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CRIPS5 laboratory, SIP team, University Paris Descartes, 45 rue des Saints-Péres,
75006 Paris, France

Abstract

With the new generation of satellite systems, very high resolution satellite images
will be available daily at a high delivery rate. The exploitation of such a huge
amount of data will be made possible by the design of high performance analysis
algorithms for decision making systems. In particular, the detection and recognition
of complex man-made objects is a new challenge coming with this new level of
resolution. In this study, we develop a system that recognizes such structured and
compact objects like bridges or roundabouts. The original contribution of this work
is the use of structural shape attributes in an appearance based statistical learning
method framework leading to valuable recognition and false alarm rates. This hybrid
structural /statistical approach aims to construct an intermediate step between the
low-level image characteristics and high-level semantic concepts.
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1 Introduction

The new satellite systems like PLEIADES or QuickBird will provide satellite
images up to 70 cm per pixel spatial resolution with a high delivery rate. Thus,
new challenges for automatic interpretation of these valuable images are com-
ing up. Much work has been done so far about the segmentation/recognition
of textured areas like urban ones at low resolution. The detection of transport
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networks like roads or rivers considered as lineic structure networks in images
has also been intensely studied and efficient algorithms have been proposed
so far like in (Tupin et al., 1998; Mayer et al. , 2006). However, few results
have been presented for the recognition of complex, cartographic structures
like bridges or roundabouts. These versatile objects do not lend themselves to
classical statistical approaches for which a set of quantitative measures about
the intensity distribution within a normalized window feeds a global statistical
classifier used to discriminate between different objects. In the case of round-
abouts for instance, the spatial configurations of object’s parts are so versatile
that a global statistical approach is not applicable. While the decomposition
of the objects into parts is almost unavoidable, a purely structural part-based
approach (Erus and Lomenie , 2005), is not appropriate to be applied on a real
detection task, mainly due to the difficulty of segmenting the target objects
to well-defined primitive shapes.

We propose in this study a hybrid approach based on learning the spatial con-
figuration of structural primitives constituting an object, according to their
statistical distribution in a labeled training set. Our method is evaluated on
a cartographic object recognition task defined in the framework of a national
program called Technovision that aims to assess the state of the art in object
recognition (project ROBIN). For that academic-industrial joint study, The
French Space Agency (CNES) prepared a database of satellite images contain-
ing cartographic objects. The recognition task consists of classifying images
of size 100x100 pixels into one of the categories, like bridges, roundabouts,
crossroads or isolated buildings.

In the object category recognition domain, the need for more structural anal-
ysis is progressively growing. In particular, low-level as well as high-level spa-
tial relationships of object components are used as part of the object model
definitions (Ferrari et al. , 2008). However, the handling of such spatial re-
lationships is not obvious since symbolic/linguistic reasoning is more or less
involved (Erus and Lomenie , 2005) and the concept of spatial ontology is not
straightforwardly usable in current image processing lines (Hudelot , 2005).
However preliminary examples of the use of spatial relations in a recognition
task can be found for example in Colliot et al. (2006); Cao (2009).

2 The image database

In the frame of the ORFEO program?, CNES prepared a database of high
resolution cartographic object images. These images are simulations of the
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PLEIADES acquisition system based on SPOT5 images. In fact, the actual
PLEIADES images will be available around 2010. The images are 100 x 100
pixels windows within which the object of interest is approximatively centered.
In each of the 10 defined categories, there are nearly 100 such sample images.
For each object instance in each category, this database is made of (see Fig.

1):

(1) the panchromatic image of the object;

(2) the multi-spectral image of the object;

(3) the manually segmented image as a mask drawn by an expert on both
previous images.

