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Abstract

A new clustering algorithm for proximity data, called RECM (Relational evi-
dential c-means) is presented. This algorithm generates a credal partition, a new
clustering structure based on the theory of belief functions, which extends the exist-
ing concepts of hard, fuzzy and possibilistic partitions. Two algorithms, EVCLUS
(Evidential Clustering) and ECM (Evidential c-Means) were previously available
to derive credal partitions from data. EVCLUS was designed to handle proximity
data, whereas ECM is a direct extension of fuzzy clustering algorithms for vectorial
data. In this article, the relational version of ECM is introduced. It is compared to
EVCLUS using various datasets. It is shown that RECM provides similar results to
those given by EVCLUS. However, the optimization procedure of RECM, based on
an alternate minimization scheme, is computationally much more efficient than the
gradient-based procedure used in EVCLUS.

Key words: Clustering, proximity data, unsupervised learning, Dempster-Shafer
theory, belief functions

1 Introduction

The term “cluster analysis” encompasses a number of different algorithms and
methods for grouping objects of similar kind into categories. The similarity
between objects is either computed using a suitable distance based on numeric
attributes describing the objects (vectorial data), or directly available in the
form of pairwise similarity or dissimilarity measurements (proximity data). A
wide variety of methods for clustering object and proximity data has been
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developed. They can be broadly classified into two main families: hierarchi-

cal and hard or fuzzy partitioning methods. Hierarchical methods provide a
description of the data in the form of a sequence of nested clusters. Using
hard partitioning methods, objects are grouped in an exclusive way, so that
if a certain object belongs to a cluster then it cannot be included in another
cluster. On the contrary, with fuzzy partitioning, each object may belong to
several clusters with different degrees of membership.

For vectorial data, one of the most popular algorithms for deriving a fuzzy
partition is the fuzzy c-means algorithm (FCM) [1]. In this method, the mem-
bership degrees of the objects are obtained through iterative minimization
of an objective function, subject to the constraint that the sum of member-
ship degrees over the clusters for each object be equal to 1. Several authors,
having observed several shortcomings of FCM, among them the inability to
detect atypical objects, have proposed variants of the original model. The pos-

sibilistic c-means algorithm (PCM) [17] and Davé’s noise clustering (NC) [5]
algorithms are two examples of such models. Fuzzy techniques for clustering
proximity data include Roubens’ fuzzy non metric model (FNM) model [23],
the assignment-prototype (AP) model [31] and the relational fuzzy c-means
(RFCM) model [14]. The latter approach was later extended by Hathaway
and Bezdek [15] to cope with non-Euclidean dissimilarity data, leading to the
non-Euclidean relational fuzzy c-means (NERFCM) model. Finally, robust
versions of the FNM and RFCM algorithms were proposed by Davé [6].

Recently, a new concept of partition, the credal partition, developed in the
framework of belief functions theory, has been introduced [8,9,20,21]. This con-
cept generalizes existing concepts of hard, fuzzy (probabilistic) or possibilistic
partitions by allowing an object to belong to several subsets of classes. Exper-
iments have shown that this additional flexibility has the potential to bring a
deeper insight into the data and to increase the robustness against outliers.
Two algorithms, EVCLUS (Evidential Clustering) [8,9] and ECM (Evidential
c-Means) [21] have been proposed in order to derive such credal partitions
from data. EVCLUS was designed to handle proximity data, whereas ECM is
a direct extension of Davé’s algorithm and is only applicable to vectorial data.
The determination of the partition in EVCLUS is founded on a gradient-based
minimization of a criterion similar to the ones used in multidimensional scal-
ing [3,4]. On the contrary, the search for the optimal parameters in ECM is
carried out through an alternate optimization scheme of an objective function
similar to FCM. This procedure is much more efficient than EVCLUS, but
it is restricted to vectorial data. The aim of this article is thus to propose a
version of ECM able to compute a credal partition from proximity data. As it
is an evidential counterpart of the Relational Fuzzy c-Means algorithm [14],
this new algorithm will be called “Relational Evidential c-Means” (RECM).

The rest of this paper is organized as follows. The concept of credal partition
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and the ECM algorithm are first recalled in Section 2. The RECM algorithm is
then introduced in Section 3, and an experimental comparison between RECM
and EVCLUS using three datasets is presented in Section 4. Finally, Section
5 concludes the paper. Background notions on belief function theory and the
EVCLUS algorithm are recalled in Appendices A and B, respectively.

2 Credal clustering

In this section, necessary notions on credal clustering are recalled. The concept
of credal partition is first presented in Section 2.1, and the ECM algorithm
for generating credal partitions from vectorial data is summarized in Section
2.2. The EVCLUS algorithm, which is used in Section 4 for comparison but
is not central in this paper, is briefly described in Appendix B.

2.1 Credal partition

Let us consider a collection O = {o1, . . . , on} of n objects, and a set Ω =
{ω1, . . . , ωc} of c classes forming a partition of O. Let us assume that we have
only partial knowledge concerning the class membership of each object oi,
and that this knowledge is represented by a bba mi on the set Ω. We recall
that mi(Ω) stands for complete ignorance of the class of object i, whereas
mi({ωk}) = 1 corresponds to full certainty that object i belongs to class k.
All other situations correspond to partial knowledge of the class of oi. For
instance, the following bba:

mi({ωk, ωℓ}) = 0.7

mi(Ω) = 0.3

means that we have some belief that object i belongs either to class ωk or to
class ωℓ, and the weight of this belief is equal to 0.7.

Let M = (m1, . . . ,mn) denote the n-tuple of bbas related to the n objects. M
is called a credal partition of O. Two particular cases are of interest:

• when each mi is a certain bba, then M defines a conventional, crisp partition
of Ω; this corresponds to a situation of complete knowledge;
• when each mi is a Bayesian bba, then M specifies a fuzzy partition of Ω, as

defined by Bezdek [2].

As underlined in [21], a credal partition is a rich representation that carries
a lot of information about the data. In [21], various tools helping the user to
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interpret the results of ECM were suggested. First, a credal partition can be
converted into classical clustering structures. For example, a fuzzy partition
can be recovered by computing the pignistic probability BetPi({ωk}) induced
by each bba mi and interpreting this value as the degree of membership of
object i to cluster k.

