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 Abstract 
 
In this paper we describe the implementation of a complete ANN training procedure 
using the block mode back-propagation learning algorithm for sequential patterns - such 
as the observation feature vectors of a speech recognition system - exploiting the high 
performance SIMD architecture of GPU using CUDA and its C-like language interface. 
We also compare the speed-up obtained implementing the training procedure only taking 
advantage of the multi-thread capabilities of multi-core processors. In our 
implementation we take into account all the peculiar aspects of training large scale 
sequential patterns, in particular, the re-segmentation of the training sentences, the block 
size for the feed-forward and for the back-propagation steps, and the transfer of huge 
amount of data from host memory to the GPU card. 
Our approach has been tested by training acoustic models for large vocabulary speech 
recognition tasks, showing a 6 times reduction of the time required to train real-world 
large size networks with respect to an already optimized implementation using the Intel 
MKL libraries.  
Thanks to these optimizations and to the support of the GPU, the training time for 
language having a huge set of training sentences (about one million for Italian) can be 
reduced from approximately a month to 5 days. 
 
Key words: Artificial Neural Network, Block Back-propagation, Focused Attention 
Back-Propagation, GPU, CUDA, Fast Training 
 
 
1. Introduction 
 
State of the art speech recognition systems are based on acoustic-phonetic models of the 
words. Each acoustic unit is modeled by one or more states of a Hidden Markov Model 
(HMM), a stochastic automaton that characterizes the spectral properties of a sequence of 
acoustic patterns. Gaussian Mixture Models (GMMs) are often used within each state to 
model the probability density of the acoustic patterns associated to that state (Rabiner and 
Juang, 1993).  
Acoustic scoring often accounts for most of the processing time in the GMM-HMM 
approach. In some tasks, the computation of the GMM’s emission probabilities can 
consume 70-80% of the whole decoding process. Many efforts, thus, have been spent to 
speed-up these computations either by means of Gaussian selection techniques (Chan et 



al., 2004) or, recently, by taking advantage of the computational power of Graphics 
Processing Units (GPU) (Dixon et al., 2009, Cardinal et al., 2009).  
An attractive alternative to Gaussian mixture modeling is the use of an Artificial Neural 
Network (ANN) trained to estimate the posterior probability of each state given an 
acoustic pattern (Bourlard and Morgan, 1993). The main advantage of using a hybrid 
ANN-HMM approach in large vocabulary speech recognition is that the computation of 
the posterior probabilities of the HMM states takes a small fraction of the search time, 
moreover the ANN models are inherently discriminative.  
The most widely used ANNs in speech recognition are feed-forward Multi Layer 
Perceptron (MPL) networks trained by the error back-propagation paradigm (Rumelhart 
et al., 1986). This learning procedure relies on iterative gradient descent optimizations to 
minimize the network errors. The re-estimation of the ANN weights can be performed 
after all the training patterns have been processed (epoch back-propagation), with a 
possible high degree of parallelism of the computation. However, the speed of 
convergence and the accuracy of the model obtained using this procedure are usually 
inferior compared with the on-line learning procedure where the network weights are 
updated after each pattern has been processed (Hertz et al., 1991). The latter approach, on 
the other hand, is intrinsically sequential and not suited for particularly effective parallel 
computations. A solution that has demonstrated to achieve fast convergence and high 
accuracy without losing the advantages of parallel computation is the so called block or 
bunch mode back-propagation, in which the re-estimation of the ANN weights is 
performed using multiple rather than single training patterns (Anguita et al., 1994). 
 
The core computation in MLPs, both in the feed-forward and in the back-propagation 
steps, is the inner product of a weight vector and of a feature vector (activation or error 
vector respectively). Several works have been published that exploit matrix 
multiplication to convert many inner-product operations into a single matrix multiply 
operation. Oh and Jung (2004) efficiently perform the matrix multiplications using a 
GPU to improve the performance of a text detection system for image data and video 
documents. Jang et al. (2008) perform the same task comparing the performance of a 
CUDA and OpenMP implementation of the feed-forward step in a three-layer MLP. 
Lahabar et al. (2008) describe the implementation of epoch mode back-propagation by 
using CUDA (Compute Unified Device Architecture) and the CUBLAS library 
(NVIDIA, 2008). 
All these works focus on the classification of static patterns. 
 
