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Abstract

The evaluation and comparison of internal cluster validity indices is a critical
problem in the clustering area. The methodology used in most of the evaluations
assumes that the clustering algorithms work correctly. We propose an alterna-
tive methodology that does not make this often false assumption. We compared
7 internal cluster validity indices with both methodologies and concluded that
the results obtained with the proposed methodology are more representative of
the actual capabilities of the compared indices.
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1. Introduction

Clustering is an unsupervised pattern classification method that partitions
the input space into groups or clusters. The goal of a clustering algorithm is
to perform a partition where objects within a group are similar and objects
in different groups are dissimilar. Therefore, the purpose of clustering is to
identify natural structures in a dataset (Jain and Dubes, 1988; Halkidi et al.,
2001; Mirkin, 2005; Sneath and Sokal, 1973) and it is widely used in many fields
such as psychology (Holzinger and Harman, 1941), biology (Sneath and Sokal,
1973), pattern recognition (Mirkin, 2005), image processing (Chou et al., 2004)
and computer security (Barbará and Jajodia, 2002).

Once a clustering algorithm has processed a dataset and a partition of the
input data is obtained, a relevant question arises: How well does the partition
fit the data? This question is important for two reasons. First, an optimal
clustering algorithm does not exist. That is to say, different algorithms, or
different configurations of the same algorithm, produce different partitions and
none of them have proved to be the best in all situations (Pal and Biswas,
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1997). Thus, in an effective clustering process we should compute different
partitions and select the one that best fits the data. Secondly, many clustering
algorithms are not able to determine the number of natural clusters in the
data, and therefore they must initially be supplied with this information. Since
this information is rarely previously known the usual approach is to run the
algorithm with different values and select the partition that best fits the data.
The process of estimating how well a partition fits the structure underlying the
data is known as cluster validation (Halkidi et al., 2001).

For validating data partitions we must examine the clusters determined by
the evaluated partition and measure the compactness of the clusters and their
separation. Many authors have proposed different indices, called internal cluster
validity indices (Halkidi et al., 2001; Kim and Ramakrishna, 2005; Maulik and
Bandyopadhyay, 2002), to perform this validation. Unfortunately, no internal
CVI has proved to be efficient in all conditions. In the rest of the paper we will
refer to them as cluster validity indices or CVIs.

Many authors have compared the accuracy of cluster validity indices pro-
posed in the literature (Dimitriadou et al., 2002; Maulik and Bandyopadhyay,
2002; Milligan and Cooper, 1985). In addition, most new CVI proposals have
been compared to well known indices (Chou et al., 2004; Hardy, 1996; Kim and
Ramakrishna, 2005; Kothari and Pitts, 1999; Pal and Biswas, 1997). Therefore,
it is clear that a method for comparing different CVIs, which we call an eval-
uation of cluster validity indices, is necessary. Although little theoretical work
has been done in this context, most CVI evaluation work has followed the same
methodology (Chou et al., 2004; Devillez et al., 2002; Günter and Bunke, 2003;
Kim and Ramakrishna, 2005; Maulik and Bandyopadhyay, 2002; Milligan and
Cooper, 1985; Pal and Biswas, 1997). We call this methodology the classical
methodology.

We hypothesize that the classical methodology is based on an incorrect as-
sumption. Moreover, we have developed an alternative methodology to evaluate
cluster validity indices, which overcomes this problem. Results obtained from
the evaluation of 7 well-known CVIs on 10 real and synthetic datasets supported
the suitability of the proposed methodology.

The classical methodology and its fundamental assumption are briefly de-
scribed in the next two sections. We review some previous work that evaluates
CVIs in Section 4. In Section 5 we present the alternative CVI evaluation
methodology. Sections 6 and 7 are devoted describing an empirical comparison
between the classical CVI evaluation methodology and the proposed alternative.
Finally, conclusions are drawn in Section 8.

2. Classical methodology to evaluate CVIs

In order to evaluate a group of CVIs we need a set of datasets and a cluster-
ing algorithm. We need to know the exact number of clusters for each dataset.
Therefore, the datasets are usually synthetic and low-dimensional, commonly
2-dimensional, so we can visually check the correct number of clusters. The clus-
tering algorithm must allow an input parameter that sets the number of clusters
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the generated partition will have, also known as the k parameter due to the well
known k-means algorithm. The agglomerative hierarchical algorithm (Jain and
Dubes, 1988) and the k-means algorithm (Mirkin, 2005) are widely used for
this purpose (Kim and Ramakrishna, 2005; Maulik and Bandyopadhyay, 2002;
Milligan and Cooper, 1985; Pal and Biswas, 1997).