Another interesting way of synthesizing the information is to assign each object
to the subset of classes with the highest mass. In this way, one obtains a
partition in at most 2c groups, which is referred to as a hard credal partition.
This hard credal partition allows us to detect, on the one hand, the objects
that can be assigned without ambiguity to a single cluster and, on the other
hand, the objects lying at the boundary of two or more clusters.

It was also proposed to characterize each cluster by two sets of objects. The
lower approximation ωL

k of a cluster ωk is the set of objects that belong with
no doubt to cluster ωk: it is the set of objects assigned to the singleton {ωk}
in the hard credal partition; the upper approximation ωU

k gathers the objects
that could possibly belong to cluster ωk: it is the set of objects assigned to
subsets of Ω containing ωk.

Example 1 Let us consider a collection O of n = 5 objects and c = 3 classes.
A credal partition M of O is given in Table 1. The class of object o2 is known
with certainty, whereas the class of o5 is completely unknown. The three other
cases correspond to situations of partial knowledge (m4 is Bayesian). The
corresponding pignistic probabilities are given in Table 2. Table 3 shows the
hard credal partition. For instance, object 1 is assigned to the pair of clusters
{ω1, ω2}, whereas object 4 is assigned to the singleton {ω3}. For lower and
upper estimations of the clusters, we have, for instance, ωL

3 = {4}, as object 4
is the unique object unambiguously assigned to cluster ω3, and ωU

3 = {3, 4, 5}
as, in addition to object 4, objects 3 and 4 are assigned to sets of clusters
containing ω3. The lower and upper approximations provide quite easy and
intuitive summaries of the clustering results, as will be shown in Section 4.

INSERT TABLES 1, 2, 3

2.2 ECM algorithm

If the knowledge about the class membership of a set of objects is chosen to be
represented by a credal partition, a method for extracting automatically this
knowledge from data is needed. Two methods have already been proposed,
the first one for proximity data (EVCLUS), the second one for vectorial data
(ECM). Only the latter, which constituted the starting point for the work
described in the present paper, will be recalled in this section.
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Let us assume the available data to consist of a matrix X = (xik) of size (n×p),
where p is the dimension of the feature space. In [21], an algorithm, referred
to as ECM (Evidential c-Means) and inspired from Davé’s noise clustering
algorithm [5] (NC algorithm), was proposed to derive a credal partition from
such vectorial data.

ECM determines, for each object oi, a bba mi in such a way that mi(Aj) is
low (resp. high) when the distance dij between oi and the focal set Aj is high
(resp. low), where Aj is any non empty subset of Ω. The distance between an
object and the subset Aj is defined as follows: as in fuzzy clustering, each class
ωk is represented by a center vk ∈ R

p; then, each subset Aj of Ω is associated
to the barycenter v̄j of the centers associated to the classes composing Aj.
More precisely, with the notation

skj =







1 if ωk ∈ Aj

0 otherwise,
, (1)

the barycenter v̄j associated to Aj is computed as:

v̄j =
1

cj

c
∑

k=1

skjvk, (2)

where cj = |Aj| denotes the cardinal of Aj and c = |Ω|. The distance dij is
then defined by:

d2
ij , ||xi − v̄j||

2. (3)

To derive the credal partition M = (m1, . . . ,mn) and the matrix V of size
(c× p) containing the cluster centers, ECM minimizes the following objective
function:

JECM(M,V ) ,

n
∑

i=1

∑

{j/Aj 6=∅,Aj⊆Ω}

cα
j mβ

ijd
2
ij +

n
∑

i=1

δ2mβ
i∅, (4)

subject to
∑

{j/Aj⊆Ω,Aj 6=∅}

mij + mi∅ = 1 i = 1, . . . , n, (5)

where mi∅ denotes mi(∅). Criterion JECM is similar to that of the NC algorithm.
The empty set is assimilated to a noise cluster considered to be at a fixed
distance δ from each object. Parameter δ is used to control the number of
objects considered as outliers. As in FCM, parameter β is used to tune the
hardness of the partition. Note that additional weighting coefficients (cα

j ) are
introduced for penalizing the subsets in Ω of high cardinality, the exponent α
allowing us to control the degree of penalization.

To minimize JECM, an alternate optimization scheme, similar to FCM, was
proposed in [21]. First, V is considered to be fixed. In [21], it is shown that
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M has to be updated using the following equations:

mij =
c
−α/(β−1)
j d

−2/(β−1)
ij

∑

Ak 6=∅ c
−α/(β−1)
k d

−2/(β−1)
ik + δ−2/(β−1)

i = 1, . . . , n ∀j/Aj ⊆ Ω, Aj 6= ∅

(6)
and

mi∅ = 1−
∑

Aj 6=∅

mij i = 1, . . . , n. (7)

In a second step, M is considered to be fixed. The minimization of JECM with
respect to V is an unconstrained optimization problem. Setting to zero the
partial derivatives of JECM with respect to the centers gives c linear equations
in vk, which can be written as:

∑

i

xi

∑

Aj 6=∅

cα−1
j mβ

ijslj =
∑

k

vk

∑

i

∑

Aj 6=∅

cα−2
j mβ

ijsljskj l = 1, . . . , c. (8)

Let H and U be two matrices of size (c × c) and (c × n), respectively, such
that:

Hlk =
∑

i

∑

Aj 6=∅

cα−2
j mβ

ijsljskj k, l = 1, . . . , c, (9)

and

Uli =
∑

Aj 6=∅

cα−1
j mβ

ijslj l = 1, c i = 1, . . . , n. (10)

With these notations, the c equations (8) can be written more compactly in
matrix form as:

HV = UX. (11)

Matrix equation (11) can be solved for V using a standard linear system solver.
As FCM and its variants, the algorithm starts with an initial guess for either
the credal partition M or the cluster centers V and iterates until convergence,
alternating the optimization of M and V 1 .

2.3 Discussion

Until now, two credal clustering algorithms are available: EVCLUS (see Ap-
pendix B) and ECM. Although founded on the same general model of parti-
tioning, these two algorithms are very different.