(a) (b) () (d)

Fig. 1. SPOT5 images of cartographic objects exhibiting structures, a roundabout
and a bridge (a). The panchromatic images, (b). The multi-spectral images, (c)-(d).
The corresponding manually segmented images

The panchromatic images are acquired at the resolution of 2.5 m. per pixel and
the multi-spectral ones at 10 m. per pixel. The challenge of that study however
is to restrict oneself to the panchromatic images to handle the case for which
only this channel is available due to transmission rate issues for instance, but
also to be as generic as possible. Obviously, the use of such complementary
information, if available, should improve the performance of the operational
recognition system dramatically.

In this study, we focus our attention to the classification of two cartographic
object categories, “Roundabouts (RA)” and “Bridges (BR)”, which have a
highly variable and compact structure. The long-term objective is the auto-
matic detection of cartographic objects on very large satellite images (e.g.
24000 x 24000 pixels). However, we restrict ourself to the classification task
proposed by the CNES, where the goal is to determine the categories of ob-
jects on manually extracted and labeled image patches. The basic premise is
that a pre-processing module will focus the attention on the regions that may



contain the target objects, and extract candidate regions. This initial coarse
detection module can be constructed by edge density analysis or using one of
the recent interest point detection algorithms for instance. The global recog-
nition task (detection and classification) requires a sophisticated strategy and
is still an active research issue. Figure 2 presents sample panchromatic images

belonging to different object categories.
| e
(e)

.

(a) (b) () (d) e (f)

Fig. 2. Panchromatic SPOT5 images of cartographic objects. (a). Highway, (b).
Secondary road, (c). Path, (d). Isolated building (e). Housing estate, (f). Crossroad.

3 State of the art

Few works deal with the recognition task of such specific, highly structured
objects in satellite or even in aerial images (Trias-Sanz and Loménie , 2003).
Igbal and Aggarwal (2002) proposed to use the perceptual grouping of edge
features for classification. The main idea here is to count evidences of the target
class in the image. The evidences are detected starting with the line segments
and applying grouping rules to obtain, hierarchically, co-terminations, L. and
U junctions, parallel lines and groups, and closed polygons. From these, three
scalar features are calculated and the images are labeled as Structure, Non-
structure or Intermediate using a nearest neighbor classifier. The important
limitation of this method is that the low dimension of the final feature vector
is only adequate for a very coarse classification.

Inglada (2007) developed a method to classify cartographic objects in satellite
images. Low level and high level geometric descriptors are calculated from the
image for learning an SVM classifier. Our method follows a similar approach
in that our feature vector is obtained from a set of structural primitives and
a supervised learning approach is used for the classification.

In recent years, appearance based approaches have been widely and success-
fully used in generic object detection problems (Agarwal and Roth , 2002;
Csurka et al. , 2004; Dorké and Schmid , 2003; Fei-Fei and Pietro , 2005;
Felzenszwalb and Huttenlocher , 2005; Fergus et al. , 2003; Heisele et al.,
2001; Leibe et al. , 2004; Opelt et al.; Shotton et al. , 2007). In this approach,
the object is considered to be represented by its appearances from different



viewpoints, and this representation is learned from a set of object images. As
the global appearance of an object is highly variable, the recent methods use
in general local descriptors which remain stable on different instances of the
object. The object consists of a collection of its parts, and the objective of the
learning problem is to learn the characteristic parts of an object and their spa-
tial organization. This approach is also conform to the neuro-psychophysical
hypothesis of Biederman (1987) (and more recently Biederman (2007)), ac-
cording to which an object is composed of a small set of elementary geometric
shapes called geons and the first stage of human object recognition is the
recognition of geons. The definition of the basic components and the modeling
of their spatial arrangement is performed using various methods, giving birth
to several detection algorithms.

A very common approach in extracting object parts is to detect local interest
points on the image using detectors like Harris, maximally stable regions, dif-
ference of Gaussians, or the popular SIFT method. In Viola and Jones (2004)
a very large number of simple Haar-like rectangular regions are extracted as
features. Shotton et al. (2007) proposed to use contour fragments from the
outer boundary of the objects. In Ferrari et al. (2008) contour segments are
used as descriptors.