The algorithm is run over the dataset with a set of m different values for
the k parameter, K = {k1, k2 . . . , km}. In this way, a set of m partitions is
obtained, S = {P1, P2, . . . , Pm}, but just one of them has partitioned the data
with the correct number of clusters. We refer to this particular partition as the
Pnc partition.

Pnc = Pi| nc(P ∗) = nc(Pi), Pi ∈ S

where P ∗ is the correct partition of the analysed dataset, and nc(P ) the number
of clusters of a partition P .

The CVI is computed for all the partitions in S and the partition obtaining
the best value for the evaluated CVI will serve to predict the actual number of
clusters. For the sake of simplicity let us assume that the index used assigns
greater values to “better” partitions. If the function I(P ) computes the value
obtained by the evaluated index over the partition P , we say that the cluster
validity index proposes partition P I as the best partition in S.

P I = argmax
Pi∈S

(I(Pi))

We say that the index has predicted that the dataset contains nc(P I) clusters
and consider that it has made a successful guess if nc(P I) = nc(P ∗). In the
evaluation the more times a CVI guesses the number of clusters of the different
datasets the better it is considered to be.

This type of work is data dependent since different indices behave in a dif-
ferent manner on different datasets. Despite these limitations, very interesting
conclusions can be drawn from this type of study (Milligan and Cooper, 1985).

3. The algorithm correctness assumption

The CVI evaluation process described above works under a fundamental
assumption: the clustering algorithm works “correctly”; or to be more precise,
of the m partitions that the algorithm has determined for a particular dataset,
the Pnc partition is the one that best fits the data. If this assumption does
not hold —there is a partition Pi ∈ S that fits the data better than the Pnc

partition— it is not fair to ask the CVI to guess the actual number of clusters.
Since the CVI is designed to measure the correctness of a partition, in these
anomalous situations the prediction of an incorrect number of clusters is not
just a forgivable error but a desirable behaviour.

This fundamental assumption is obviously true when the algorithm is able
to perfectly find the structure underlying the data (P ∗ ≡ Pnc), and it should
be true when the algorithm shows close to optimal behaviour. However, it is
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difficult for the assumption to hold in complex environments, such as noisy
datasets, overlapped clusters, non-convex clusters, etc.

In this section we show some examples to illustrate that the above mentioned
assumption does not hold in many situations; classical clustering algorithms
frequently fail even on datasets with compact and well separated clusters.

In Figure 1a we present a noisy 2-dimensional dataset. There are 4 compact
and well separated clusters and some noise added under a random uniform
distribution. We used the single-linkage agglomerative hierarchical algorithm to
partition the data and Figure 1b shows the Pnc partition obtained; that is, the
partition corresponding to the 4-cluster solution proposed by the algorithm. We
found that 3 clusters were joined together while two noise points were proposed
as singleton clusters. The singleton clusters are circled in the figure. The same
algorithm is able to perfectly partition the non-noise data if k is set to 10. We
consider that a CVI should favour this 10-cluster partition and not the incorrect
4-cluster one.

Figure 1: a) Noisy dataset. 4 compact clusters and some noise points. b) The 4-cluster
partition proposed by the single-linkage hierarchical clustering algorithm.

In Figure 2a we show a 2-dimensional dataset with just 2 clusters. In this
case no noise is present. We run the k-means algorithm over this data with k = 2
and we obtained the partition shown in Figure 2b . Once again, the partition
was not correct. In this case the reason is that the k-means has hard problems
in correctly partitioning non-convex clusters. Since the k-means algorithm has
a random component (the centroid initialization) we ran the algorithm 10 times
with k = 2 and 10 times with k = 3. 9 of the partitions with 3 clusters fit the
data better than any of the partitions with 2 clusters. Once again, we consider
that a CVI should favour these 3-cluster partitions.
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Figure 2: a) T&U dataset. A T-shaped cluster with the trunk in the concave part of a
U-shaped cluster. b) The best partition that the k-means algorithm can find if k is set to 2.

In Figure 3a we present a 2-dimensional dataset with 4 spherical, compact
and well separated clusters. No noise is present. In this kind of situation,
the k-means algorithm can generally find the correct partition. We ran the k-
means algorithm 10 times with k = 4 and in 8 cases the clusters were perfectly
detected. Nevertheless in 2 cases the result was disappointing. This incorrect
result can be seen in Figure 3b. Obviously, a 5 cluster partition, where the
upper clusters are correctly split while the lower ones remain identical, would
be a better partition.

With the previous examples we showed that well known and widely used
algorithms can fail even when faced with spherical, compact and well separated
clusters in a noiseless environment. Thus we consider that the problem is clearly
illustrated.