1 MATLAB codes for ECM and EVCLUS are available at
http://www.hds.utc.fr/∼tdenoeux.

6



EVCLUS is dedicated to proximity data. It does not use any explicit geo-
metrical model of the data, so that it is applicable to both metric and non
metric data. When the number of cluster is fixed, only one parameter (λ) has
to be tuned. Parameter λ controls the overall complexity of the model, i.e.,
simultaneously, the mass allocated to the empty set and the mass allocated
to non singleton subsets of Ω. The determination of the partition is achieved
using gradient-based minimization of a stress function.

In contrast, ECM is in line with FCM and its variants: each cluster is repre-
sented by a prototype and the similarity between an object and a cluster is
measured using an Euclidean metric. The number of parameters to be fixed in
ECM is greater than in EVCLUS, allowing for a finer control of the allocation
of the masses. Parameter β is fixed as in standard fuzzy clustering algorithm.
Parameters α and δ allow a separate control of, respectively, the uncertainty
of the partition, and the outlier rejection rate. The credal partition is obtained
using an alternate optimization procedure. It turns out that this procedure is
computationally much more efficient than the gradient-based algorithm used
in EVCLUS. However it is only applicable to vectorial data. Finding a rela-
tional version of ECM, able to deal with proximity data, was thus of great
interest. This problem is solved in the next section.

3 Relational formulation of ECM

In this section, the notion of a Euclidean dissimilarity matrix, as well as a
criterion for checking this property, will first be recalled (Section 3.1). The
derivation of the relational version of ECM will be presented in Section 3.2.
Complexity issues and parameter tuning will then be addressed in Sections
3.3 and 3.4, respectively.

3.1 Euclidean embedding of the dissimilarities

We suppose in this section that the input data consists of a matrix ∆ = (δii′)
of pairwise dissimilarities between the objects.

∆ is called Euclidean if there exists a description {x1, ...,xn} of the objects in
a p-dimensional feature space such that δii′ = ||xi − xi′||

2. Let W = (wii′) be
the matrix of size (n × n) of dot products of the xi. It is assumed, without
loss of generality, that the centroid of the configuration of objects is placed at
the origin. If ∆ is Euclidean, the following relation holds [3,4,19]:

W = −
1

2
J∆J, (12)
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where J = 1
n
eet − I, with e = (1, ..., 1)t ∈ R

n and I is the (n × n) identity
matrix.

The following theorem will be used in the experiments to check if the dissim-
ilarities can be embedded in a Euclidean space:

Theorem 1 (Young and Householder [32])
∆ is Euclidean if and only if W is positive semi-definite.

3.2 From ECM to RECM

The formulation of a relational version of ECM is founded on the explicit
hypothesis that ∆ is Euclidean. The update equations of ECM have to be
expressed solely in terms of input dissimilarities or, equivalently, in terms of
dot products between the xi, since relation (12) is supposed to hold.

We first note that the update equations (6) in ECM requires the computation
of the Euclidean distance dij between each object xi and the barycenter v̄j as-
sociated to each non empty subset Aj of Ω. This distance, defined by equation
(3), can easily be expressed in terms of dot products in the feature space:

d2
ij = (xi − v̄j)

t(xi − v̄j)

= (xi −
1

cj

c
∑

k=1

skjvk)
t(xi −

1

cj

c
∑

l=1

sljvl)

= xt
ixi −

2

cj

c
∑

k=1

skjx
t
ivk +

1

c2
j

c
∑

k=1

c
∑

l=1

skjsljv
t
kvl. (13)

Only the dot products xt
ixi are directly available, thanks to (12). A way to

compute the other products xt
ivk and vt

kvl must be found. It turns out that
they can be easily derived from (11). Let us introduce the following notations:
let X denote the matrix of size (n × p) of objects coordinates, let Q = (qkk′)
be the matrix of size (c × c) of dot products of the vk (qkk′ = vt

kvk′) and
R = (rki) the matrix of size (c × n) of dot products between the vk and
the xi (rki = vt

kxi). The following relations hold: W = XX t, R = V X t and
Q = V V t. Let P be any matrix introduced before. Notations P.i and Pi. are
used, respectively, to denote the ith column and the ith row of P .

Starting from (11), matrices Q and R can be determined in two successive
steps:

(1) Determination of R. By right multiplying both sides of (11) by xi, we
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get:

H















vt
1xi

...

vt
cxi















= U















xt
1xi

...

xt
nxi















, (14)

or, equivalently,

HR.i = UW.i, (15)

so that each column R.i (i = 1, n) of R is obtained by solving a system of
c linear equations (14) with c unknowns vt

kxi, k = 1, c. The whole matrix
R is thus obtained by solving n such linear systems.

(2) Determination of Q. By right multipliying both sides of (11) by vi, we
see that each column Q.i (i = 1, n) of Q is in turn solution of a linear
system with c equations and c unknowns vt

kvi, k = 1, c:

H















vt
1vi

...

vt
cvi















= U















xt
1vi

...

xt
nvi















, (16)

or, equivalently,

HQ.i = URi. (17)

The whole matrix Q is thus obtained after solving c linear systems.

The above equations allow the formulation of RECM, a variant of ECM dealing
with proximity data. It can be summarized in the following steps:
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Step 1. Fix c, α, β, δ2 and ǫ;

Step 2. Generate randomly the initial credal partition M (0);

Step 3. (a) Set k ← 0;

(b) Compute W from ∆ using (12);

Step 4. Repeat

(a) k ← k + 1;

(b) Compute H(k) and U (k) from M (k−1) using (9) and (10);

(c) For i = 1, n

Compute the ith column of R(k) using (14);

EndFor

(d) For i = 1, c

Compute the ith column of Q(k) using (16);

EndFor

(e) Compute the dij from R(k) and Q(k) using (13);

(f) Update M (k) using (6) and (7);

Until ||M (k) −M (k−1)|| < ǫ

Remark 1 It is interesting to note that a kernelized version of ECM may be
easily derived from the RECM algorithm by replacing the dot products xt

ixi′

in matrix W by kernel functions K(xi,xi′). This approach has been exploited
by several authors for formulating clustering algorithms in a kernel-induced
feature space (see, for example, [12]).