Spatial relations between parts can be modeled in a large spectrum of ap-
proaches, from appearance-only models that ignore them completely as in the
bag of words approach (Csurka et al. , 2004; Fei-Fei and Pietro , 2005), to struc-
tural, graph-based approaches as pictorial structures model, or constellation
model. The Pictorial Structures proposed initially by Fischler and Elschlager
(1973) for face recognition has been recently used for the moving person recog-
nition task in Felzenszwalb and Huttenlocher (2005). The idea is to represent
the configuration of the components by elastic connections. The recognition
proceeds by the minimization of a cost function assessing the needed defor-
mation of the elastic structural model to the unknown configuration. By an
expectation-minimization approach, Weber et al. (2000) learn a constellation
model which is a star-shaped graph representing the components and their
position around a fixed point, often chosen as the center of the object.

Obviously, these approaches rely dangerously on the quality of the component
segmentation process. We can notice here the important ambiguous role played
by the spatial reference. It is often the cornerstone for the structural modeling.
In medical images, the anatomical substructure provides a straightforward
spatial reference (left and right lung for instance). Contrarily, in the case of
aerial images, one loses any classical spatial reference like above, below, left or
right. A central point is often the easiest choice to be made. But, according to
us, the choice of a spatial reference should deserve much more investigation.

In Leibe et al. (2004) a codebook of local appearances is obtained by clustering



rectangular image patches according to their normalized greyscale correlation
measure. An implicite shape model, in the form of the spatial probability dis-
tribution of each cluster relative to the object center, is constructed using a
probabilistic voting procedure, by matching patches extracted from the train-
ing set to the clusters. A similar approach in the construction of the codebook
is used in Agarwal and Roth (2002), but binary spatial relations are repre-
sented by a sparse matrix obtained from the histogram of distances and angles
all pairs of patches. We can finally cite the work of Fergus et al. (2003) where
the components and the structure are learned jointly using EM algorithm.

The whole set of these methods that attempt to learn an object category
from the appearance of local components and their spatial organization, offers
a methodological framework well adapted to cartographic objects. However
they have been used so far for the recognition of object categories exhibiting
little structural variation like bicycles, cars or faces. Furthermore, the tar-
get objects have generally a constant viewpoint and orientation, according
to which the spatial relations are defined. By nature, the configuration of a
roundabout or a bridge is much more versatile. We believe that, in the case
of cartographic objects, the parts of objects can be naturally associated to
geometric primitives with a still higher level of representation. At the new res-
olution of satellite images, that representation is totally justified by efficient
low level image processing methods to extract such features.

In satellite imagery, most of the accomplished studies focus on the extraction
of extended surfaces like road networks or urban areas (Lorette et al. , 2000;
Tupin et al., 1998). This specific topic of interest was related with the low
level of resolution at which the objects of interest were much more handled
as textured areas to be segmented in the image. Now, the resolution makes it
possible to focus on more localized and compact objects like a roundabout or
a bridge.

To end up with the structural pattern recognition community, a few works
cope with the purely structural modeling of complex objects in order to ad-
dress the difficult issue of the semantic gap between the low-level descrip-
tors and the high-level concepts. The Attributed Relational Graphs (ARG)
are often used as a high-level model of representation for the arrangement
of regions (Petrakis and Faloutsos , 1995; Shao and Kittler , 1999) or the
modeling of skeletons (Bardinet et al. , 2000; Di Ruberto , 2004). The con-
struction or learning of such structural models is addressed in Hong and Huang
(2004); Sangineto (2003); Cordella et al. (2002). Even though these purely
structural approaches are very interesting, they are not efficient as such for
recognition/detection purposes in cluttered environments where the object of
interest and the background are not easily separable.



4 The cartographic codebook modeling

The component-based approaches are well adapted for the modeling of carto-
graphic objects with two main reasons:

e the articulated nature of the objects: for example, a roundabout is composed
of a central circle and roads articulated around the circle;

e the intra-class variation is very high and this variation is often due to affine
transformations of the object components.