4. Related work

Little theoretic work has been published about the evaluation of cluster
validity indices (Bouguessa et al., 2006) and, as a consequence there is a lack
of standard procedures to evaluate CVIs. These procedures are desirable for
several reasons: comparisons of evaluations are currently unfeasible due to the
heterogeneity of the published evaluations; each researcher must design its own
procedures so the same work is repeated unnecessarily; incorrect procedures are
designed based on intuitions and feelings. . .

The next example illustrates some of the effects of the lack of a theoretical
framework in this area. Pal and Biswas (1997) compared 9 CVIs following the
methodology explained in Section 2. They used 7 datasets in the experiment but
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Figure 3: a) Spheres dataset. 4 compact and well separated clusters in a noiseless environment.
b) An incorrect partition found by k-means due to an inappropriate centroid initialization.

they stated that in 2 of them “the cluster structure will be lost for all practical
purposes”. In any case, they treated these two datasets with no structure as
the rest of the datasets. From our point of view, this is an incorrect procedure
since we cannot expect a CVI to find a structure where no structure exists. We
consider that if a CVI predicted a Pnc partition in this situation it was due to
a lucky guess and it should not contribute to a better score for this CVI.

In spite of the need for standard procedures, as argued in previous para-
graphs, most previous work has followed the classical methodology mentioned
in Section 2. Some of them considered the problem arising from the algorithm
correctness assumption, but others completely ignored it. Nevertheless, none of
them proposed an objective and satisfactory solution to the problem. The fol-
lowing discussion focuses on how some previously published papers considered
the algorithm correctness assumption.

Many authors did not even consider the algorithm correctness assumption
and they carried out the experiment without checking if the Pnc partitions
obtained were correct or were at least the best partitions the algorithms used
could propose (Günter and Bunke, 2003; Kim and Ramakrishna, 2005; Maulik
and Bandyopadhyay, 2002; Pal and Biswas, 1997). This type of work may be
valid and the conclusions drawn from it may be correct, but we cannot be
confident about the results obtained without a validation step.

There are some other studies where the algorithm correctness assumption
was somehow considered. Hardy (1996) manually checked the partitions ob-
tained and informed the reader about the correctness of these partitions. The
author was aware of the fact that correct predictions were sometimes made
based on incorrect partitions. This is one of the confusing effects of the algo-

6



rithm correctness assumption and, if ignored, can lead us to a misinterpretation
of the results. Dimitriadou et al. (2002) were also conscious of the problem and
they used multiple criteria to evaluate the indices. In any case, that work was
restricted to binary datasets and the new proposed criteria seem to be useful just
in this type of dataset. Chou et al. (2004) used algorithms sensitive to the initial-
ization and repeated each execution several times. They computed each CVI for
all the partitions obtained and considered in the results just the partition that
was proposed most times. In this way they achieved a more robust experiment
and some independence from the randomness of the clustering algorithm. In any
case, this procedure cannot ensure that the algorithm correctness assumption
holds. This is because there are some combinations of particular databases and
algorithms where some of the non Pnc partitions, {Pi ∈ S| nc(P ∗) ̸= nc(Pi)},
generated by the algorithm fit better the data than most of the Pnc partitions.
We have illustrated this fact in the example in Figure 2.

Milligan and Cooper (1985) carried out a wide CVI comparison; they com-
pared 30 CVIs in a set of different environments. In spite of its age this work
can be considered the most extensive and systematic CVI comparison. They
implicitly considered the algorithm correctness assumption and performed a test
to check if the assumption held. Milligan and Cooper combined many datasets
and algorithms to build 432 different test solutions. They generated 25 par-
titions for every solution and computed each CVI for every partition. Before
analysing the results, they performed a test step as explained below.

They compared all the partitions corresponding to a particular solution to
the perfect partition of that solution using the Jaccard index (Jaccard, 1908)
and the adjusted Rand index presented by Morey and Agresti (1984). Since
they generated the databases synthetically and defined the clusters clearly, their
perfect partition was known. The test step confirmed that for about 95% of the
solutions the algorithm correctness assumption holds. Therefore, this value
provides an upper limit to the CVIs evaluated. We consider that the remaining
5% should be ignored in the results analysis, since in those few cases the authors
evaluated the CVIs under an incorrect assumption, but it is sound to think
that the results would not vary qualitatively. We consider the high rate of
“correct” clustering in the cited work is to be misleading since the datasets where
composed of “internally cohesive and well separated” (Milligan and Cooper,
1985) clusters and the chosen algorithms fit the generated datasets very well.
As argued in the introduction and shown in Section 7.2 we claim this rate would
fall in real environments.