3.3 Complexity analysis

In [9], the algorithmic complexity of EVCLUS was analyzed. It was shown that
one iteration of the optimization procedure necessitates O(f 3n2) operations
where f denotes the number of focal elements (f = 2c for the complete model).
A reduction of the complexity was thus suggested by restricting the focal
elements to the singletons, the empty set and Ω, so that f = c + 2. In this
way, calculations involving a few hundreds objets and a limited number of
classes were made tractable.

We analyze below the different substeps inside in the main loop (step 4) of
the optimization procedure in RECM:

10



• substep (b): it requires nfc2 and nfc operations for computing H and U ;
• substep (c): for each of the n systems to be solved, we need nc operations to

compute UW.i and the resolution of one system is O(c2). Considering that
n≫ c, the overall complexity of this step is O(n2c);
• substep (d): for each of the c systems to be solved, we need nc operations

to compute URi. and the resolution of one system is O(c2). The overall
complexity of this step is O(nc2); the complexity of steps (c) and (d) can
thus be evaluated to O(n2c).
• substep (e): the complexity of this step is O(nfc2);
• substep (f): the complexity of this step is O(nf);

The overall complexity of one iteration in RECM is thus of O(nfc2 + n2c).
Considering that c < f < n, it is clear that this complexity is lower than the
complexity of EVCLUS. In particular, the complexity of RECM is only linear
with respect to the number f of focal elements, which is a major improvement
over the cubic complexity of EVCLUS. Moreover, the number of iterations
needed until convergence is by far lower with RECM, as will be shown in
the experiments of Section 4. These points make RECM more attractive than
EVCLUS when the number of objects to be classified is high.

3.4 Guidelines for parameter setting

The RECM algorithm depends on three parameters (α, β and δ2) that have
to be tuned to achieve good results. Parameter β has the same meaning as the
fuzzification constant h of fuzzy clustering algorithms such as RFCM. A usual
choice for h is 2. However, with this value for β, it was observed that RECM
may either not converge, or converge toward a degenerate solution for some
datasets. This phenomenon, which is also observed with fuzzy algorithms,
occurs when the data is not Euclidean, or has a particular structure. In those
cases, β should be lowered. Checking the positivity of the eigenvalues of W
can be a valuable way to define a starting value for β. We recommend to start
anyway with β = 1.5 and to lower β is needed.

Parameter α controls the fraction of mass allocated to non singleton subsets
of Ω. A value α = 1 can be considered as a good starting point and can be
modified according to what is expected from the user: the higher α, the more
the focal sets of cardinality greater than one are penalized, i.e., the more the
partition moves toward a fuzzy partition. On the contrary, if α is set to zero,
all focal elements are penalized in the same way.

Parameter δ2, as in the NC clustering method of Davé, represents the fixed
distance which is assumed between each object and the noise cluster (rep-
resented by the empty set). It controls the number of objects considered as
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outliers. If its value is greater than the maximum found in ∆, no rejection will
be considered. It can then be lowered to achieve a given rejection rate.

It should be emphasized that RECM, as any clustering algorithm, is an ex-
ploratory data analysis tool and that it always requires some kind of subjective
analysis of the results. Although general guidelines for parameter setting can
be given (as was done in this section), we do not think that the parameter
tuning process can be performed in a fully automatic way for all datasets. In
practice, we recommend selecting parameter values by trial and error, starting
from default values, with the help of graphical displays such as MDS maps.

4 Experiments

In this section, we compare the behavior of EVCLUS and RECM using the
three datasets presented in [9]. We also report the results obtained with five
classical fuzzy algorithms for proximity data: the assignment-prototype algo-
rithm (AP) [31], the Fuzzy Non Metric algorithm (FNM) [23], the Relational
Fuzzy c-means algorithm (RFCM) [14], and its “Noise” version (NRFCM)
[6], and the non-Euclidean RFCM algorithm (NERF) [15]. Among these five
algorithms, three of them have a fuzzification constant h, similar to β, that
controls the degree of “hardness” of the resulting fuzzy partition. NRFCM
has another parameter, the distance to the noise cluster, which plays a role
similar to δ.

The first dataset is a synthetic one, the other two contain real data. Compar-
isons focus on the ability to discover meaningful partitions, on the ability to
provide interpretable representations of the data, and on the computational
efficiency of the algorithms. For the comparison of the computational com-
plexity of RECM and EVCLUS, the mean running times over 50 runs of the
algorithms are reported together with the coefficient of variation of the final
stress function (ratio of the standard deviation to the mean) and the number
of iterations needed to achieve a given level of convergence. Note that, for a
fair comparison, the same stopping criterion was used in the two algorithms:
the procedure was stopped when the norm of the difference between M (k) and
M (k−1) wass below a given threshold (equal to 10−5). The limited version of
EVCLUS (keeping only singleton elements, Ω and the empty set) will be re-
ferred to in the experiments as EVCLUS-1, as opposed to EVCLUS-2 that
designates the full version with all the 2c focal elements.
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4.1 Diamond dataset

The first example is inspired from a classical dataset proposed by Windham
[31]. It is composed of 13 objects. Twelve objects (objects 2 to 13) are repre-
sented in a two-dimensional space, as shown in Figure 1, and their dissimilari-
ties are computed as squared Euclidean distances. Object 13 is an outlier and
has been added to Windham’s dataset to test the ability of the algorithm to
detect outlying observations. Additionally, the dissimilarities to a 13th object
(object 1) have been added in the data matrix. This object has no represen-
tation in the attribute space; it may be called an “inlier”, as is quite similar
to all other objects (the dissimilarity matrix is given in [9]).

In [9], we compared the results obtained with EVCLUS and the fuzzy algo-
rithms. These results are reproduced in Figure 2, which shows the membership
degrees obtained by the fuzzy algorithms as well as the bbas generated by EV-
CLUS. As discussed in [9], every algorithms finds a reasonable partition of the
data, but EVCLUS is the only algorithm able to detect atypical objects like
object 1 and object 13.

We now compare these results with the ones obtained by RECM. The data is
non Euclidean because of object 1, as confirmed by some negative eigenvalues
of W (see Figure 3). Consequently, we used β = 1.5; a moderate penalization
α = 1 was chosen and δ2 was fixed to 25. We can see in Figure 4 that RECM
gives correct results: the two natural clusters are recovered, the mass allocated
to the empty set allows the detection of the outlier, and object 7, which is
between the two clusters is characterized by a high mass on Ω. The difference
between EVCLUS and RECM lies in the masses allocated for the inlier (object
1). EVCLUS allocates the totality of the mass to Ω, whereas RECM distributes
the mass equally between the singletons, what can be considered as an equally
valuable solution.