Cartographic objects have well-defined, mostly geometric structures. For this
reason, we propose to exploit the geometric nature of cartographic objects in
a component-based learning framework. The originality of this approach lies
in:

e the intensive use of geometric primitives to build the appearance codebook;
e the joint learning of this cartographic codebook and of the structure.

In our work, the object components correspond to geometric primitives ex-
tracted from the images. However, due to their genericity, their informative
content is weak and the matching between two such primitives in two images
is not a definitive clue about the similarity between these two images. This is
the reason why the joint modeling of components and structure is required.
We propose to extract all eventual geometric primitives that may belong to
the object, and learn jointly the components and the structure by defining the
components not only by their geometric properties but by their spatial prop-
erties as well. Then, we select the most significant spatio-geometric primitives
to represent the object. A simplified structural representation of this object
may then be displayed for the naive user of the final interface.

Let P = {p'...p™} where {p’ € R%}™, be the set of primitive types, each
represented by a corresponding feature vector denoting attributes such as po-
sition, orientation and geometric properties. Let Itwain be the training set
consisting of images containing the target object with label [. Primitives are
extracted from each image in Imyain and combined in pryain = {p1,---,0n}
where {p; € P},. A codebook dictionary is built up by grouping the prim-
itives in Pryain relatively to their types ¢ € {1,...,m}, and clustering them
in the corresponding feature space 3*%. Then the best clusters, which cor-
respond to words in our structural codebook, are automatically selected. A
codebook is built up for each category of object. This codebook, which we
call as the Structural Model Codebook (SMC'), works as a structural model
carrying both geometric component and structure information. Note that the
learning step does not need negative examples and is thus apparented to the
original category of one-class classifiers (D. M. J. Tax , 2001; Wang, Q. et al.
, 2004).



In a probabilistic framework, the SMC' can be considered as a model that is
used for estimating p(p‘|l),i = {1,...,m}, the multivariate probability den-
sity function (pdf) of each primitive type i defined on R%, given the object
category [.

Given a test image I, from which a set of primitives pr = {p1,...,p,} is ob-
tained, the classification into category [ is essentially performed by calculating
a class membership score obtained by accumulating the evidences of observ-
ing a component of the object category with label [ in py. The likelihood of
a primitive to belong to category [ is estimated from the pdfs learned by the
SMC.

Algorithm 1 briefly presents an overview of the algorithmic procedure. A de-
tailed formulation of each module is given in the following subsections.

Algorithm 1 Global Algorithm of the components-and-structure method
Require:

Itvain: Learning set of positive images

Itest: Test set of images
Ensure:

s: Membership scores of test images

LEARNING
for all I; € Inypain do
Extract p;: the geometric primitives extracted from I;
Compute a;: the attribute vectors calculated from p;
end for
Construct Copject: clusters obtained by clustering a = Ja; by mean-shift
clustering
Construct SMCopject, the structural model codebook of the object: clusters
selected from Copject

CLASSIFICATION
for all I; € Ites; do
Extract pi: the geometric primitives extracted from I;
Compute a;: the attribute vectors calculated from p;
for all a;; € a; do
Sa;;: the likelihood of the attribute calculated from SMCopject
end for
s+ normalized 3 s,
end for
Return s = Js;




4.1  The primitive extraction and representation

The segmentation of aerial images is not straightforward due to:

(1) the non-homogeneity of the radiometry of objects;
(2) the non-separability of the object from the background even for the hu-
man eye.

The manually segmented images of Figure 1.c-d illustrate the important amount
of contextual information involved for the human expert to produce the seg-
mentation ground truth. For this reason, we propose to extract geometric
primitives that represent well the structure of man-made cartographic objects.
The extraction is performed on the whole image, and eventual false positives
are eliminated by the feature selection mechanisms at subsequent steps. Two
types of primitives, the straight lines, and the circle arcs are extracted using
both an edge-based and a region-based method. The two sets of primitives are
used in conjunction in order to rely on a larger feature vector. The point is al-
ways to find a balance between the degree of expressiveness of a primitive and
the difficulty to extract it. The more expressive the primitive is, the smaller the
feature vector is, but more difficult the extraction becomes. To compare with
Igbal and Aggarwal (2002), circular primitives are also extracted, and a larger
feature vector, taking into consideration primitives’ geometric, relational and
spatial attributes, is constructed.