In this paper we describe the implementation of the block mode back-propagation 
learning algorithm for sequential patterns - such as the observation feature vectors of a 
speech recognition system - exploiting the high performance SIMD architecture of GPU 
using CUDA and its C-like language interface. We also compare the speed-up obtained 
implementing the training procedure taking advantage of the multi-thread capabilities of 
multi-core processors only. In our implementation we take into account all the peculiar 
aspects of training large scale sequential patterns, in particular, the re-segmentation of the 
training sentences, the block size for the feed-forward and for the back-propagation steps 
in combination with a focused-attention procedure that allows to dramatically reduce the 
training times for large datasets, and the transfer of huge amount of data. 



The paper is organized as follows. In Section 2, we briefly present the hybrid ANN-
HMM models used by the Loquendo ASR speech recognition decoder (Loquendo ASR, 
2009). Section 3 recalls the training steps of the ANN-HMM models. Sections 4 and 5 
detail the techniques that can be used to accelerate the network training using single or 
multi-core CPUs, and GPU respectively. The experimental results are summarized in 
Section 6. Concluding remarks are reported in Section 7.  
 
2. Hybrid ANN-HMM models  
 
The Loquendo Automatic Speech Recognizer (Loquendo ASR) is based on hybrid ANN-
HMM models, detailed in Fissore et al. (1995) and Albesano et al. (1997), where the 
acoustic models are left-to-right HMMs, with all the states having the same transition 
probabilities. The emission probabilities of the HMM states are computed by a three layer 
MLP. Having two hidden layers, rather than a single larger layer, has the advantage of 
reducing the total number of connections without any performance degradation. A 
network is fed with a temporal window including a sequence of the input patterns. A 
pattern consists of 7 frames, the central frame and three frames for the left and right 
contexts respectively. A frame is a spectral vector of 39 acoustic features computed every 
10 ms.  The input layer, thus, has 273 nodes. The first and second hidden layers, have a 
number of nodes varying from 300 to 500, all with sigmoid activation function. The 
softmax function is applied to the output layer, which includes a language dependent 
number of nodes (in the range 700 - 1000) representing the states of a set of context-
dependent phonetic units. 
 
 
 
3. ANN-HMM model training 
 
The training databases usually do not include phoneme utterances, but rather utterances 
of sentences or words collected from many different speakers, transcribed in terms of 
their corresponding phonetic units. Training hybrid ANN-HMM models, thus, requires 
these two alternate steps: 

- Find the best alignment of the utterance frames to the states of the corresponding 
phonetic units. 

- Find the weights of the network that better discriminate among the states, by 
producing for each state an estimate of the posterior probability P(state|x), where x is 
the input pattern. 

More precisely, the iterative train procedure follows these steps: 
Initialization: 

- Initialize the network weights with small random values. 
- Use a bootstrap alignment of the training sentence patterns to the network output 

states to obtain the target of the neural network for each input vector. This initial 
segmentation can be obtained by a raw alignment of the input patterns to the 
sequence of the states corresponding to the transcription of a sentence, or by a forced 



alignment Viterbi recognition procedure (Rabiner and Juang, 1993) using simpler 
pre-existing models.  

Iteration: 
- Update the network weights by back-propagation of the errors, using the current 

alignment 
- Update the alignment of the train set patterns by Viterbi forced alignment using the 

emission probabilities of the updated network.  
 
In the following we will analyze the feed-forward and back-propagation training steps for 
a network having softmax output nodes and sigmoid activation functions for all the 
hidden nodes. The cross-entropy error function is used to compute the error between the 
output of the ANN and the target vector t .  
 
3.1 Feed-forward step 
The feed-forward step computes, for each layer, the outputs of the corresponding nodes 
given the layer input vector t 1 2 n t  = ( , ,..., )X x x x  as: 
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where n is the number of nodes of the current layer, and ( )if net  is the sigmoid function 
(3) for all the hidden layers, and the softmax function (4) for the output layer 
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3.2 Back-propagation 
After the evaluation of the outputs produced by the feed-forward step, the net weights are 
updated on the basis of the error between the target vector and the network outputs by 
means of the back-propagation algorithm. An error function that is appropriate for 
dealing with probabilities is the cross-entropy error: 

( ) ( ) ( )ln 1 ln 1i i i i iE t out t out= − ⋅ − − ⋅ −    (5) 
The back-propagation algorithm proceeds by propagating the error from the output to the 
underlying hidden layers in order to correct the network weights. The procedure can be 
summarized in the following three steps: 
1. Compute the derivative of the error with respect to the input for every node i  
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• if layer is the output layer with cross-entropy error function and softmax activation 
function 
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where the term in the first parenthesis is the derivative of cross-entropy error 
function, and the term in the second parenthesis is the derivative of softmax 
activation function. 
• if layer is a hidden layer with sigmoid activation function 
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   where the second parenthesis is the derivative of sigmoid activation function. 
 

