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Abstract

This paper shows that Hidden Markov Models (HMMs) can be effectively ap-
plied to 3D face data. The examined HMM techniques are shown to be superior
to a previously examined Gaussian Mixture Model (GMM) technique. Experi-
ments conducted on the Face Recognition Grand Challenge database show that
the Equal Error Rate can be reduced from 0.88% for the GMM technique to
0.36% for the best HMM approach.
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1. Introduction

Early research into face recognition was inspired by the fact that humans
can recognise a face from a photograph (gray-scale) image (Bledsoe, 1966) and
it took over 20 years, in 1989, before research using 3D face data to identify
humans was first published by Cartoux et al. (1989). However, there are several
advantages to performing verification on a 3D face image.

The 3D face data encodes the structure of the face and so is inherently robust
to pose and illumination variations. Pose variations can be fully recovered as the
3D coordinates are available, this means in-plane and out-of-plane rotations can
be normalised whereas for 2D faces only in-plane rotations can be normalised.
Also, illumination variations are greatly reduced because the scanning procedure
usually involves the projection of an external energy source in order to measure
the depth of the face, this is the case for laser scanners and structured light
scanners.

A recent advance for 3D face verification has been to show the applicability
of the Gaussian Mixture Model (GMM) parts-based approach (McCool et al.,
2008). This state-of-the-art 2D face verification technique (Cardinaux et al.,
2004; G. Heusch and Marcel, 2006) was shown to be applicable and effective for
performing 3D face verification achieving an Equal Error Rate (EER) half that
of a standard Principal Component Analysis (PCA) based approach, the EER
was reduced from 1.99% to 0.88% for cross-validation experiments performed
on the Face Recognition Grand Challenge (FRGC) database.
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The GMM parts-based approach is a feature distribution modelling approach
that works by dividing the face into parts and considering each part to be an
independent observation of the face. The assumption of independence between
each observation is a strong assumption, particularly for 3D faces as there is
obviously a structural dependence. Since the face obviously has a spatial rela-
tionship it is logical to explore feature distribution modelling techniques that
incorporate this information, such as Hidden Markov Models (HMMs).

Applying HMMs to 3D face verification was first attempted in 1997 by Acher-
mann et al. (1997). They found that applying the HMM technique of Samaria
and Fallside (1993) to depth data (instead of pixel intensities) produced a system
that had similar performance to a PCA based system. This initial attempt at
applying HMMs to 3D face data showed some promise but was never extended,
by contrast the research into applying HMMs to 2D faces has made significant
progress.

Cardinaux et al. (2004) described two Hidden Markov Model (HMM) meth-
ods for performing 2D face verification. These two feature distribution modelling
approaches, referred to as HMM 1D and HMM 2D, were shown to be more ac-
curate than a GMM parts-based approach and were capable of describing the
spatial relationship of the face. However, these two state-of-the-art HMM tech-
niques have never been applied to 3D faces.

The aim of this article is to examine the effectiveness of state-of-the-art fea-
ture distribution modelling techniques for 3D face verification. The two tech-
niques under consideration are the HMM 1D and HMM 2D approaches which
have both been successfully applied to 2D face recognition (Cardinaux et al.,
2004) but not to 3D face verification. We also examine different methods of
encoding the feature vector, such as including delta coefficients and performing
feature vector normalisation.

In the next section we will provide an overview of feature distribution mod-
elling and the feature vectors used for these experiments. The experimental
procedure will then be outlined and we will present and discuss the results.
Conclusions will then be drawn and future work will be outlined.

2. Feature Distribution Modelling and Classification

Feature distribution modelling techniques for face verification aim to de-
scribe the face (signal) in a generative manner. This means that the probability
density function (pdf) of the face (signal) is modelled. For face verification two
main methods for feature distribution modelling have been explored: GMMs
(Sanderson and Paliwal, 2002a) and HMMs (Samaria and Fallside, 1993; Car-
dinaux et al., 2004).