The edge-based extraction is done on a Gaussian image pyramid with 4 levels,
in order to detect the primitives on different scales. Given the original image
Iy, the multiscale representation is obtained by

-[H-l = g*Ila le {07172}

where g is a Gaussian kernel and x is the convolution operator. For each {I;}?_,
the following steps for the primitive extraction are applied and the resultant
primitives are grouped together:

e Sub-pixel edge detection (Devernay , 1995) using a modified Canny (Canny
, 1986) edge detector. Sub-pixel precision is necessary in order to guarantee
a robust approximation by line segments or arcs.

e Grouping of edge points E; into edge-chains C; = {C},... C}, such that
C’f is a list of connected edge pixels. A new chain is started in each junction.

e Polygonal approximation on each edge chain Cl-j using Douglas-Peucker al-
gorithm (Douglas and Peucker , 1973), to obtain Sf , a set of adjacent line
segments that fit C? with the smallest error.

e Detection of arcs in each Sf As a result of the polygonal approximation,
the circular lines are also approximated by line segments. In order to de-



tect them, we propose a recursive fusion algorithm. For each adjacent line
segment pairs Sy, Sp11 € Sl-j , the circle ¢, that best fits the corresponding
edge points in a least squares sense is calculated, together with the approx-
imation error e(cy, Sk, Sg+1)- If e(ck, sk, Sk+1) < t, a predefined circularity
threshold, s and s, are replaced by ci. This procedure is repeated until
e(Cr, Sk, Sk+1) > t, Vk.

In parallel to edge-based extraction, region-based primitives are extracted by
mean-shift segmentation (Comaniciu and Meer , 2002), an efficient nonpara-
metric segmentation method. It’s a generalization of the mean-shift clustering
algorithm for segmentation, by mapping image pixels to a joint spatial-range
domain, where for grey-level images the range corresponds to pixel intensity.
Each pixel is associated with a significant mode of the joint domain density
located in a predefined spatial and intensity neighborhood. We used a search
window of size 6 in the intensity domain and of size 15 in the spatial domain.

This procedure generally results in an over-segmentation of the image that
does not allow the detection of object components in different sizes. To over-
come this problem, we applied an iterative fusion algorithm similar to the one
applied for the line segments.

Let R® = {ry,...,r,} be the set of regions obtained applying the mean-
shift segmentation on image I, VO = {vy,...,v,} the areas of these regions,
G°% = {g1,...,gn} their average intensities, and N € {0, 1}"*" the adjacency
matrix of R®. A similarity matrix S is calculated as

8. = |9 — g;1 if Ni
—+00 1f Ni,j = 0

A more sophisticated metric, that also considers region regularity for instance
may also be used, but not preferred for efficiency reasons. At each iteration
t the most similar two regions 7, and r; are replaced by a new region 7,
obtained by merging r; and r;. The intensity of the new region is calculated
as

g X Vg + g1 X U
Uk+1)l

On+t =

This procedure is repeated ¢* times until the total number of regions is lower
than a fixed threshold. For each region r;,i = {1,...,n + t*}, a circularity
score s' and an eccentricity score s¢ are calculated. s! is defined as the scalar
that specifies the eccentricity of the ellipse that has the same second-moments
as r;. Regions with high s. are selected as circular primitives and those with
high s, are selected as line segment primitives. Figure 3 shows the regions
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selected before the fusion step.

Fig. 3. The selected regions after the initial segmentation by Mean-Shift. (a). Orig-
inal Image. (b) The linear and circular regions before the fusion step.