5. An alternative CVI evaluation methodology

Previous sections showed that the current CVI evaluation methodology will
at best work in environments where the clustering algorithm is able to perfectly,
or near perfectly, partition the data. In principle, this may not appear to be a
problem since this behaviour can be induced and checked (Milligan and Cooper,
1985). However, we consider this procedure to be limited, since it only allows
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evaluation of CVIs in situations where the clustering algorithm works under
near optimal conditions: well structured data and some particular executions.

In real environments, it is usual to find datasets with overlapping and ir-
regular clusters that make clustering algorithms work under far from optimal
conditions. How well does a particular CVI behave in such a complex and irreg-
ular dataset? How does it behave when it is difficult for the clustering algorithm
to find the structure underlying the data? These questions will remain unan-
swered with the classical methodology, but we consider them important ques-
tions. The evaluation of CVIs made under some particular conditions cannot be
extrapolated to other conditions, so no CVI evaluation carried out previously
can answer the questions posed above.

In this paper we propose an alternative CVI evaluation methodology, not
based on the algorithm correctness assumption, that works correctly in every
environment. Our proposal follows, to some extent, the idea found in Milligan
and Cooper (1985): compare the generated partitions with the perfect partition
using an external criterion. The underlying idea in the new methodology is
to change the definition of a successful guess of a CVI. Instead of considering
successful guesses to be the ones proposing the Pnc partition as best partition,
we consider successful guesses to be the ones proposing the most similar partition
to the perfect partition.

Both methodologies are very similar, but the new methodology needs one
extra step. In this step the similarity between the m partitions in S and the
perfect partition, P ∗, must be computed. Let sim(Pi, Pj) be a function that
measures the similarity between partitions Pi and Pj . We call the partition

obtaining the highest similarity value the most similar partition, P̂ .

P̂ = argmax
Pi∈S

(sim(P ∗, Pi))

Therefore, in the new methodology a successful guess will be the one that
proposes the P̂ partition as the best partition; that is, a successful guess exists
if P̂ = P I . The functions that measure the similarity between partitions are
called in many different ways, such as external cluster validity indices or parti-
tion similarity measures. In the rest of the paper we will call them similarity
measures as Pfitzner et al. (2009) do.

Notice that the only difference between the two methodologies is the defi-
nition of the target partition; that is, the partition the CVI must select as the
best one. The target partition in the classical methodology is the one with the
correct number of clusters, while the target partition in the new methodology
is the one that most resembles the correct partition. Thus, if the most similar
partition has the correct number of clusters, nc(P̂ ) = nc(Pnc), then the target
partition is the same for both methodologies, P̂ ≡ Pnc, and both methodolo-
gies are equivalent. Otherwise, the assumption does not hold and just the new
methodology is able to capture the actual capabilities of the evaluated CVIs.

The similarity measure used in the experiment is a user-defined parameter
of the methodology, so each experiment designer can choose the appropriate
measure for his/her experiment. It is even possible to use several proximity
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measures and combine their results by an averaging or voting process. In any
case, the selection of a function to measure the similarity between two partitions
is not a trivial task. Many have been proposed, but none of them is valid for
all environments. (Meilă, 2005). More information about similarity measures
can be found in (Albatineh et al., 2006; Batagelj and Bren, 1995; Baulieu, 1989;
Pfitzner et al., 2009).

6. Experimental setup

In order to compare the two methodologies mentioned in this paper we per-
formed an experiment where we ran the two CVI evaluation methodologies. In
both methodologies the CVIs evaluated and the algorithm and datasets used
were exactly the same. In this work we present results based on the VI similar-
ity measure since it is theoretically well founded (Meilă, 2003, 2005). The VI
similarity measure can be defined as:

VI(P, P ′) = H(P ) + H(P ′)− 2I(P, P ′)

where H is the entropy of a partition, H(P ) = −
∑

Ci∈P p(Ci) log p(Ci) and I is

the mutual information of two partitions, I(P, P ′) =
∑

Ci∈P

∑
C′

i∈P ′ p(Ci, C
′
i)

log p(Ci,C
′
i)

p(Ci)p(C′
i)
.

However, to assess to what extent the particular similarity measure used
affects the results, we replicated the same experiment with 4 other partition
similarity measures: Rand, Jaccard, Fowlkes-Mallows and a modified version of
Rand (Jain and Dubes, 1988). These complementary similarity measures are
described in Appendix A.

We evaluated 7 well known cluster validity indices on 7 synthetic 2-dimensional
datasets and 3 datasets from real applications. We ran the k-means algorithm
10 times (with different random initializations) for each dataset and k parame-
ter value. We set the k parameter to all values ranging from 2 to

√
n, where n

represents the number of points in a particular dataset (Kim and Ramakrishna,
2005; Maulik and Bandyopadhyay, 2002).