A major obstacle in applying feature distribution modelling techniques to
face verification is the lack of observations. In particular, there are very few
client observations to be able to derive an effective model. Two solutions have
been used, normally in conjunction, to alleviate this problem: to perform back-
ground model adaptation and to apply a parts-based approach or topology.
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In the following section we provide a detailed overview of two distribution
modelling techniques (GMMs and HMMs). We then provide an overview of
background model adaptation followed by a description of the parts-based ap-
proaches (topologies) that have been used for face verification.

2.1. Distribution Modelling and Parameter Estimation

GMMs and HMMs are both statistical models (Bishop, 2006) that aim to
compute P (X | Ω) which is the probability of observing some data X given
model parameters Ω. The model parameters are estimated using the expectation
maximisation (EM) (Dempster et al., 1977) and in general the choice between
a GMM or a HMM is driven by the assumptions made about the data. In
the case of the GMM parts-based approach (Sanderson and Paliwal, 2002a) the
observations are assumed to be independent while for the HMM approaches
(Samaria and Fallside, 1993; Cardinaux et al., 2004) there is assumed to be a
dependence between consecutive observations. A more detailed description of
both the GMM and HMM is given below.

2.1.1. Gaussian Mixture Model

A GMM assumes an independence between the observations derived from
X. For instance, if we consider X as a finite set of observations xt with t = 1..T

and xt is a k-dimensional feature vector (xt ∈ R
k
). Then P (X | Ω) can be

computed as P (X | Ω) =
∏T

t=1 p(xt | Ω) where p(xt | Ω) is modelled by a
mixture of M Gaussians (GMMs) as follows:

p(xt | Ω) =
M
∑

m=1

λmp(xt | m) (1)

and where λm is the weight of Gaussian m (
∑M

m=1 λm = 1) and p(xt | m) =
N (xt;µm, σm) is given by the Normal distribution:

N (xt;µm, σm) =
1

√

(2π)k | σm |
e−

1

2

T (xt−µm)σ−1

m
(xt−µm) (2)

parametrised by the mean vector µm ∈ R
k

and the diagonal1 covariance matrix

σm ∈ R
k

for each Gaussian m. Hence, Ω is defined by the set of all the
parameters Ω = {λ1, ..., λm, ..., λM , µ1, ..., µm, ..., µM , σ1, ..., σm, ..., σM}.

Parameter estimation is achieved using the EM algorithm and consists of
iteratively:

1. estimating (E-step) the posterior probability

p(m|xt) =
λmp(xt|m)

∑M

m=1 λmp(xt|m)
(3)

1It is common to use a diagonal covariance matrix instead of a full covariance matrix.
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2. maximizing (M-step) the likelihood by applying the following update rules:

λm =

∑T

t=1 p(m|xt)
∑M

m=1

∑T

t=1 p(m|xt)

µm =

∑T

t=1 p(m|xt)xt
∑T

t=1 p(m|xt)

σm =

∑T

t=1 p(m|xt)x
2
t

∑T

t=1 p(m|xt)
− µ2

m (4)

until the E-step (step 1) converges.

2.1.2. Hidden Markov Model

A HMM assumes a dependence between consecutive observations within X

and so is capable of describing the spatial relationship between blocks (obser-
vations). The underlying assumption is that the system that generated the
observations is a Markov process with unobserved state. Therefore, X is con-
sidered as a sequence of observations xT

1 = x1...xT and P (X | Ω) = P (xT
1 )

is computed by introducing a discrete random variable q = 1..N to repre-
sent the unobserved state (q is also called the hidden state variable) as follows

P (xT
1 ) =

∑N

j=1 p(xT
1 , qT = j). This probability is obtained using the recursive

formulation:

αj,t = p(xt
1, qt = j)

= p(xt | qt = j)
N

∑

i=1

p(qt = j | qt−1 = i)αi,t−1 (5)

The term p(xt | qt) is called the emission probability associated to a state
q and is modelled by a mixture of Gaussians (Eq.1). The term p(qt | qt−1) is
called the transition probability and is modelled by a N×N -matrix of transition
probabilities between states qt−1 and qt.

Hence, Ω is defined by the set of all transition probabilities and of all the

parameters Ωq: the weights λq,m, the mean vectors µq,m ∈ R
k

and the diagonal

covariance matrices σq,m ∈ R
k

for each Gaussian component m from each state
q.