Concerning the comparison of the computational complexity, the results are
given in Table 4. We can see that RECM outperforms EVCLUS in the two
cases considered (without or with inlier), even if the differences tend to be
smaller in the second case where the data is non Euclidean: the cpu time
is shorter, the number of iterations needed for convergence is lower and the
results are less variable.

INSERT FIGURES 1 TO 4

INSERT TABLE 4
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4.2 “Cat cortex” dataset

This second dataset consists of a matrix of connection strengths between 65
cortical areas of the cat brain. It was used by several authors for illustrat-
ing algorithms for visualizing, classifying or clustering proximity data [13,16]
and was already used in [9] to evaluate EVCLUS. The proximity values are
measured on an ordinal scale and range from 0 (self-connection), to 4 (absent
or unreported connection) with intermediate values: 1 (dense connection), 2
(intermediate connection) and 3 (weak connection). The representation of the
eigenvalues of matrix W in Figure 3 shows that the dissimilarity matrix is
not Euclidean. From functional considerations, the cortex can be divided into
four regions: auditory (A), visual (V), somatosensory (S), and frontolimbic
(F). The clustering task is to find a four-class partition of the 65 cortical ar-
eas, based on the dissimilarity data, which is consistent with the functional
regions. As reported in [9], only three points out 65 were misclassified using
EVCLUS-1. This error rate was consistent with the leave-one-out rates ob-
tained by Graepel et al. [13] in a supervised setting. Correct solutions were
provided by FNM, RFCM, and NRFCM for small values of the fuzzification
parameter h (h < 1.4). The best solution, 3 errors among 65, was obtained by
RFCM with h = 1.2.

To apply RECM on this dataset, the parameter δ2 was fixed to a value greater
than the maximum of dissimilarities (δ2 = 5) because the detection of outliers
was not the aim of the study. As the fuzzy algorithms, RECM converges
toward a useless solution with an equal mass on all the focal elements when
β is set to 2. Setting β to 1.1 gives interesting solutions presented in Figures
5, 6 and 7 for different values of α. A 2-D map of the data was obtained
from a multidimensional scaling algorithm. Hard partitions were computed by
assigning each object to the class with highest pignistic probability (A.3). They
are presented using different symbols with size proportional to the maximum
pignistic probability. By this way, a hard and a fuzzy partition are represented
on the same graph. For α = 0.5, three wrong classifications were observed, a
result equivalent to that of EVCLUS 2 . For smaller values of α, slightly higher
error rates were observed (from 4 to 7 errors).

We can gain more insight into the data by studying the lower and upper
approximations of each cluster computed from the credal partition. For α =
0.5, the lower and upper approximations are equal since the mass is in totality
allocated to the singletons of Ω (see Figure 5). When using smaller values of

2 It should be noted that classification errors are just given here as a means to check
that RECM and EVCLUS yield comparable results in terms of hard partitions, and
that these results are consistent with a physical description of the problem. However,
these algorithms were not designed to minimize a classification error, as the goal of
cluster analysis is not to minimize the discrepancy with a known partition.
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α, we can see that the lower approximations concentrate on the cores of the
clusters, whereas the upper approximations become more and more imprecise
until including almost all the data points (see Figures 6 and 7).

In [9], only the results using EVCLUS-1 were reported. When trying to apply
EVCLUS-2 to this data to obtain a more general credal partition, it turns out
that correct classifications rates could be obtained only when the penaliza-
tion applied to non singletons element was very strong. In this case, the mass
is allocated in priority to the singletons of Ω: consequently, EVCLUS-1 and
EVCLUS-2 give similar results. Although corresponding to good classification
rates, the structures found are not general credal partitions taking full advan-
tage of the belief functions framework. When λ is lowered, EVCLUS-2 is much
more unstable, many local minima are found and the algorithm fails to provide
interesting solutions. In contrast, RECM is fast and it is easy to set param-
eter α once β and δ2 have been fixed to obtain a desired level of description
of the data, as illustrated by figures 5 to 7. These remarks are supported by
the experimental results reported in Table 5. It may be seen that, despite the
non Euclidean nature of the data, RECM is very efficient and produces very
stable results. In contrast, EVCLUS, in the full version, is slow and produces
variable results. Note that, although the results are strongly dependent on the
values of λ and ǫ, the main tendencies observed are maintained whatever their
values.

INSERT FIGURES 5 TO 7

INSERT TABLE 5

4.3 “Protein” dataset

This real dataset consists of a dissimilarity matrix measuring the structural
proximity of 213 proteins sequences [16,13]. The eigenvalues of correspond-
ing inner products matrix W being all positive, the dissimilarity matrix is
Euclidean. The proteins are divided into 4 classes of globins: hemoglobins-α
(HA), hemoglobins-β (HB), myoglobins (M) and heterogeneous globins (G).
The study consists in checking whether these four natural clusters could be
recovered from the dissimilarities.

As reported in [9], the best classification result with the fuzzy algorithms was
obtained by RFCM with a fuzzification constant h = 1.05: five proteins were
misclassified. EVCLUS-1 was run with λ = 0.005. The hard partition com-
puted from the maximum pignistic probabilities leads to only one misclassifi-
cation out of 213. As with the cat cortex dataset, we found out in these new
experiments that EVCLUS-2 is trapped in local minima and fails to provide
good solutions in terms of correct classification rate.
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To apply RECM, the maximum of the dissimilarities being 13.64, we fixed
δ2 = 20. As in the fuzzy algorithms, we chose a low value for β (=1.1). We
set α = 0 so as to obtain masses on non-singleton subsets of Ω. A comparison
of the hard and fuzzy partitions obtained using EVCLUS-1 and RECM is
presented in Figure 8. It can be seen that they are very similar. Three points
are misclassified with RECM. The lower and upper approximations of the
clusters are shown in Figure 9; they can be considered as good summaries of
the data. Additionally, a comparison between the mass allocated to the empty
set by both algorithms is also provided in Figure 10 (the size of the symbols is
proportional to the mass of the empty set). The G-class, although situated in
the middle of the MDS configuration, was found in [9] to receive the highest
mass on the empty set. A reasonable explanation was that the members of
this class are characterized by a high within-class dissimilarity value and,
at the same time, very small differences between within and between-class
dissimilarities. It may be seen from Figure 10 that the peculiarity of the G-class
is also detected by RECM. The experimental results concerning the execution
times and the variability of the solutions are given in Table 6. The same
conclusions as before can be drawn: RECM is faster and more stable.