6.1. Cluster validity indices

We mostly selected the CVIs evaluated from the indices examined in Milligan
and Cooper (1985). We avoided the selection of indices that need a parameter
or threshold value to be specified. We also discarded those indices specifically
designed for hierarchical algorithms. Firstly, we selected all the indices that
fulfilled these premises and were among the 5 indices considered best in Milligan
and Cooper (1985): Calinski-Harabasz, C-Index and Gamma. We also analysed
the G(+) and Davies-Bouldin indices, which are among the first 10 indices in
Milligan and Cooper (1985). We also included in our work the McClain-Rao
index which obtained one of the worst scores. Finally, we added to the group the
widely used Dunn index (Chou et al., 2004; Maulik and Bandyopadhyay, 2002;
Pal and Biswas, 1997). In the following paragraphs we give a brief description
of the indices evaluated.
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• Calinski-Harabasz (Calinski and Harabasz, 1974): This index is computed
as

traceB/(k − 1)

traceW/(n− k)

where n is the number of points in the dataset, k the number of clusters
and B and W are the between and within cluster scatter matrices. The
maximum value of the index is used to select the best partition.

• C-Index (Hubert and Levin, 1976): For this index, S, the sum of distances
over all pairs of points from the same cluster, must be computed. Let nw

be the number of those pairs. Smin is the sum of the nw smallest distances
over all points in the dataset. Similarly Smax is the sum of the nw largest
distances. The C-Index is then defined as follows:

S − Smin

Smax − Smin

In this case the minimum value will denote the best partition.

• Gamma (Baker and Hubert, 1975): This index is an adaptation of Good-
man and Kruskal’s Gamma index. We define dl(Oi, Oj) as the number of
pairs of points in the dataset that are in different clusters and are more
similar than Oi and Oj . The sum of all dl values of all pairs of points
from the same cluster must be computed. The sum is then normalized by
dividing it by the maximum achievable value. The minimum value of the
index denotes the best partition.

• G(+) (Rohlf, 1974): For this index all possible data quadruples (a, b, c, d)
must be examined. We say that a quadruple is inconsistent (or disconcor-
dant, Günter and Bunke, 2003) if one of the two following conditions is
true:

– d(a, b) < d(c, d), a and b are in different clusters, and c and d are in
the same cluster.

– d(a, b) > d(c, d), a and b are in the same cluster, and c and d are in
different clusters.

Here, d(i, j) denotes the distance between the i and j points. If S(−) is the
number of inconsistent quadruples and nw is the number of within-cluster
distances, the index is defined as follows:

2S(−)

nw(nw − 1)

The minimum value is used to select the best partition.

• Davies-Bouldin (Davies and Bouldin, 1979): This index is defined as fol-
lows:

1

k

k∑
i=1

max
j=1,...,k;j ̸=i

(dij)
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where

dij =
si + sj
d(ci, cj)

In the formulae, k is the number of clusters, si is the average distance of all
patterns in cluster i to their cluster centroid and d(ci, cj) is the distance
between the centroids of clusters i and j. In this case the minimum value
will denote the best partition.

• McClain-Rao (McClain and Rao, 1975): For this index, the ratio between
the average within-cluster distance and the average between-cluster dis-
tance is computed for each cluster. The index is defined as the average
of the individual cluster ratios. The minimum value of the index denotes
the best partition.

• Dunn (Dunn, 1973): The Dunn index is computed as dmin/dmax, where
dmin denotes the smallest distance between two points from different clus-
ters and dmax the largest distance between two points from the same
cluster. The maximum value will denote the best partition.

6.2. Datasets

We evaluated these indices on 10 datasets. We created 7 of these synthet-
ically, so that we could control the number, shape, size, overlap, compactness
and separation of the clusters. We generated 2-dimensional datasets to allow a
visual check of the datasets and the partitions computed. To avoid any possible
debate on the definition of the correct partition all the clusters are well defined
and separated. We used 3 more datasets, based on real data, from the UCI
repository (Asuncion and Newman, 2007). The following paragraphs describe
these datasets.

The Spheres dataset, shown in Figure 3a, is the simplest dataset we used.
It is composed of 4 spherical, compact and well separated clusters of 50 points
each. The Noisy dataset is quite similar to the Spheres dataset (see Figure 1a).
The difference is that we added 25 noise points following a uniform random
distribution. The Density and Size datasets are also based on the Spheres
dataset. The former differs from the Spheres in that two of the clusters are
more compact than the other two; that is, the points are distributed over a less
extensive area of the input space (see Figure 4a). In the latter, the four clusters
are distributed in the same area they were in the Spheres dataset, but two of
them are composed of 100 points while the remaining two are composed of just
25 points (see Figure 4b). Therefore, in the last 2 datasets, the symmetry found
in the original dataset disappeared.