Parameter estimation is also achieved using the EM algorithm and consists
of iteratively:

1. estimating (E-step) the posterior probability

p(qt = j, qt−1 = i|xt) =
βj,t p(xt | qt = j) p(qt = j | qt−1 = i)αi,t−1

∑N

j=1 αj,T

(6)

using the following recursive formulation for computing βj,t:

βj,t = p(xT
t+1 | qt = j)

=
N

∑

i=1

p(xt+1 | qt+1 = i)βi,t+1 p(qt+1 = i | qt = j) (7)
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2. maximizing (M-step) the likelihood by applying update rules for the tran-
sition probabilities:

p(qt = j | qt−1 = i) =

∑T

t=1 p(qt = j, qt−1 = i|xt)
∑N

k=1

∑T

t=1 p(qt = k, qt−1 = i|xt)
(8)

and for each state q by applying the update rules of the GMM (Eq.4) with
the posterior probability given by Eq.6.

These two steps are repeated until the E-step (step 1) converges.

2.2. Background Model Adaptation

Background model adaptation has been used extensively in speaker recogni-
tion (Reynolds et al., 2000) and in 2D face recognition (Cardinaux et al., 2004).
The basis of the technique is to derive a world or background model Ωworld with
much more data than would be available to train a single client model. Client
models are then derived by adapting the background model (the starting point)
to better match the client observations.

There are two main methods for performing background model adaptation:
mean only adaptation (Reynolds et al., 2000) and full adaptation (Lee and
Gauvain, 1996). Full adaptation adapts (or changes) all of the parameters of
the background model to better match the client observations. If we consider
the case of a multi-component GMM then this means that the weight λm, mean
vector µm and co-variance matrix Σm of each component m (m = [1...M ]) could
be updated. By contrast, mean only adaptation adapts (or changes) only the
means of the background model, for the case of a GMM this means that only
µm (the mean vector) for each component m could be updated. For this work
mean only MAP adaptation is used as it requires fewer samples to derive an
effective model and it has been shown to be effective for GMMs and HMMs for
2D faces (Cardinaux et al., 2004) and for GMMs for 3D faces (McCool et al.,
2008). The mean of each component can then be updated using the following
equation,

µ̂m = αµm + (1 − α)

∑T

t=1 p(m|xt)xt
∑T

t=1 p(m|xt)
. (9)

To score using these two models, the background model and the client model,
the log-likelihood ratio (LLR) is used. Therefore, given an observation x it is
scored against both the client model (Ωclient) and world or background model
(Ωworld) model to produce a LLR score,

h(x) = ln(p(x | Ωclient)) − ln(p(x | Ωworld)). (10)

This score is used to assign the observation to the world class of faces (not the
client) or the client class of faces (it is the client) and consequently a threshold
τ has to be applied to the score h(x) to declare (verify) that x matches to the
ith client model Ωi

client when h(x) ≥ τ .
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2.3. Parts-Based Approaches and Topologies

Feature distribution modelling using a parts-based approach has been ap-
plied to 2D face verification by several researchers. The first feature distribution
modelling technique for 2D faces was applied in 1993 by Samaria and Fallside
(1993) and utilised HMMs, it was extended in 1994 by Samaria and Young
(1994). This technique obtained features from blocks of the 2D faces using a
sliding window approach (the pixel intensities were used as the feature vector).
The approach of Samaria and Young predefined the HMM to have five hidden
states that were forced to encode the following facial regions, the: forehead
(q=1), eyes (q=2), nose (q=3), mouth (q=4) and chin (q=5). In 2002 a more
general framework for feature distribution modelling of 2D faces was introduced
by Sanderson and Paliwal (2002a).

The general parts-based framework of Sanderson and Paliwal (2002a) divides
the 2D face into parts (or blocks), an example of this procedure is given in Figure
1 (a). Several researchers have used this topology to consider each part (block)
as a separate observation which can then be modelled using GMMs (Cardinaux
et al., 2004; G. Heusch and Marcel, 2006). A similar framework was used by
Cardinaux et al. (2004) to define two HMM topologies which are more general
than that of Samaria et al., these two topologies are more general as they do not
predefine the regions for the hidden states. The two topologies are the HMM
1D topology and the HMM 2D topology which can be seen in Figure 1 (b) and
(c) respectively.