INSERT FIGURES 8 TO 10

INSERT TABLE 6

4.4 Discussion

For which application is RECM designed? In problems where vectorial
data are available, it is in general more efficient to apply clustering directly
to the object-attribute matrix X rather than applying a relational clustering
algorithm to a dissimilarity matrix derived from X. The first obvious applica-
tion of relational clustering is when relational data is the only available data.
This situation often occurs in domains like psychology, bioinformatics, eco-
nomics, psychophysics... Another interest of relational algorithms is when the
dissimilarity between objects cannot be properly measured using the standard
Euclidean norm. In web mining applications, e.g., some authors have proposed
dissimilarity measures mixing numerical and non numerical attributes so as to
take into account the structure of web sites [18,24]. RECM belongs to the same
family of algorithms as RFCM, AP or NERFCM. As underlined by Bezdeck
[1, page 181], due to their computational complexity, these algorithms are not
well-adapted to handle very large data sets, which is not the issue addressed in
this paper. As RFCM and similar algorithms, RECM is best suited to handle
a few hundreds of objects.
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Pros and cons with respect to fuzzy relational algorithms. The com-
plexity of RECM and EVCLUS is higher than that of conventional fuzzy rela-
tional clusterings. If, as a final result, only a hard partition is needed, evidential
algorithms cannot be recommended. However, we have shown that, as a coun-
terpart of a higher complexity, these algorithms are able to provide, in the
case of small or moderate size datasets, a very rich description of the struc-
ture of the data. Moreover, the possibility of combining several partitions in
the evidential framework has been shown to be an interesting feature of these
algorithms [9,21].

RECM or EVCLUS? The three experiments above have shown the strengths
and weaknesses of both algorithms. As EVCLUS makes no assumption about
the nature of the dissimilarities, it is a priori more suited to non Euclidean
dissimilarities. It also seems to be simpler to use, as only one parameter (λ)
has to be set. The counterpart of this simplicity is a lack of flexibility, as the
outlier detection rate and the imprecision of the partition (mass allocated to
non singletons) are controlled by a single parameter. Experiments have shown
that the gradient-based optimization procedure is not efficient when the full
version with 2c focal elements is used. The limited version of EVCLUS seems
to be more advisable, although not providing a general credal partition. In
contrast, the optimization algorithm in RECM has been shown to be com-
putationally much more efficient. The method makes the explicit assumption
that the input dissimilarities are computed as squared Euclidean distances in
a vector space. However, reasonable solutions, very close to those of EVCLUS,
were obtained in our experiments even when the Euclidean assumption was
not verified. Moreover, RECM allows us to better exploit the expressive power
of the belief function framework by a proper adjustment of the parameters.

5 Conclusion

The concept of credal partition is a recently introduced generalization of hard,
fuzzy and possibilistic partitions, which makes use of the expressive power of
the Dempster-Shafer theory of belief functions. A credal partition is more
general than a fuzzy partition in that masses (similar to membership degrees)
are assigned to sets of clusters with any cardinality. As shown in previous work
[9,20,21], this formalism can be used to generate meaningful representations
of the data. In particular, the lower (respectively, upper) approximation of a
cluster can be computed as the set of objects certainly (respectively, possibly)
belonging to that cluster.

Until now, only two algorithms were available for automatically constructing
a credal partition from learning data. The EVCLUS algorithm [9] is based on
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gradient descent of a stress function measuring the discrepancy between object
dissimilarities and degrees of conflict of the associated bbas. This algorithm
can be applied to proximity data, but it is rather slow and, practically, it can
only be used to generate special kinds of credal partitions in which the masses
are assigned to focal elements of cardinality 0, 1 and c, where c is the number
of clusters. The other algorithm, called ECM [21], is an evidential counterpart
of the fuzzy c-means and is based on alternative optimization of cluster centers
and belief masses. This algorithm is computationally much more efficient than
EVCLUS, but it can only be applied to vectorial data.

In this paper, a relational version of ECM, called RECM, has been introduced.
This new algorithm can be seen as an evidential counterpart of relational
fuzzy clustering algorithm such as RFCM. Although based on the assumption
that the input dissimilarities are squared Euclidean distances, this algorithm
has been shown to yield results comparable to those provided by EVCLUS
even in case of non Euclidean data. The advantages of RECM over EVCLUS
are twofold: first, RECM is faster and more stable; secondly, it allows the
construction of general credal partition in which belief masses are assigned to
focal sets of any cardinality, thus exploiting the full expressive power of belief
functions.

Although the application of belief function theory to supervised or partially
supervised classification has been well developed (see, e.g., [7,10,22]), the ap-
plication of this theory to unsupervised classification has been until now very
limited, partly due to the lack of efficient algorithms. Potential applications of
this approach include the fusion of clustering results (see, e.g., [11]) and the
integration of prior knowledge in clustering [30]. We believe that the availabil-
ity of efficient algorithms such as the one introduced in this paper will allow
further progress in this direction.
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Table 1
Credal partition of Appendix B example.

F m1(F ) m2(F ) m3(F ) m4(F ) m5(F )

∅ 0 0 0 0 0

{ω1} 0 0 0 0.2 0

{ω2} 0 1 0 0.35 0

{ω1, ω2} 0.7 0 0 0 0

{ω3} 0 0 0.2 0.45 0

{ω1, ω3} 0 0 0.5 0 0

{ω2, ω3} 0 0 0 0 0

Ω 0.3 0 0.3 0 1

Table 2
Pignistic probabilities for the credal partition of Appendix B example.

i BetP1({ωi}) BetP2({ωi}) BetP3({ωi}) BetP4({ωi}) BetP5({ωi})

1 0.45 0 0.35 0.2 1/3

2 0.45 1 0.1 0.35 1/3

3 0.1 0 0.55 0.45 1/3

Table 3
Hard credal partition of Appendix B example.