2. Compute the variations of the weights: 
1( ) ( ) ( ) ( )layer layer layer layer

ij i j ijw out w jη β−∆ = − ⋅ ∂ ⋅ + ⋅ ∆ ∀   (9) 

 
3. Update the weights:  

ij ij ijw w w j= + ∆ ∀      (10) 

 
The previous equations for the back-propagation algorithm are summarized in Figure 1, 
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 is the back-propagated error, associated with node i. 

 
 

 
 
 
 
 
 
 
 
 

  
 
 
 
 
Figure 1.  Implementation of the back-propagation training algorithm for a MLP with 
cross entropy error function, softmax output layer units, and sigmoid activation units in 
the hidden layers. 
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4. Speed-up using single and multi-core CPUs 
 
The first step toward an efficient straightforward implementation of the feed-forward and 
back-propagation procedures is to use the efficient vector-by-matrix functions. 
More efficient implementations are, however, possible after a closer examination of the 
MLP training procedure. In the batch version of the back-propagation algorithm, the 
weight variations ijw∆  are summed over all the training frames, and the weights are 
updated once for each epoch. This approach offers the maximum potential of parallel 
computation, but it has the drawbacks of slow convergence because both the network and 
the utterance alignments are performed once for each epoch. On the other hand, 
stochastic gradient back-propagation in which weight updating occurs after a single 
frame has been processed, provides better accuracy, because it reduces the risk of getting 
stuck in a local minimum of the error function, and has also a faster learning rate, but 
does not allow parallel computation to be massively exploited.  
An intermediate approach, in which the weights are updated after processing a block of B 
patterns, is a trade-off solution that leads to accurate model estimation and allows parallel 
computation. In Bilmes et al. (1997) high performance matrix multiply routines were 
introduced that, based on the work of Anguita et al. (1994), have been used to improve 
the training speed on a speech recognition data set. 
  
The training algorithm can be further enhanced by using the so called focused-attention 
back-propagation (FABP) learning strategy (Hoskins, 1989). FABP focuses attention on 
the patterns that are most difficult to learn. In FABP, the feed-forward step is performed, 
as usual, for all the patterns to compute the errors between the net outputs and the related 
targets. Back-propagation, however, is performed only for those patterns having a Mean 
Square Error (MSE) greater than a given threshold.  This strategy not only speeds-up the 
training, but also improves the quality of the trained model reducing its dependence on 
the a priori probability of the classes in the training set.  
In FABP several training patterns fed to the network are skipped, i.e. not used for back-
propagation (almost 80% in the last iterations). It is, thus, opportune that the feed-forward 
block size is greater than the one used in the back-propagation step.  We will refer to the 
number of patterns used in the feed-forward step as bunch size, FBS, and to the block size 
used in the back-propagation as BBS.  
However, the value of FBS must be bounded because the network weights are updated as 
soon as BBS patterns are accepted by the FABP strategy. Since the network weights have 
been updated, all the remaining patterns in the feed-forward bunch, accepted by the 
FABP strategy but exceeding the BBS size, must be submitted again in the next feed-
forward bunch, introducing memory and computation overhead. 
Taking care of these considerations the bunch feed-forward and the block back-
propagation steps can be rewritten using matrix-by-matrix operations as shown in Figure 
2 and Figure 3 respectively. 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  Implementation of the feed-forward step of the training algorithm for a MLP 
with softmax output layer units, and sigmoid activation units in the hidden layers, using 
matrix-by-matrix operations. 
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Figure 3. Implementation using matrix-by-matrix operations of the back-propagation 
training algorithm for a MLP with cross entropy error function, softmax output layer 
units, and sigmoid activation units in the hidden layers. 
 ./ and .* represent the element-by-element division and multiplication respectively. 
 