The HMM 1D is a HMM with a particular topology allowing only self-
transitions and transitions to the next state. In speech recognition, for instance,
this topology is referred to as a left-right HMM. The representation of a face
image for an HMM 1D is obtained by decomposing the face into blocks and
concatenating the blocks from the same row t to form a single feature vector xt,
see Figure 1 (b). This topology can only account for vertical transitions.

The HMM 2D (also called a Pseudo-2D HMM) is a HMM 1D, referred to
as the “main HMM”, where the emission probability is modelled by a HMM
1D, referred to as the “embedded HMM”. The representation of a face image
for a HMM 2D is obtained by decomposing the face into blocks and forming a
sequence (along the rows) of feature vector sequences (where a feature vector is
obtained from each block in the row) as illustrated in Figure 1 (c). The vertical
sequence is modelled using the “main HMM” and the horizontal sequence is
modelled using the “embedded HMM”. This topology can account for vertical
and horizontal transitions.

These three topologies (for the GMMs, HMM 1D and HMM 2D) have been
shown to provide state-of-the-art performance for 2D face images (Cardinaux
et al., 2004) when using DCT based feature vectors. However, only one of these
topologies, the GMM parts-based approach, has been successfully applied to
3D face data (McCool et al., 2008). In that work, the local blocks from the
3D faces were encoded using two DCT based feature vectors. In the following
section we outline several other possible DCT based feature vectors which can
used to obtain the feature vectors from 3D faces using the above topologies.
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I npu t  Image Image Blocks

Features (DCT) from Blocks

(a)

Image Blocks

Features 
f rom row 1

Features 
f rom row i

Features 
f rom last  row

Concatenated  fea tures  f rom row 1

M

1

Concatenated features  f rom last  row

Sequence of  features
for  an  HMM 1D

(b)

Image Blocks

Features 
f rom row 1

Features 
f rom row i

Features
from last  row

M

1

Sequence of  features f rom last  row

Sequence of  sequence of  
fea tures  for  an  HMM 2D

Sequence of  features  f rom row 1

(c)

Figure 1: Three different topologies that have been used for feature distribution modelling
techniques. The topology in (a) breaks the face into separate blocks. In (b) the topology
collates feature vectors from a row (to form a super feature vector) and in (c) the topology
first consists of vertical transitions (down the face) and then of a second set of horizontal
transitions (across the face).

2.3.1. DCT Based Feature Vectors

A significant amount of work has been conducted to find the optimal feature
vectors to use with the parts-based GMM approach for 2D face data (Sander-
son and Paliwal, 2002a,b). Of these, the most commonly considered features
are those based on the DCT because of their efficiency and relative accuracy
(Sanderson and Paliwal, 2002b; Cardinaux et al., 2004).
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Sanderson and Paliwal (2002b) presented several variants of the DCT feature
vectors. These variants are based on using delta coefficients which represent the
transitional information, in this case in the frequency domain. As an example
the DCTdelta feature vector (Sanderson and Paliwal, 2002a) consists of only
vertical(∆v) and horizontal(∆h) delta coefficients. The delta coefficients are
obtained by applying a window to a particular block (but considering it as a
feature vector) and taking the adjacent blocks (feature vectors) in the following
manner:

∆vc(b,a)
n =

ΣW
w=−W whwc

(b+w,a)
n

ΣW
w=−W hww2

, (11)

and

∆hc(b,a)
n =

ΣW
w=−W whwc

(b,a+w)
n

ΣW
w=−W hww2

. (12)

Where hw is the window, b is the position of the block (feature vector) in the
vertical axis, a is the position of the block (feature vector) in the horizontal axis,

W is the size of the window and c
(b,a)
n is the nth DCT coefficient. The delta

coefficients are obtained by using a symmetric window around the central block
(feature vector), similar to (Sanderson and Paliwal, 2002b) we use a window of
W = 1 with a uniform function for hw. In addition to the delta coefficients,
Sanderson and Paliwal also defined the DCTmod feature vectors.