Figure 4 shows the primitives extracted from a roundabout image using the
edge-based method and the region-based method.

Fig. 4. The extracted primitives on a roundabout image (a) using the edge-based
method, (b) using the region-based method

A set of geometric and spatial characteristics is associated to each extracted
primitive. Representing spatial relationships by a set of numerical features is a
challenging problem. We should note that the definition of the spatial reference
is an important step for any attempt to model spatial relationships (Colliot
et al. , 2006; Cao , 2009). In our case, due to the nature of the viewpoint, and
because the objects of interest are centered in the image, the spatial reference
is naturally selected as the central point in the image. The distance and the
angle with respect to this reference point are used to represent the spatial
properties of object components.

By the way, this representation around the center of the image enforces the
invariance to rotation. The primitives are represented by two feature vectors

fcirce and fsegment (see Figure 5) :

o foirce = {dc,rc}, do = the distance between the center of the circle and
the center of the image, rc = the radius of the circle;
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® fsegment = {ds,0s,ls}, ds = the distance between the center of the segment
and the center of the image, s = the angle between the segment and the
line joining the center of the image to the farthest segment extremity from
this center, g = the length of the segment.

Circle

Image
center

Line
Segment

Fig. 5. Construction of the feature vector from the primitives.

Notice that the parameter g measures a certain radiality property of the
segment primitive with respect to the center. We believe that a more formal
analysis and definition of such spatial characteristics should be worth studying
in the future for pattern recognition community. Anyway, in our study, this
measure worked quite well to represent the spatio-structural configuration of
interest.

4.2 Clustering

In Erus and Lomenie (2007) a bag of words approach is used, where a feature
vector is constructed by accumulating the evidences of geometric, relational
and spatial properties of the primitives. To do that, the attribute values of
primitives are divided in bins, and the number of primitives in each bin is
counted. The feature vector consisted of the concatenation of the values in
each bin. An Adaboost classifier is used to select the most relevant features
to describe the object. One weakness of this approach is the use of discrete
intervals whose number and size is fixed empirically.

In this study, we propose to cluster primitives in the space defined by the
values of their attributes using the Mean-Shift clustering algorithm (Cheng ,
1995). Being a non-parametric clustering method that does not require to set
a prior number of clusters and a prior shape for clusters, it is well adapted to
our problem.

The Mean-Shift clustering algorithm proceeds by a gradient ascent procedure
on the estimation of the local density in a fixed size window around each data
point, until convergence. The stationary points obtained by this procedure

12
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Fig. 6. Clustering of the primitives for the roundabouts. The data distribution and
the first 10 largest clusters (a) for the circles, (b). for the line segments (the number
of data points is reduced to obtain a better visibility). (c). The sorted number of
points in the clusters for the circles, (d). for the line segments.

represent the modes of the distribution and the clusters are constructed by
assigning each data point to a mode. The only parameter of the method is the
normalized size t € [0, 1] of the window used to estimate the local density.

The mean-shift clustering algorithm is applied independently on line segment
and circular primitives. The formers are clustered in a tri-dimensional space
and the latters are clustered in a bi-dimensional space. The line segment primi-
tives extracted from all training images belonging to the target object category
are grouped together. Each feature vector fsegment (calculated from each prim-
itive) is considered as a data point, and the clustering algorithm is applied on
the set of all data points to detect the modes of the distribution. The same
procedure is also applied for the circular primitives. The window size is set
empirically to ¢ = 0.1. Figure 6 and 7 illustrate the clusters obtained for line
segments and circles, and the sorted number of data points in each cluster for
both object categories.
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Fig. 7. Clustering of the primitives for the bridges. The data distribution and the
first 10 largest clusters (a) for the circles, (b). for the line segments (the number
of data points is reduced to obtain a better visibility). (¢). The sorted number of
points in the clusters for the circles, (d). for the line segments.