In these figures, T indicates transposition, the superscript is the number of the network 
layer and the subscript gives the dimensions of the matrices, where B is the feed-forward 
bunch size FBS, I and J are the number of output nodes of two adjacent layers.  
Introducing a zero dummy layer, the same index refers both to the layer weights and to its 
outputs. T 
The variables η  and β  in Figure 3, are the dynamic learning rate adjustment and the 
momentum factor respectively, which, together with some additional techniques 
illustrated in Sarkar (1995), allow the convergence properties, the training time and the 
model accuracy to be improved. 
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Figure 4. Decomposing a complex operation in terms of vector operations. 
 
The Level 3 BLAS the Basic Linear Algebra Subprograms (BLAS) (Blackford et. al. 
2002) library functions can be used for the matrix-by-matrix multiplications in (2.2), (3.3) 
and (3.4). In particular, since our experiments were performed on a machine with Intel 
CPUs, an optimized implementation of the BLAS library for Intel processors, the Math 
Kernel Library (Intel MKL, 2009) was compiled, which exploits the MMX and SSE 
instruction sets to speed-up computation.  
Moreover, since Intel provides the Integrated Performance Primitives (Intel IPP, 2009) 
for other vector operations, it is important to decompose operations such as (2.3), (2.4), 
(3.1), (3.2) and (3.5) in terms of a sequence of  vector operations which can be mapped to 
fast library functions. As an example, the error computation of (3.1) can be decomposed 
as shown in Figure 4. 
 
Further speed-up is obtained using the threaded MKL implementation of the 
cblas_sgemm function that splits the execution over the available CPU cores. 
Since the relative speed-up that can be achieved using these libraries is proportional to 
the size of the data, large feed-forward bunch size and back-propagation block sizes lead 
to better performance.  However, as mentioned before, the value of FBS must be bounded 
to reduce the computation overhead. In the experiments described in Section 6 the value 
of the block size BBS has been set to 10. This value is as a good tradeoff between 
training time and model accuracy.  As a consequence, the value of the feed-forward 
bunch size FBS has been set to 32 taking into account the statistics about the average 
number of patterns that are not used for back-propagation in the training iterations . 
 
 
5. Speed-up using GPU and CUDA 
 
GPUs are graphics-oriented dedicated processors suited to computationally expensive but 
highly parallelizable tasks such as 3D graphic rendering. The main GPU architecture is 
characterized by the presence of a high number of floating point core processors (up to of 
some hundreds) which are able to perform parallel computations and can currently reach 
peaks of the order of one TFLOPS.  
Since most of the computation in ANN training has a high degree of fine grain 
parallelism, the use of GPUs is particularly suited for this task. 
The implementation of parallel computation tasks has been remarkably facilitated since 

1( ) ( ) ( )BxI BxI BxI= −tmp1 t      (4.1) 
1( ) ( ) ( )BxI BxI BxI= −tmp2 out     (4.2) 

( ) ( ) ( )/BxI BxI BxI= ⋅tmp1 tmp1 tmp2    (4.3) 

( ) ( ) ( )/BxI BxI BxI= ⋅tmp2 t out     (4.4)  

( ) ( ) ( )BxI BxI BxI= −e tmp1 tmp2     (4.5) 



the introduction by NVIDIA of the high-level programming language CUDA (Compute 
Unified Device Architecture), which provides a C-like interface to the programmable 
processors of the GPU and an efficient implementation of the BLAS library (CuBLAS). 
In the CUDA environment a programmer sees the GPU as a multi-core processor 
allowing the concurrent execution of multiple threads which perform the same 
computations on different data. The computation is organized as a grid of thread blocks 
where each thread executes a single instruction set called kernel (NVIDIA, 2008). 
Examples of the use of the CUDA framework in the field of artificial neural networks are 
already present in literature. In particular, Cernansky (2009) proposes a CUDA 
implementation of a training algorithm for recurrent networks,  Jang et al. (2008) show a 
possible use of GPU to speed up the feed-forward step, while Lahabar et al. (2008) 
present a complete implementation of the training process for an MLP with sigmoid 
output units, assuming that all the training patterns and the corresponding targets are 
fixed and stored in the GPU memory.  
Although our approach is similar to the latter, however, several problems have been taken 
into account for an effective implementation of the MLP training task for sequential 
patterns on a GPU. First of all, the epoch back-propagation approach proposed in 
Lahabar et al. (2008) is not suited for training a network that has to model phonetic units 
for speaker independent speech recognition tasks. For these tasks the number of training 
patterns can easily exceed some millions, thus, the patterns cannot be stored in the GPU 
memory. Furthermore, since slow convergence problems easily arise when epoch back-
propagation is used for such large data sets, it becomes mandatory to use the bunch 
training approach combined with FABP as described in Section 4. Care, however, is 
required to estimate the bunch and block sizes to achieve a good trade-off between model 
accuracy and training time. Moreover, the softmax output layer, necessary in our 
approach to estimate the posterior probabilities of the phonetic unit states, requires the 
evaluation of the sum of the elements of a vector. This task is not well suited to the 
multithreaded paradigm. Thus, rather than adopting a concurrent algorithm aimed at 
minimizing the time required for the sum of the elements of a single array, which requires 
synchronization barriers, we used instead a simple sequential algorithm for each vector, 
but the task is performed in parallel over the BBS output vectors of the bunch. 
 
