0 0 0 0 0 0 0 0

b4 0 0 0 100 0 0 0 0 0 0 0 0

b5 0 0 0 0 100 0 0 0 0 0 0 0

b6 0 0 0 0 0 100 0 0 0 0 0 0

b7 0 0 0 0 0 0 99.3 0 0 0 0 0.7

b8 0 0 0.1 0 0 0 83.5 16.1 0 0 0 0.3

b9 0 0 0 0 0 0 0 0 100 0 0 0

b10 0 0 0 0 0.5 0 0 0 0 93.6 5.9 0

b11 0 0 0 0 0 0 0 0 0 0 100 0

b12 0 0 0.4 0 0 0 0 0 0 0 0 99.6

S=3 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12

b1 100 0 0 0 0 0 0 0 0 0 0 0

b2 0 100 0 0 0 0 0 0 0 0 0 0

b3 0 0 100 0 0 0 0 0 0 0 0 0

b4 0 0 0 100 0 0 0 0 0 0 0 0

b5 0 0 0 0 100 0 0 0 0 0 0 0

b6 0 0 0 0 0 100 0 0 0 0 0 0

b7 0 0 0 0 0 0 100 0 0 0 0 0

b8 0 0 0 0 0 0 0 100 0 0 0 0

b9 0 0 0 0 0 0 0 0 100 0 0 0

b10 0 0 0 0 0 0 0 0 0 100 0 0

b11 0 0 0 0 0 0 0 0 0 0 100 0

b12 0 0 0 0 0 0 0 0 0 0 0 100
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Table 4
The average classification rates in (%) of DT-CWT and DWT in the present of various noise levels for the Brodatz album when S = 3.

DT-CWT DWT
SNR (dB) accr afcr accr afcr

10 27.1 6.6 23.2 7.0

15 39.4 5.5 33.4 6.0

20 73.6 2.4 53.5 4.2

25 90.6 0.9 79.8 1.8

30 96.9 0.3 92.5 0.7

35 99.6 0.04 98.1 0.2

40 99.97 0.002 98.61 0.13

45 100 0 100 0

50 100 0 100 0
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Fig. 6. Comparison between the classification rates of DT-CWT (solid lines) and DWT (dashed lines) in the present of various noise levels
for the Brodatz album when S = 3: (a) average correct classification rate; and (b) average false classification rate.

against the noisy test images. The afore mentioned procedure to create the training and test databases is
used with the noisy test images. At each noise level, the experiment is repeated 5 times and the average
of the 5 results is taken as the performance of the classifier.

The correct and false classification rates versus different noise levels (SNR) are shown in Table 4 and
Fig. 6 for the Brodatz album. The Brodatz album is selected for testing because both the DT-CWT and
DWT based multiscale texture classifiers achieve the same performance when S = 3. We chose S = 3 for
this test since it gives the highest accr and the lowest afcr (see Table 2 and Fig. 5 (c) and (d)). It is clear
from Fig. 6 that both classifiers perform well up to a noise level of 25 dB where the accr is about 91% and
the afcr is 0.9%. At this noise level, the DWT based multiscale classifier shows a weaker performance
where the accr is about 80% and the afcr is 1.8%. Both classifiers show robust performance with noise
level above 35 dB where the performance of the DT-CWT and DWT based multiscale classifiers are about
100% and about 98%, respectively. Thus from Fig. 6 and Table 4, we can conclude that the DT-CWT
based multiscale classifier achieves a better performance than the DWT based multiscale classifier.
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5. Conclusion

In this paper we propose a novel algorithm for texture classification using DT-CWT. The proposed
texture classifier achieves an average correct classification rate of 100% and an average false classification
rate of 0% for S = 3 on two sets of texture samples of varying complexities and a hybrid test set. This
performance shows that the proposed variance and entropy as features of the magnitude of the DT-CWT
complex coefficients in 6 directional subbands for 3 scales are good candidates for texture classification.
The proposed classifier utilises the benefits of multiscale structure of DT-CWT. The performance of
the proposed classifier has also been shown to be robust against noise. The multiscale structure of the
proposed classifier not only makes it robust against noise but also improves its ability to make better
discrimination between textures.

We also compared the performance of the proposed DT-CWT classifier with the DWT based classifier,
and show that the former outperforms the latter by achieving high correct classification rate and low false
classification rate. Furthermore, the proposed classifier is more robust against noise in DT-CWT domain
than DWT domain.

In this study, we have only used two simple but effective features for texture classification. The spatial
information of textures can be used to further improve the performance of the classifier, which will be
our future work. We also expect that including the phase information of DT-CWT will improve the
classification. Furthermore, we have not employed any feature selection prior to classification. We expect
that the feature selection procedure by employing PCA or ICA (Duda et al., 2001) will improve the
performance of the proposed texture classifier on larger databases. This will also be our future work.
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