4.8  Cluster selection

The selection of the significant clusters is based on a heuristic rule depending
on the number p; of points in a cluster ¢ normalized by the number of images
in the training set n. Let d be the density threshold, the cluster i is said to be
significant if the average value n; = p;/n of the number of points per image
in the cluster ¢ is higher than d. We set d = 2, that corresponds to observe a
primitive in a selected cluster 1 times in every image in average (the value of
d is doubled considering that two sets of primitives are used together).

Table 1 indicates the selected clusters for both object categories together with
the statistics of the features within each cluster.

We would like to underline the correspondence between the learned clusters
and the description of the target object category at a symbolic level: Assuming
that the clusters have a Gaussian distribution, and setting the membership
threshold as 1 o for each attribute, a roundabout, for example, may be de-

14



Mean Standard Dev.
Class Primitif Cluster

M1 M2 M3 01 02 03

RA Circle 1 2.36  7.80 1.50 2.34

Segment 1 33.72 8.65 3048 837 6.87 10.58

Segment 1 2978 745 39.06 11.38 6.15 17.55
BR Segment 2 8.24 3.27 11959 5.12 2.60 16.60

Segment 3 25.64 20.07 26.03 3.40 5.13 8.13

Segment 4 46.38 21.01 24.12 6.14 4.15 6.96

Table 1

Statistics of the primitives in selected clusters. u; and o; values correspond respec-
tively to do and r¢ attributes for the roundabouts, and dg, g and [g attributes for
the bridges

scribed as follows:

e circles with a distance to the center between 0.86 and 3.86 pixels ( that is
between 2.15 and 9.66 meters) and a radius between 5.46 and 10.14 pixels
(between 13.65 and 25.34 meters) and

e segments with a distance to the center between 25.35 and 42.09 pixels (be-
tween 63.37 and 105.23 meters), a relative angle to the center between 1.77
and 15.52 degrees and a length between 19.90 and 41.06 pixels (between
49.74 and 102.65 meters).

4.4 Classification

For each cluster k, the Mahalanobis distance of a primitive p to the cluster k
is given by:

diy(p) = /(P — )T 1 (p — p)

where ¥ is the covariance matrix of the cluster. The distance d,(p) is used
as a probability measure of membership to the cluster k, to assign a primitive
p to one of the clusters.

In that way, for each primitive p; extracted from a test image I, a membership
score s; is calculated as:

. k
Si = mznkGSMCabjecth (p’L)
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To calculate the membership score of an image to a specific object category,
the scores of extracted primitives are added using a sigmoid-like activation
function, similar to the activation function used in neural networks to calculate
the output value of a neuron:

2

a(p) :2—m

The activation function performs as a smooth threshold, such that the accu-
mulation of the scores of primitives having a high distance to the closest cluster
center would be negligible. The value of the parameter A is set adaptively for
each cluster according to the number of data points in that cluster.

The final membership score of an image to a specific codebook SMCopject
modeling an object category is calculated as:

SCOTeSMCobject(‘[> = Z fA(pi)

picl

5 Results

We tested our method on the cartographic objects base of CNES consisting of
962 images belonging to 10 categories. From these images, 72 are roundabouts
and 99 are bridges. The image set is divided into a training set and a test set,
each containing approximatively half of the objects in each category. A code-
book for the roundabouts (SMCr4) and a codebook for bridges (SMCpr) are
constructed independently using the training images, considering the images
belonging to the target category as positive, and all other images as negative.
For each image in the testing set, membership scores to both classifiers are
calculated and they are classified accordingly.

Figure 8 displays the ROC' curves representing the classification results using
SMCr 4 and SMCpr. The area under the ROC curve (AUC) is 0.9699 and
0.8432 respectively.

In Table 2 the classification results for the optimal decision threshold (corre-
sponding to the highest f-measure value) are given.

We obtained an f-measure similar to that obtained using the Adaboost classifier
(Erus and Lomenie , 2007) for the classification of roundabouts. However the
f-measure of the classifier for bridges is 25% higher. Among the 49 images
having the best scores in SMCgr we get 31 bridges instead of 24 bridges in
our previous study.
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Fig. 8. The ROC curves associated to the classification by the SMCr 4 and the
SMCpr classifiers.