To exploit the GPU computational power, we map the matrix implementation on either 
CuBLAS functions or specific kernels. Matrix multiplications are performed by means of 
the cublasSgemm,a fast and hardware-optimized implementation of matrix products 
function, both in the feed-forward (5.2) and in the back-propagation (6.3, 6.4) steps. 
Carefully tailored kernels have been implemented for the softmax and sigmoid functions, 
the MSE evaluation, and the update of the network weights. Recall that kernels are set of 
instructions executed in parallel by all the GPU stream processors. Thus, as an example, a 
kernel applies the sigmoid function in parallel to all the units of a layer. 
Moreover, due to the architecture of the GPU, since CuBLAS give optimal performance 
with matrices having sizes that are multiples of power of 2, we enforce zero padding to 
our matrices which do not meet this condition. In particular, we pad to multiples of 32 
and 16 the structures for the feed-forward bunch and back-propagation block 



respectively, and to multiples of 32 the weight matrices.    
Performance improvement of 10% were obtained using padded matrices rather than non-
padded ones, as shown in the last two rows of Table 3 in Section 6. 
Although the CuBLAS library includes efficient functions to copy data from the host to 
the card and copy results back from the card to the host, these transfers of data can easily 
become the performance bottleneck. Thus, the network weights are kept in the GPU 
memory, but the input patterns are loaded on the GPU in bunches due to the small size of 
the GPU memory compared to the dimensions of the training data. 
 
The core steps of the training algorithm can be summarized as follows: 
1. Load a bunch FBS of input patterns on the GPU memory. 
2. Execute the feed-forward step and evaluate the MSE for each pattern. 
3. Transfer both the bunch MSEs and output patterns from the GPU to the main memory.  

The output patterns are required by the forced alignment performed by the Viterbi 
algorithm, running in the host machine, to obtain a new, more precise, association of 
the input patterns to the targets. The MSE of each pattern is simply tested in the host 
processor to select (according to the focused-attention strategy) the patterns on which 
back-propagation has to be performed. 

4. The pattern vectors in the GPU memory selected for back-propagation in step 3 are 
appended to the back-propagation matrix structures (of size BBS). 

5. Repeat all the previous steps until a sufficient number of patterns (the block size BBS) 
are selected for back-propagation. 

6. Execute the back-propagation procedure for the block of selected patterns and update 
the weights. 

7. Since the weights have been updated, all the remaining patterns in the feed-forward 
bunch that were accepted by the FABP strategy, but exceed the BBS size, must be re-
submitted in the next feed-forward bunch. 

8. Repeat from the beginning until all input patterns have been processed. 
 
These steps are iterated until convergence is reached as decided by a stopping criterion 
based on maximum number of iterations, rate of decrease of the MSE, or recognition 
performance on a held out development set. 
 
Table 1 shows the CUDA functions associated to the MLP training steps detailed in 
Figure 2 and Figure 3. Four types of functions were employed: 

1. Memory transfer CPU/GPU: the function cudaMemcpy effectively performs 
memory transfers between the host and the card memory and vice-versa. It has 
mainly been used to transfer input patterns from main memory to the GPU global 
memory for the feed-forward step. 

2. Memory transfer GPU/GPU: The pattern vectors in the GPU memory selected for 
back-propagation need to be copied in contiguous locations into the back-
propagation matrix structures. This operation is performed by means of a CUDA 
kernel. 