In Figure 5a we show the dataset named 3x3. It is also composed of spherical,
compact and well separated clusters, but in this case we defined 9 clusters in a
regular mesh of 3 rows and 3 columns. Each cluster has 25 points. Figure 5b
shows the Arcs dataset which contains 4 arc-shaped clusters (26 points each).
The convex part of each cluster is located in the concave part of the cluster next
to it. Finally, we used the T&U dataset shown in Figure 2a. This dataset has
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Figure 4: a) Density dataset. Four clusters with an identical number of points, but different
densities. b) Size dataset. Four clusters distributed in the same area, but composed of a
different number of points.

just two clusters of 150 points each. One of them is T-shaped while the other is
U-shaped. The trunk of the T-shaped cluster is inside the concave part of the
U-shaped one. Obviously, these two clusters are not linearly separable and the
k-means algorithm will not be able to find the perfect partition (see Section 3).

In contrast, the real datasets have the following characteristics. The Iris
dataset is widely used in clustering and validation problems. It has 4 attributes
and 150 instances divided into 3 classes. The Glass dataset has 214 cases divided
into 7 classes and 9 attributes describe each instance. Finally, the Ecoli dataset
has 336 cases, 8 classes and 7 attributes.

As a summary, Table 1 shows the number of clusters and data points in each
dataset.

7. Results

In this section we present the results obtained in both evaluations. We begin
with the results we obtained with the classical methodology and continue with
the ones obtained with the new methodology. Finally, we briefly analyse how the
selected similarity measure affects the results for the alternative methodology.

It is not an easy task to select a simple and powerful representation of the
results (Milligan and Cooper, 1985). In this paper we decided to use a simple
tabular summary where we represent the number of successful guesses each CVI
achieves for each of the datasets. This decision was motivated by the dependency
of the CVIs on the datasets. This type of representation allows the examination
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Figure 5: a) 3x3 dataset. 9 clusters distributed in a regular mesh of 3 rows and 3 columns.
b) Arcs dataset. 4 arc shaped clusters.

of the overall behaviour of each CVI in different environments. Obviously, the
meaning of “a successful guess” changes between the two methodologies.

7.1. Classical methodology

Table 2 summarizes the results for the classical methodology.
Based on these results, we could easily characterize the 7 cluster validity

indices compared in this work. The Calinski-Harabasz index showed the best
overall score. Surprisingly the C-Index, Gamma, and Dunn indices all showed
the same results, not just for the overall score but also for each of the individual
datasets. Moreover, a deeper analysis showed that the coincidence is complete,
since all the successful guesses of these three indices occurred in exactly the same
executions of the k-means algorithm. Thus, in this experiment the three indices
mentioned were indistinguishable. The G(+) index would also be identical to
those three indices if its 5 guesses in the Ecoli dataset were ignored.

The Calinski-Harabasz index also showed similar behaviour to the four grouped
indices: we found differences in just three datasets. The most remarkable dif-
ferences were in the T&U and Iris datasets. The Calinski-Harabasz index did
a good job on these datasets while none of the other indices was able to make
even one successful guess. On the other hand, its result on the Density dataset
showed a lower score than the four grouped indices.

The remaining indices performed poorly. The Davies-Bouldin index obtained
a score of 15, 14 of these in the Spheres and Noisy datasets. The McClain-Rao
index obtained a significant 0 score.

On the other hand, the datasets also showed a particular characteristic.
Most of the CVIs are able to do some satisfactory work with the 5 top datasets.
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Dataset Number of clusters Number of data points

Spheres 4 200
Noisy 4 225
Density 4 200
Size 4 250
3x3 9 225
Arcs 4 104
T&U 2 300
Iris 3 150
Glass 7 214
Ecoli 8 336

Table 1: Characteristics of the datasets used in the study.

Calinski- C- Gamma G(+) Davies- McClain- Dunn
Harabasz Index Bouldin Rao

Spheres 8 8 8 8 8 0 8
Noisy 5 5 5 5 6 0 5
Density 2 5 5 5 1 0 5
Size 9 9 9 9 0 0 9
3x3 2 2 2 2 0 0 2
Arcs 0 0 0 0 0 0 0
T&U 7 0 0 0 0 0 0
Iris 6 0 0 0 0 0 0
Glass 0 0 0 0 0 0 0
Ecoli 0 0 0 5 0 0 0
Total 39 29 29 34 15 0 29

Table 2: Number of times each index proposes the Pnc partition as the best partition in each
dataset.

Moreover, 90% of the successful guesses were found in those datasets. The
remaining 5 datasets, which include all the real datasets, seemed to be quite
difficult.