The DCTmod feature vectors are DCT feature vectors who have their first
r coefficients removed. In (Sanderson and Paliwal, 2002a) the first three co-
efficients were removed as they were considered to be susceptible to noise. In
(McCool et al., 2008), although not referred to as a DCTmod feature, the first
(0th) coefficient was removed from DCT feature vectors obtained from 3D faces.
For consistency both forms of the DCTmod features are considered in this work,
removing the first (r = 1) and removing the first three (r = 3) coefficients. In
addition to the DCT-based feature vectors defined by Sanderson and Paliwal a
third set of feature vectors is explored.

The third and final set of feature vectors considered in this work is to per-
form mean and standard deviation normalisation. Mean and standard deviation
normalisation is performed in order to provide a common basis for comparison.
It is performed on an image by image basis such that the mean vector µI and
the standard deviation vector σI are calculated from all the feature vectors
(blocks) from the image I. The mean vector and standard deviation vectors
are then applied to each feature vector from that particular image I. The list
of DCT-based feature vectors that are examined in this work are presented in
Table 1, mean and standard deviation normalisation is applied to all of these
feature vectors and so it is not specified in this table.
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DCT c0c1..cn−1

DCTzero c1c2..cn−1

DCTmod c3c4..cn−1

DCTmod2 ∆vc0∆
vc1∆

vc2∆
hc0∆

hc1∆
hc2c3c4..cn−1

DCTdelta ∆vc0∆
vc1..∆

vcn−1∆
hc0∆

hc1..∆
hcn−1

DCTmoddelta DCTmod + DCTdelta

Table 1: Table listing the family of DCT feature vectors.

3. Database and Experimental Design

The database used for these experiments is the subset of the Face Recognition
Grand Challenge (FRGC) database (Phillips et al., 2005) containing 3D face
images. The same database, experimental design and normalisation procedure
used in (McCool et al., 2008) is used here, a brief summary of the experimental
protocol is given in Section 3.1.

The normalisation procedure consists of cropping and normalising the image.
First the image is normalised using the procedure defined in (Chang et al., 2005)
and then an additional cropping step is performed to ensure that none of the
masked regions are included when extracting the face data in a block-based
manner. The procedure of (Chang et al., 2005) can be summarised as follows:
i) geometric normalisation is performed using four landmark points (the two
eye corners, nose tip and center of the chin), ii) invalid data points are removed
and replaced using interpolation of the valid data points, and iii) each image is
mean and standard deviation normalised. Following from the work in (McCool
et al., 2008) the final 3D face region is a square region consisting of 108 × 108
pixels (ensuring that none of the masked regions are included), an example of
the full normalisation and cropping procedure is provided in Figure 2.

Figure 2: An example of the normalisation procedure applied to the FRGC data. The raw
3D face data (a) is normalised to produce depth values with an elliptical mask (b) which is
then cropped to retain the most discriminative features of the face (c).

3.1. Experimental Protocol

A set of cross-validation experiments is used on the FRGC 3D face data.
The database is evenly and randomly divided, based on ID, into four disjoint
splits to form split1, split2, split3 and split4. These splits are then used to
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form Train, Tune and Test sets with a ratio of 2:1:1, where: i) the Train set
is used to train the background (or world) models, ii) the Tune set is used to
determine parameters such as the number of components M and Hidden states,
and iii) the Test set is used to produce final results (separately from the Tune

set). Each experiment is then defined by assigning a split to either the Train,
Tune or Test set, each split consists of approximately 1, 150 images. Using these
splits four cross-validation experiments are conducted by cycling through the
possible combinations, this procedure is illustrated in Figure 3 and more details
can be found in (McCool et al., 2008).

Figure 3: An example of how different Train, Test and Tune sets were designed for the
cross-validation experiments.

There are four conditions that can be used with this cross-validation proto-
col. This is because the FRGC database was captured in three distinct periods,
the Spring of 2003, the Fall of 2003 and the Spring of 2004, therefore, the four
possible conditions are All, Spring2003, Fall2003 and Spring2004. The partic-
ular condition refers to the period from which the enrollment data is randomly
obtained. For example Spring2003 means that the enrollment data is randomly
drawn from data captured during Spring2003 and the test data is drawn from
the other periods (Fall2003 and Spring2004 ). For the All condition the enroll-
ment data is randomly drawn from all of the periods. When using the Tune set
only the All condition results are used.