3. Matrix-by-matrix product: performed by means of cublasSgemm.  
4. CUDA kernels: all the other operations have been implemented with CUDA 



kernels. 
 
 

Functions Time  (%) Type 
Memory transfer      
CPU/GPU (2.1)   8.7 cudaMemcpy 
Feed-Forward 32.5  

net computation    (2.2) 22.8 cublasSgemm 
softmax function   (2.3)   7.2 kernel 
sigmoid function   (2.4)   2.5 kernel 

Memory transfer 
GPU/GPU 10.0 kernel 

Back-propagation 48.8  
Cross-entropy       (3.1)   1.2 kernel 
Error derivative    (3.2)   2.4 kernel 

Error  propagation (3.3) 20.1 cublasSgemm 
Weight gradient    (3.4) 17.0 cublasSgemm 
Weight  update     (3.5)   8.1 kernel 

 
Table 1. Timing profile for MLP training functions (in parentheses the related formulae 
in Figure 2 and 3) using CUDA.  
 
Table 1 also shows the timing profile of the training procedure using the CUDA 
architecture. It is worth noting that most of the time is spent performing actual 
computations, while the transfer of inputs and outputs between CPU and GPU contributes 
to the total time for just 8.7%. The overhead arising from the transfer inside the GPU of 
the output patterns from the feed-forward to the back-propagation structures is 
significant. This overhead is mandatory because only a fraction of the patterns have to be 
processed - the ones selected by the focused attention strategy – and they must be stored 
in physically contiguous areas of memory to allow faster execution of the back-
propagation procedure. Excluding memory transfer times, and looking at the actual 
computations, most of the time (about 74%) is spent evaluating matrix products by means 
of the CuBLAS library function cublasSgemm, whereas the remaining time is used by 
the kernels. Kernels account for less than one fourth of the global computation time and 
at least one third of kernel time is actually spent in the weight update kernel, almost all 
for memory transfers from the GPU main memory to the core processors memory. For 
this reason we chose not to push the kernel optimizations any further, though some 
margins for kernel optimization still exist. 
 
6. Experiments 
 
A large set of experiments was performed to test the speed-up achieved by using the 
proposed approaches. The hardware setup was a HP xw8600 workstation equipped with a  



 

0.001

0.01

0.1

1

10

0 100 200 300 400 500 600 700 800 900 1000

Square matrix linear size

Ti
m

e 
(s

ec
) Single thread MKL

Multi-thread MKL
GPU with copy
GPU without copy

 
 

Figure 5. Time required for the product of two square matrices, as a function of 
their linear size, using different libraries. 

 
quad-core 3.0 GHz CPU, 1600 MHz FSB, 8 GB RAM, NVIDIA GTX280 GPU, and 
running Linux RedHat RHEL 5.2 EM64T. 
Since matrix multiplication is the basic building block for MLP training, in the first set of 
experiments the performance of the matrix-by-matrix product using the INTEL MKL 
optimized library was compared with the same operation performed on a NVIDIA GPU. 
We tested the product of two square matrices with linear dimensions ranging from 50 to 
1000 in steps of 5. These products were done by using the well tuned implementation, 
described in Volkov and Demmel (2009), included in Version 2 of the CuBLAS library. 
The results of these experiments are shown in Figure 5 where the execution times are 
plotted in logarithmic scale. As expected, using a multi-threaded architecture increases 
the performances of the MKL implementation, more and more for larger matrices. 
Exploiting the processing power of the GPU allows the CuBLAS implementation to 
outperform the multi-thread approach using the MKL library for medium-large matrices, 
even though the overhead for the host/GPU memory transfers cannot be neglected 
(compare the two plots labelled “with copy” and “without copy”). If we factor out the 
memory transfer time, CuBLAS performs better than MKL also in the product of small 
matrices.  
This behaviour suggests using large bunch sizes for MLP training for optimizing the 
memory transfers between the host and the GPU memory to keep the GPU processors 
busy as much as possible. 
It's interesting to observe that the CUDA framework presents performance peaks (of the 
order of 10%) corresponding to matrix dimensions which are multiples of power of 2, 
which is the reason for using zero padding.  



 
 

Training Implementation Elapsed Time
hh:mm 

Speed-up 
versus Standard C  

Speed-up 
versus MKL 

Standard C  42:35 - - 
Single thread MKL 11:36 3.7 x - 
Multi-Thread MKL  9:41 4.4 x 1.2 x 

GPU and CUDA no-padding 2:29 17.1x 4.7x 
GPU and CUDA with padding 2:14 19.1 x 5.2 x 

 
Table 2. Training time, and relative speed-up for the Wall Street Journal 0 corpus. 