It is remarkable that the maximum achievable score was 100 (10 executions
on 10 datasets) and even the best index obtained a score below 40%. We at-
tributed these poor results to the fact that the k-means algorithm did not always
define correct partitions and, therefore, the algorithm correctness assumption
did not always hold. We check this hypothesis in the next section, where the
same CVIs are evaluated using the proposed alternative methodology.

7.2. Alternative methodology

We must remember that both CVI evaluation methodologies are equivalent
when the most similar partition to the correct partition is the one with the

14



correct number of clusters. Thus, before examining the results obtained with
the alternative methodology, we checked how many times this occurred: for 32 of
the 100 executions the P̂ partition and the Pnc partition were the same. These
results showed that the k-means algorithm was doing a far from perfect job and
this also meant that, in this work, the scores for the new methodology could
only reach an upper-bound of 68. Table 3 shows how these 68 differences are
distributed between the datasets. The results for the Spheres and Size datasets
must be similar, while the results for the Arcs, T&U and the 3 real datasets
could show, although not necessarily, significant variations.

Spheres Noisy Density Size 3x3 Arcs T&U Iris Glass Ecoli
2 5 5 1 7 9 9 10 10 10

Table 3: Number of executions of the k-means algorithm where the algorithm correctness
assumptions does not hold.

Table 4 summarizes the results obtained in the evaluation performed with
the alternative methodology. The scores are significantly higher. 5 of the indices

Calinski- C- Gamma G(+) Davies- McClain- Dunn
Harabasz Index Bouldin Rao

Spheres 10 10 10 9 8 0 8
Noisy 9 9 10 8 5 0 5
Density 4 8 10 8 3 0 5
Size 10 10 10 10 0 0 10
3x3 7 8 7 7 4 0 4
Arcs 8 0 0 0 0 0 1
T&U 1 0 0 0 0 0 0
Iris 4 9 10 0 10 0 10
Glass 5 7 7 0 5 0 7
Ecoli 0 5 1 0 0 0 8
Total 58 66 65 42 35 0 58

Table 4: Number of times each index proposes the P̂ partition as the best partition in each
dataset.

obtained a higher score than the highest score shown in Table 2 and the average
score increased from 25.0% to 46.3%. This fact clearly shows that the cluster
validity indices do a much better job of finding good partitions than finding the
correct number of clusters. We consider the former must be the actual goal of
a CVI, so we consider the results in Table 4 more significant than the results in
Table 2.

In the following we analyse the results shown in Table 4 in a similar way
as we did in the previous section and emphasize the differences in both sets of
results. With respect to the ranking of indices the most remarkable facts were
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three. First, the tie between Gamma, C-Index and Dunn was broken. The
first two indices remained similar and obtained the top positions in the ranking.
On the other hand, the improvements for the Dunn index were not enough to
keep it together with Gamma and C-Index. Second, Calinski-Harabasz lost the
first position and obtained the same score as the Dunn index. Nevertheless,
the tie was arbitrary, since the distribution of guesses between the datasets was
significantly different. Finally, the G(+) index, whose behaviour was similar
to, and slightly better than, the behaviour of the 3 indices mentioned above,
performed poorly with the new methodology. In particular, its 0 score on the
real datasets put its overall score close to that of Davies-Bouldin.

Let us now focus on a more detailed analysis of the behaviour the indices
showed. The C-Index showed a very regular improvement pattern. It obtained
a better score in the alternative methodology in all but two datasets: Arcs
and T&U. These two datasets, composed of non-convex clusters, proved to be
extremely difficult for most of the indices. The results for Gamma were very
similar to those obtained by C-Index. The main difference was found in the
Ecoli dataset, where it obtained just a single correct guess. The Dunn index still
showed a similar pattern to the two indices previously mentioned, but obtained
lower scores. The main exception was the particularly good performance level
it obtained for the Ecoli dataset. These three indices showed an impressive
improvement for the three real datasets: from 0% to 71%.

We follow the analysis with the Calinski-Harabasz index, which obtained
the same overall result as the Dunn index. However as stated previously,
their behaviour differs significantly for each dataset. In general terms we can
say that Calinski-Harabasz behaves better than the Dunn index for synthetic
datasets, while the opposite occurs for real data. The Calinski-Harabasz index
also showed us an interesting phenomenon that we call a “lucky guess”. No-
tice that its score for the T&U and Iris datasets was lower in the alternative
methodology than in the classical one. This is not an unusual event and, as
noted by Hardy (1996), it means that the index did guess the correct number
of clusters based on an incorrect partition.

The next index in the ranking was G(+). This index proved to be very similar
to C-Index, Gamma and Dunn in the results for the classical methodology. The
results for the alternative methodology showed that its performance on synthetic
datasets remained at a good level, so its low position in the ranking was due to
its 0 score for real datasets. Notice that its score for the Ecoli dataset was 5 for
the classical methodology, which means these were “lucky guesses”.