For these experiments the Test results obtained using the All condition are
considered to be the most useful. This is because they consist of the largest
number of client and impostor accesses with 3, 061 client accesses and 314, 877
impostor accesses. When presenting results the Equal Error Rate (EER) is used,
this is the point at which the False Rejection Rate equals the False Acceptance
Rate.

4. Results and Discussion

The main interest of this work is to compare the performance of a GMM
parts-based system to the two HMM systems described in Section 2. Work
conducted in (McCool et al., 2008) has provided some baseline results for a
PCA system and a tuned GMM system which are used as a reference point,
referred to as the PCA Baseline and the GMM Baseline respectively. However,
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for these experiments a different implementation of GMMs is used and so for
consistency a second set of GMM results is presented, referred to simply as
GMM when presenting results.

To simplify our experiments a reasonable set of constraints were placed on
the parameters that were examined when performing optimisation on the Tune

set. This is because there are a range of parameters to optimise and certain
factors are kept constant to ease the computational burden. First, the block
size is set to a constant of B = 16 with an overlap of S = 12 based on work
in (McCool et al., 2008). Second, the MAP adaptation factor is fixed to a
constant value of α = 0.5 for all of the GMM and HMM experiments; this alpha
factor is significantly different to any of those examined in (McCool et al., 2008)
because a different implementation is used. Third, the base DCT feature vector
is kept to a constant dimension of d = 15. This value is chosen because it is
often selected when using DCT feature vectors (for parts-based systems) for
2D face recognition (Cardinaux et al., 2004) and also because this keeps the
dimensionality of the DCT variants within a reasonable limit, for instance for
an d = 15 DCT feature vector a DCTmoddelta feature vector (the largest DCT
variant examined) will have d = 42 coefficients.

4.1. Performance Comparison GMMs versus HMMs

Initial experiments were conducted on the Tune set to determine the optimal
parameters. The optimal parameters were found for each system (GMM, HMM
1D and HMM 2D) by initially considering only the DCT feature vectors (d =
15). For the GMM system only the number of mixture components had to be
derived, whereas for the HMM 1D system the number of hidden states H and
the number of mixture components per state M both had to be derived. For the
HMM 2D the number of hidden states for the “main HMM” Hmain, the number
of hidden states for the “embedded HMM” Hembedded and the number of mixture
components per state M all had to be derived. The optimal parameters on the
Tune set were found to be:

• GMM M = 512,

• HMM 1D M = 64, H = 10, and

• HMM 2D M = 64, Hmain = 10, Hembedded = 10.

Using these parameters the performance of the three systems were compared.
It was found that the performance of both HMM systems was consistently

better than the GMM system. Examining the results in Table 2 it can be seen
that the HMM 2D has half the EER of the GMM system with the EER reducing
from 1.80% for the GMM system to 0.88% for the HMM 2D system. This result
is greater than expected and shows the importance of being able to model the
spatial relationship of the face blocks, which is something that the GMM system
is not capable of doing.

The results in Table 2 provide an initial guide as to the performance dif-
ference between the GMM and HMM systems. However, to ensure that these
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GMM HMM 1D HMM 2D
EER 1.80% 1.21% 0.88%

Table 2: Table with the Equal Error Rates of the GMM, HMM 1D and HMM 2D systems for
the All condition on the Test set.

results were consistent a more optimal set of DCT-based feature vectors was
explored for the GMM and HMM systems. The results of these further experi-
ments are summarised below.

4.2. Performance of DCT-based feature vectors

Several DCT feature vector variants were described in Section 2.3.1 and
these are all analysed. Using the previous GMM classifier with M = 512 mix-
ture components it was found that all of the DCT variants provided improved
performance when compared to the basic DCT feature vector. Two consistent
trends were found from these experiments, that: i) DCTmoddelta and DCT-
delta feature vectors provide the best performance, and ii) mean and standard
deviation normalisation provides a significant improvement in performance for
all of the DCT based feature vectors. These results are presented in Figure 4.