 
The second set of experiments was devoted to training English models using the Wall 
Street Journal corpus (Paul and Baker, 1992), a relatively small database of 7236 files, 
which represents a popular case study in Automatic Speech Recognition.This corpus has 
been used as a validation set for the algorithms and for tuning the training procedure. 
Table 2 shows the elapsed training time, and the relative speed-up of four 
implementations: the baseline is a standard C language implementation without the 
optimized matrix functions offered by the BLAS library, it is compared with single and 
multi thread programs using the INTEL MKL libraries, and finally with the support of a 
GPU board and its optimized routines. 
 
It is worth noting that to obtain a fair comparison of the GPU and MKL implementations, 
the bunch size FBS of the latter has been set to 15 rather than to 32. This has been done 
to avoid in the MKL implementation the significant overhead of re-processing in the next 
feed-forward step the patterns accepted by the focused attention mechanism but 
exceeding the back-propagation block size BBS. This problem is much less relevant in 
the GPU implementation because bunch of patterns are processed in parallel. 
In this case study a speed-up of 3.7 is obtained by enhancing the naïve standard C 
language implementation to process bunch of patterns using the MKL libraries. The 
improvement obtained using the GPU is much larger: a factor of 19.1, which is 5.2 times 
faster than the single thread MKL implementation. Although the multi-thread MKL 
version does give a 20% improvement compared to the single thread, it fully occupies the 
4 cores, which can be used instead for training in parallel different models.   
 
In the third set of experiments, without changing the setup, the models of 6 different 
languages have been re-trained using the large corpora collected for creating the models 
used by the Loquendo decoder. The training process has been performed using the same 
corpora, number of iterations and training parameters, excluding the bunch size. It is 
worth noting that if the focused attention strategy is disabled, the bunch size FBS does 
not have any influence on the update of the network weight, it is only used for efficiency 
purposes. Only the back-propagation block size BBS has a direct impact on final model 
because it drives the rate of the weight updates. On the contrary, the bunch size affects 
the final model parameters if the focused attention strategy is enabled. This happens 
because the feed-forward step is done for the set of patterns belonging to a bunch using 



the current network weights. The patterns that are not selected for back-propagation will 
not be included in the next bunch. One or more of these patterns could be possibly  
 

 
Table 3. Training time of the acoustic models of 6 different languages with MKL and 

GPU-CUDA implementations, and average accuracy for 8 application grammars.  
 
selected, instead, if the bunch size were smaller because it would be classified with a 
different set of network weights. 
Thus, the models resulting from the MKL and GPU system are slightly different, 
although, as it will be shown, their accuracy is comparable. 
In these experiments we computed the elapsed training times to evaluate the obtained 
speed-up and we checked the recognition accuracy on 8 different recognition application 
grammars to assess that fast computation does not produce statistically significant 
recognition performance variations. Tests were performed for utterances collected both 
from the fixed and the mobile telephone networks. 
The grammars include common recognition tasks such as yes-no, connected digits, 
numbers, spelling, dates, etc. The reference models are the ones released with the 
Loquendo ASR recognizer. The models were re-trained using the single thread MKL 
implementation on the same workstation hosting the NVIDIA GPU to obtain a fair 
comparison of the training times. 
 
Table 3 shows experimental results comparing the standard Loquendo ASR models, 
models retrained using the single thread MKL implementation, and models retrained 
exploiting the GPU-CUDA architecture. The percent Word Accuracy (WA) in the Table 
gives the average results obtained using similar application grammars in different 
languages. The comparison of the results among languages is not significant because the 
list of the grammars slightly differs. The table gives also the elapsed training time, in 
hours and minutes, for the retrained models (MKL and CUDA-GPU implementations), 
and, in the last column, the relative speed-up of the GPU-CUDA with respect to the MKL 
implementation.  
The results in this table are useful to evaluate the average speed-up in training and Word 
Accuracy in recognition obtained with the GPU-CUDA implementation in comparison 