Class TP FP FN TN P R f-measure

Roundabout 30 3 6 442 0.909 0.833 0.870

Bridge 31 18 18 414 0.633 0.633 0.633

Table 2
The classification results obtained using an optimal threshold (TP=true positive,
FP=false positive, FN=false negative, TN=true negative, P=precision, R=recall).

We applied random sub-sampling as a cross-validation strategy in order to test
the robustness of the method. The data is split into two sets containing equal
number of randomly selected positive and negative samples in all categories.
The method is applied by using these two sets as training and testing sets.
We repeated the random sub-sampling 100 times and calculated the mean and
standard deviation (std) of the AUC for both object categories. We obtained
a mean AUC of 0.9466 with std 0.0342 for the roundabouts, and a mean
AUC of 0.838 with std 0.0251 for the bridges.

A qualitative analysis of the results is also performed by examining the cate-
gories that obtained high scores for each classifier, and observing the selected
primitives for target objects with highest and lowest scores. As shown in Ta-
ble 3, the categories isolated buildings and crossroads obtained high scores in
SMCr 4. These are the categories which are the most similar to roundabouts
structurally, and this result is mainly due to the small size of some of the
roundabouts in the image base that does not allow to extract properly the ge-
ometric primitives. With higher resolution images we expect that the number
of misclassified images would reduce significantly.

In SMCgr the non-bridge objects that obtained highest scores all belong to
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Object category Roundabout Isolated building Crossroad

Number of objects 30 4 2

Table 3
Number of objects that obtained the highest 36 scores in SMCr 4 grouped by their
categories.

linear object categories (Table 4). These objects have all similar parts with
bridges in different spatial configurations. Our model represents the spatial
configuration of parts of objects implicitly using statistics of their geometric
and spatial characteristics. The classification errors indicate the limits of this
implicit modeling approach.

Object category Bridge Highway Crossroad National road Railway

Number of objects 31 9 5 3 1

Table 4
Number of objects that obtained the highest 36 scores in SMCgr grouped by their
categories.

Besides classification, the model allows us to visualize the structures of objects
in target classes, by projecting the selected primitives on images. This visu-
alization may be used by an interactive system, or as input to a subsequent
processing system.

Figures 9 and 10 show the selected primitives for the roundabouts/bridges
(using a gray level corresponding to their normalized score) that obtained the
highest and lowest total scores. We observe particularly that the 9 bridges
that obtained the lowest scores are all bridges on rivers. The rivers have in
general a very irregular geometry that makes the extracted primitives very
insufficient to represent the object.

6 Conclusion

In this study, we explored the use of high-level structural and spatial charac-
teristics of man-made objects on satellite images in a statistical classification
framework. Our method is based on recent appearance-based approaches, but
is differentiated from other methods by the integration of structural primitives
and their geometric and spatial attributes. We believe that the continuous
technological developments in satellite imagery that makes available higher
resolution images justify our quest for a structural approach, which is also
applicable on practical real problems.
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We obtained promising results that might be improved by the addition of
intensity and textural features, which are completely ignored in this study, in
order to focus exclusively on the structural aspects of target object categories.
The obtained classifiers, and the primitives selected by our method, aim to
construct an intermediate step between the low-level image characteristics and
high-level semantic concepts.

The exploration and use of more explicit spatial relations, as in the center,
around, between, between object parts is an important perspective of our stud-
ies.
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Fig. 9. The 3 best ranked, and the 3 worst ranked roundabout images in SMCr 4,
(a). All detected primitives, (b). Selected primitives, (c). represented by a gray level
corresponding to their membership score.
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Fig. 10. The 3 best ranked, and the 3 worst ranked bridge images in SMCpr, (a).
All detected primitives, (b). Selected primitives, (c). represented by a gray level
corresponding to their membership score.
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