F m1(F ) m2(F ) m3(F ) m4(F ) m5(F )

∅ 0 0 0 0 0

{ω1} 0 0 0 0 0

{ω2} 0 1 0 0 0

{ω1, ω2} 1 0 0 0 0

{ω3} 0 0 0 1 0

{ω1, ω3} 0 0 1 0 0

{ω2, ω3} 0 0 0 0 0

Ω 0 0 0 0 1
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Table 4
Experimental comparison between RECM (with α = 1, β = 1.5, δ2 = 25) and
EVCLUS (with λ = 0.1) on the Diamond dataset. The coefficient of variation is the
ratio of the standard deviation to the mean of the final value of the stress function,
over 50 runs of both algorithms.

RECM EVCLUS

Without inlier (object 1)

CPU time 0.44 ± 0.05 3.70 ± 0.28

Nb iterations 14 ± 3 1626 ± 122

coefficient of variation 0% 12%

With inlier (object 1)

CPU time 1.61 ± 0.20 3.82 ± 0.45

Nb iterations 66± 8 1599 ± 182

coefficient of variation 0% 8.03%

Table 5
Experimental comparison between RECM (with α = 0.5, β = 1.1, δ2 = 5) and
EVCLUS (with λ = 10−3) on the cat cortex dataset. The coefficient of variation
is the ratio of the standard deviation to the mean of the final value of the stress
function, over 50 runs of both algorithms.

RECM EVCLUS-1 EVCLUS-2

CPU time 2.23 ± 0.74 18.51 ± 3.87 27.03 ± 4.06

Nb iterations 19± 7 1652 ± 333 1830 ± 274

coefficient of variation 0.6% 1.34% 5.07%

Table 6
Experimental comparison between RECM (with α = 0, β = 1.1, δ2 = 20) and
EVCLUS (with λ = 0.005) on the protein dataset. The coefficient of variation is the
ratio of the standard deviation to the mean of the final value of the stress function,
over 50 runs of both algorithms.

RECM EVCLUS-1 EVCLUS-2

CPU time 4.75 ± 0.86 91.21 ± 11.56 88.07 ± 22.73

Nb iterations 16± 3 672 ± 60 948 ± 237

coefficient of variation 10−5% 4.06% 6.5%

22



−6 −4 −2 0 2 4 6 8 10
−2

0

2

4

6

8

10

2

3

4

5

6 7 8

9

10

11

12

13

x
1

x 2

Fig. 1. Diamond dataset (without inlier).

1 2 3 4 5 6 7 8 9 10 1112 13
0

0.5

1
class 1

class 2

AP

1 2 3 4 5 6 7 8 9 1011 12 13
0

0.5

1
class 1

class 2

FNM

1 2 3 4 5 6 7 8 9 10 1112 13
0

0.5

1
class 1 class 2

RFCM

1 2 3 4 5 6 7 8 9 1011 12 13
0

0.5

1

class 1 class 2

noise

NRFCM

1 2 3 4 5 6 7 8 9 10 1112 13
0

0.5

1
nerf c−means

class 1 class 2

1 2 3 4 5 6 7 8 9 1011 12 13
0

0.5

1
EVCLUS

class 1 class 2Ω empty

Fig. 2. Diamond dataset: results with 5 fuzzy algorithms and EVCLUS (reproduced
from [9]).

23



1 2 3 4 5 6 7 8 9 10 11 12 13
−50

0

50

100

150

200

250

300

# eigenvalue

Diamond data set

0 10 20 30 40 50 60 70
−5

0

5

10

15

# eigenvalue

Cat cortex data data set

Fig. 3. Diamond and cat cortex data sets; Eigenvalues of W .

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

point #

m
as

s 
of

 b
el

ie
f

m({ω
1
})

m({ω
2
})

m(Ω)
m(emptyset)

Fig. 4. Diamond dataset: results with RECM and α = 1, β = 1.5 and δ2 = 25.