Languages Loquendo ASR  
Models 

Single thread 
MKL implementation 

GPU-CUDA  
implementation 

 WA (%) WA (%) ∆ERR Time 
hh:mm

WA (%) ∆ERR Time 
hh:mm 

Speed-up

Italian 93.1 93.0 +0.1 143:28 93.0 +0.1 29:26 4.9 x 
Spanish 93.2 93.3 -0.1 60:55 93.2 0.0 11:23 5.4 x 
French 90.2 90.2 0.0 107:37 90.0 +0.2 16:39 6.5 x 
German 89.4 89.7 -0.3 94:00 90.0 -0.6 13:21 7.0 x 
English 84.6 84.5 +0.1 147:31 84.1 +0.5 24:30 6.0 x 

Brazilian 84.1 84.7 -0.6 50:47 84.2 -0.1 7:33 6.7 x 
AVERAGE 89.1 89.2 -0.1  89.1 0.0  6.1 x 



with a traditional, but MKL optimized training. The obtained average speed-up is more 
than 6 times keeping substantially constant the accuracy averaged on all the languages. 
The difference in speed-up for the various languages is due to the different amount of  
 

GTX280 GTX295(1) GTX295(2) Experiment Time Incr  (%) Time Incr (%) Time Incr ( %) 
1 2:14 - idle idle 
2 idle 2:20 +4.5 idle 
3 2:14 0 2:20 +4.5 idle 
4 idle 2:20 +4.5 2:20 +4.5 
5 2:15 +0.7 2:22 +6.0 2:21 +5.2 

 
Table 4. Training time, in hours and minutes, for single and parallel training sessions 

running on different GPUs. 
 
speech data used in the training and to the number of phonetic units that are defined for 
each language, and as a consequence, to size of the corresponding MLP networks. 
Finally, an additional NVIDIA GTX295 GPU board has been added to the hardware 
configuration to test the possibility of training more networks in parallel. This board has 
two GPUs, but a lower clock both for its memory and core processors. In this 
configuration the workstation has 3 GPUs of comparable computational power. 
A set of training sessions have been done using the Wall Street Journal corpus to verify 
whether the simultaneous run of more than one training session slows down the GPU-
CUDA implementation,  possibly  generating congestion problems on the PCI-Express 
bus. The training sessions have not been done on larger corpora due to the limitations of 
the hardware configuration for these experiments, offering 8 GB of main memory only. A 
large increase of the training sets would impact on the elapsed times for the overhead 
introduced by the use of virtual memory. Being sure that the input data can be stored in 
main memory eliminates this factor, focusing the experiments on the performance of the 
GPU boards, and on their interactions with the main memory.  
Table 4 shows the elapsed times, in hours and minutes, for training the 7236 sentences of 
the corpus. Each row in the Table represents experiments for a single or parallel training 
sessions running on different GPUs, the columns show the training time for the active 
GPUs.  
Rows 1 and 2 compare the performance of the two GPU boards on the single model 
training experiments. It is not surprising that the training executed on one GPU of the 
GTX295 board is slightly more time consuming, due to its slower board clock. 
In rows 3 and 4 we report the results of running two training sessions on the same corpus, 
using one GPU of the two boards or the two GPUs of the GTX295 board respectively. In 
both cases the training times do not increase compared to the single training session. 
Thus, the two parallel training sessions do not interfere, and no bandwidth problems arise 
for the PCI-Express 16x Gen2 bus. 
As shown in the last row, this configuration of the workstation is able to carry out three 
parallel sessions with a very small increase of the training time, of the order of 1%. We 
can conclude that the GPUs and the PCI-Express 16x Gen2 bus are not a bottleneck for 
the fast GPU-CUDA training implementation. 



 
7. Conclusions 
 
We have studied and implemented a complete ANN training procedure for sequential 
patterns exploiting the computational power of inexpensive GPU boards. We have tested 
this approach for training acoustic models for large vocabulary speech recognition tasks, 
showing a 6 times reduction of the time required to train real-world large size networks 
with respect to an already optimized implementation using the INTEL MKL libraries.  
Thanks to these optimizations and to the support of the GPU, the training time for 
language having a huge set of training sentences (about one million for Italian) can be 
reduced from approximately a month to 5 days. 
The obtained speed-up not only improves the efficiency of the generation of acoustic 
models, but also makes easier the research activity related to acoustic modeling such as 
testing different definitions of the acoustic units, experimenting with different neural 
networks structures and topologies. Reducing the training time also allows training larger 
models with huge training corpora. 
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