Testing the GMM system with the DCT variants it was found that the
DCTdelta and DCTmoddelta feature vector consistently performed well. In
Figure 4(a) it can be seen that the DCTdelta and DCTmoddelta feature vec-
tors perform the best and that when mean and standard deviation normalisation
is applied the DCTmoddelta feature vector performs the best, see Figure 4(b).
From these two figures it can also be seen that mean and standard deviation nor-
malisation provides a significant improvement for all of the feature vectors, for
example the performance of the DCTmoddelta features improves from 1.15% to
0.75% (Tune set results). A similar set of experiments were conducted for both
of the HMM systems and it was found that the mean and standard deviation
normalised DCTmoddelta feature vectors provided the optimal performance.
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Figure 4: The Equal Error Rate (a) all of the DCT variants and (b) all of the DCT variants
with mean and standard deviation normalisation for the GMM system on the Tune set.
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In Figure 5 a summary of the performance of each system, GMM, HMM 1D,
and HMM 2D, is presented on the Test set using the All condition. This figure
shows the impact of using the HMM systems and also the effect of using a more
appropriate feature vector (with mean and standard deviation normalisation).
Both HMM systems clearly outperform the GMM system using the same feature
vectors with the HMM 2D system providing significantly improved performance.
For example when using the optimal DCTmoddelta feature (with mean and
standard deviation normalisation) the GMM system has an EER of 0.88%, the
HMM 1D has an EER of 0.72% and the HMM 2D has an EER of 0.36%.
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Figure 5: The Equal Error Rate of the DCT feature vectors versus the normalised DCT-
moddelta feature vectors are presented for the Test set. It can be seen that the normalised
DCTmoddelta feature vectors significantly outperform their DCT counterparts.

4.3. Summary

The full results of each feature distribution modelling system examined in
this article are presented in Table 3. In this table the results of each system
for each Test condition are provided, and it can be seen that a consistent result
is obtained regardless of the enrollment condition that is used. Also presented
in this table are the results for the previous baseline systems using the same
database and protocol, it can be seen that both HMM systems provide an im-
provement in performance and that the HMM 2D system provides a significant
improvement in performance.

PCA Baseline GMM Baseline GMM HMM 1D HMM 2D
All 1.99% 0.88% 0.88% 0.72% 0.36%

Spring2003 2.01% 1.34% 0.89% 0.67% 0.42%
Fall2003 1.82% 1.08% 0.45% 0.51% 0.18%

Spring2004 2.43% 0.92% 0.92% 0.80% 0.40%

Table 3: Table with the Equal Error Rates of the GMM, HMM 1D and HMM 2D systems for
the all of the conditions for the Test set.
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5. Conclusions and Future Work

The use of state-of-the-art HMM systems has been shown to be directly
applicable to 3D face recognition. This work has examined the applicability of
two HMM topologies, the: HMM 1D and HMM 2D. Experiments on the FRGC
3D face database have shown that the HMM 2D system can more than halve
the equal ERR of the equivalent GMM system with the EER reducing from
0.88% to 0.36%.

Analysis of alternate feature vectors was conducted by examining several
DCT variants. A family of DCT feature vectors was explored, with and with-
out mean and standard normalisation, and two things were found. First, the
use of delta coefficients yields improved performance with the DCTmoddelta
feature vector providing the best performance. Secondly, the use of feature
vector normalisation also provides a significant and consistent improvement in
performance. Furthermore, combining all of these factors together the initial
GMM system reduces its EER from 1.80% to 0.88% and the HMM 2D system
reduces its EER from 0.88% to 0.36%.

A consistent result from all of the experiments has been that incorporating
spatial information improves the performance of the system. For instance at the
feature level the DCTdelta and DCTmoddelta features perform the best for the
GMM system (and also for the HMM system). While at the model level using
HMMs to model the spatial information also improves the performance. And
combining all of these facts yields a significant improvement in performance. For
instance modelling both the horizontal and vertical transitions with the HMM
2D results in a halving of the EER, from 0.88% for the GMM system to 0.36%
for the HMM 2D system.

Future work will examine the effect of using different normalisation proce-
dures on the 3D face data. Also under consideration will be methods to more
directly add spatial information within the feature vector.
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