24



−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

V−17   V−18   

V−19   

V−PMLS 
V−PLLS 

V−AMLS 

V−ALLS 

V−VLS  
V−DLS  

V−21a  

V−21b  

V−20a  

V−20b  

V−ALG  

V−7    

V−AES  

V−SVA  V−PS   
A−AI   

A−AII  

A−AAF  

A−DP   

A−P    

A−VP   

A−V    

A−SSF  

A−EPp  

A−Tem  

S−3a   S−3b   
S−1    

S−2    

S−SII  

S−SIV  
S−4g   

S−4    

S−6l   S−6m   

S−POA  

S−5am  

S−5al  

S−5bm  

S−5bl  

S−5m   S−SSAo 

S−SSAi 

F−PFCr 

F−PFCdl

F−PFCv 
F−PFCdmF−Ia   

F−Ig   

F−CGa  F−CGp  

F−LA   

F−RS   

F−PL   
F−IL   

F−35   

F−36   

F−PSb  
F−Sb   

F−ER   

F−Hipp 

F−Amyg 

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

V−17   V−18   

V−19   

V−PMLS 
V−PLLS 

V−AMLS 

V−ALLS 

V−VLS  
V−DLS  

V−21a  

V−21b  

V−20a  

V−20b  

V−ALG  

V−7    

V−AES  

V−SVA  V−PS   
A−AI   

A−AII  

A−AAF  

A−DP   

A−P    

A−VP   

A−V    

A−SSF  

A−EPp  

A−Tem  

S−3a   S−3b   
S−1    

S−2    

S−SII  

S−SIV  
S−4g   

S−4    

S−6l   S−6m   

S−POA  

S−5am  

S−5al  

S−5bm  

S−5bl  

S−5m   S−SSAo 

S−SSAi 

F−PFCr 

F−PFCdl

F−PFCv 
F−PFCdmF−Ia   

F−Ig   

F−CGa  F−CGp  

F−LA   

F−RS   

F−PL   
F−IL   

F−35   

F−36   

F−PSb  
F−Sb   

F−ER   

F−Hipp 

F−Amyg 

Fig. 5. Cat cortex dataset: lower (left) and upper (right) approximations of the
clusters together with maximum pignistic assignments. A different symbol is used
for each cluster found by RECM, the symbol size being proportional to the pignistic
probability of the corresponding group. The first letter of each label (S,V,A,F)
indicates the true class memberships. Settings : α = 0.5, β = 1.1, δ2 = 5.
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Fig. 6. Cat cortex dataset: lower (left) and upper (right) approximations of the
clusters together with maximum pignistic assignments (α = 0.2, β = 1.1, δ2 = 5).
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Fig. 7. Cat cortex: lower (left) and upper (right) approximations of the clusters
together with maximum pignistic assignments (α = 0, β = 1.1, δ2 = 5).
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Fig. 8. MDS configuration of the Protein dataset. Each point, represented by a
symbol, is assigned to the class with maximum pignistic probability; the size of the
symbol is proportional to the maximum of pignistic probability; the labels (HA,
HB, M,G) indicate the true class memberships; left: EVCLUS (λ = 0.005); right:
RECM (α = 0, β = 1.1, δ2 = 20).
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Fig. 9. Protein dataset: lower (left) and upper (right) approximations of the clusters
by RECM (α = 0, β = 1.1, δ2 = 20).
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Fig. 10. Protein dataset: mass assigned to the empty set using EVCLUS (left) and
RECM (right).

27



A Belief functions

The Dempster-Shafer theory of evidence (or belief function theory) is a the-
oretical framework for reasoning with partial and unreliable information. It
encompasses different models of reasoning under uncertainty, including the
probability and possibility theories as well as Smets’ Transferable Belief Model
[28]. A complete description can be found in Shafer’s book [26].

Let us consider a variable ω taking values in a finite and unordered set Ω called
the frame of discernment. Partial knowledge regarding the actual value taken
by ω can be represented by a basic belief assignment (bba) [26,28], defined as
a function m from 2Ω to [0, 1], verifying:

∑

A⊆Ω

m(A) = 1. (A.1)

The subsets A of Ω such that m(A) > 0 are the focal sets of m. Each focal set
A is a set of possible values for ω, and the number m(A) can be interpreted
as a fraction of a unit mass of belief, which is allocated to A on the basis
of a given evidential corpus. Complete ignorance corresponds to m(Ω) = 1,
whereas perfect knowledge of the value of ω is represented by the allocation of
the whole mass of belief to a unique singleton of Ω (m is then called a certain

bba). When all focal sets of m are singletons, m is equivalent to a probability
function, and is called a Bayesian bba.

A bba m such that m(∅) = 0 is said to be normal. This condition was originally
imposed by Shafer [26], but it may be relaxed if one accepts the open-world

assumption stating that the set Ω might not be complete, and ω might take
its value outside Ω [27]. The quantity m(∅) is then interpreted as a mass of
belief given to the hypothesis that ω might not lie in Ω.

A bba m can be equivalently represented by a plausibility function pl : 2Ω 7→
[0, 1], defined as

pl(A) ,
∑

B∩A 6=∅

m(B) ∀A ⊆ Ω . (A.2)

The plausibility pl(A) represents the potential amount of support given to A.

The available evidence being modeled in the form of a basic belief assignment,
it is often desirable or necessary to make a decision regarding the selection
of one single hypothesis in Ω. Smets [28,29] has proposed and justified the
use of a probability function for decision making. He has shown that the
only transformation of a belief function into a probability function satisfying
elementary rationality requirements is the pignistic transformation, in which
each mass of belief m(A) is equally distributed among the elements of A. This
leads to the concept of pignistic probability BetP defined, for a normal bba,
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by:

BetP(ω) ,
∑

{A⊆Ω/ω∈A}

m(A)

|A|
∀ω ∈ Ω, (A.3)

where |A| denotes the cardinality of A ⊆ Ω. If the bba is subnormal (m(∅) 6=
0), then a preliminary normalization step has to be performed. Dempster’s
normalization consists in dividing all the masses given to nonempty sets by
1−m(∅).

B EVCLUS algorithm

EVCLUS (EVidential Clustering) was the first algorithm suggested to infer
a credal partition from proximity data [8,9]. It is assumed that the available
data consists of a n×n dissimilarity matrix ∆ = (δii′) where δii′ represents the
dissimilarity between object oi and object oi′ . Matrix ∆ is only supposed to
be symmetric with null diagonal elements. The basic and very intuitive idea
of EVCLUS is that, the more similar two objects, the more plausible it is that
they belong to the same cluster. Let us consider two objects oi and oi′ and
two bbas mi and mi′ quantifying our belief in their class membership. It turns
out (see [8] for the proof) that the plausibility that these two objects belong
to the same class, given mi and mi′ , can be computed as one minus the degree
of conflict Kii′ between mi and mi′ defined by:

Kii′ =
∑

A∩B=∅

mi(A)mi′(B). (B.1)

It is thus possible to define a compatibility criterion between a credal parti-
tion M and a proximity matrix which is: the more dissimilar the objects, the
higher should be the conflict between their bbas. To derive a credal partition
compatible with a given dissimilarity matrix, by analogy with multidimen-
sional scaling methods, EVCLUS minimizes an error function inspired from
Sammon’s stress function [25] defined as

JEVCLUS(M,a, b) ,
1

C

∑

i<i′

(aKii′ + b− δii′)
2

δii′
, (B.2)

where a and b are two coefficients and C is a normalizing constant. This
criterion can be minimized with respect to M , a and b using an iterative
procedure. To control the model complexity, it was thus suggested to add to
the stress function a penalization term that favors “simple”, “informative”
bbas. The informativeness of each bba mi is measured through the following
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entropy measure:

E(mi) =
∑

A∈F(mi)\{∅}

mi(A) log2

(

|A|

mi(A)

)

+ mi(∅) log2

(

|Ω|

mi(∅)

)

, (B.3)

where the last term is equal to 0 if mi(∅) = 0. This measure tends to be small
when the mass is assigned to few focal sets with small cardinality. Finally, the
objective (or stress) function to be minimized is:

J ′
EVCLUS(M,a, b) , JEVCLUS(M,a, b) + λ

n
∑

i=1

E(mi), (B.4)

where λ is the penalization coefficient that controls the extent to which the
entropy term influences the solution.
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