Finally, the worst two indices remained the same. Davies-Bouldin improved
its results from 15 to 35, but this was not enough to move it higher in the
ranking. McClain-Rao, once again, obtained a 0 score.

7.3. The effect of the similarity measure in the alternative methodology

In the follwing paragraphs we briefly discuss how the results obtained with
the alternative methodology vary depending on the similarity measure used.
As mentioned in the previous section, we replicated the experiment with Rand,
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Jaccard, Fowlkes-Mallows and a modified version of Rand. The reader can find
the detailed results in Appendix B.

The results showed that, regardless of the selected similarity measure, the
CVI ranking obtained with the alternative methodology was different to the
ranking obtained with the classical methodology. Furthermore, the score of the
CVIs is significantly higher when the alternative methodology is used instead
of the classical one. While the average success rate for the CVIs was 25%
for the classical methodology, it ranged from 41% to 46% for the alternative
methodology.

Next, we analysed how the CVIs were ranked by the alternative methodology
depending on the used similarity measure. The results showed that Davies-
Bouldin and McClain-Rao were the worst CVIs in every case. If we focus on
the remaining five CVIs the results for Jaccard, Fowlkes-Mallows and modified
Rand were very similar. All of them considered C-Index, Gamma and Calinski-
Harabasz as the best CVIs with a success rate of about 60%. The score for
G(+) and Dunn was about 45%.

The results obtained with the VI similarity measure, showed in Table 4, are
similar to those mentioned in the previous paragraph. The main difference is
the higher score for Dunn (58%) which makes it comparable to the best ranked
CVIs: C-Index, Gamma and Calinski-Harabasz. Something similar occurs with
G(+) if the Rand similarity measure is used, since it achieves a 55% score. In
addition, the score of Calinski-Harabasz decreases to 49%, so, in this case, it is
not clear whether it should be included in the top scoring group.

8. Conclusions

In this work we argued that the methodology that has been widely used to
evaluate cluster validity indices was based on an assumption we have called the
algorithm correctness assumption. We have proved that this assumption does
not hold in many different environments, including widely used algorithms and
datasets with compact and well separated clusters.

We proposed an alternative to this methodology, which does not depend
on the algorithm correctness assumption and, thus, it overcomes the problems
caused by it. The new methodology arises from the acceptance of the fact that,
due to their limitations, clustering algorithms sometimes need to over- or under-
partition the data in order to find a partition as similar as possible to the correct
partition. Thus, the cluster validity indices must be evaluated on their ability
to find partitions that resemble the perfect partition.

The analysis of the results obtained by applying the two methodologies to the
same data and indices allow two main conclusions to be drawn. First, cluster
validity indices do a much better job of finding partitions similar to the cor-
rect partition than finding the correct number of clusters (the average success
rate increases from 25.0% to 46.3%). But, did the results also show a different
ranking of the indices? Did the indices show different levels of dependency on
the datasets? If no differences were found it could be argued that the classi-
cal methodology could be used instead, since the overall behaviour would not
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change. Certainly, the classical methodology does not need to compute any par-
tition similarity measure, thus, its computational cost is obviously lower, and it
is preferable from this point of view. Nevertheless, we claim that the method-
ology we propose is based on more robust premises, as it does not depend on
algorithm correctness and it better measures the capabilities of a CVI.

The second main conclusion confirmed that the score increment was not the
only difference between the two methodologies: the evaluation of the indices
differed depending on the methodology applied. For instance, the index that
obtained the second best score with the classical methodology was beaten by 4
indices when we used the new methodology. In addition, the triple tie between
C-Index, Gamma and Dunn disappeared in the new methodology.

We are aware that the datasets used affected the results. The score in-
crements were different depending on the dataset. For one of them the score
increment was just 7.14%. In contrast, another dataset achieved a 58.8% in-
crement. The set of real datasets showed the most impressive improvement,
increasing their average score from 5.2% to 41.9%. These results confirmed the
need for some standard procedures for selecting the datasets.

In the new methodology the experiment designer must choose the similarity
measure used to compare partitions. In this work, apart from the variation of
information index, we used 4 more indices to compare partitions. All of them
confirmed the two previously mentioned conclusions: the cluster validity indices
obtain higher scores with the new methodology than with the classical one and
besides, the CVI ranking differs for both methodologies. Therefore, the main
conclusions of this work are confirmed by five well-known similarity measures.

However, in a CVI evaluation the choice of the similarity measure must be
done with caution since results depend on this parameter. Nevertheless, it seems
that, at least for the five similarity measures used in this work, the variation is
small. In fact, three of the similarity measures showed a very similar behaviour
while the other two mainly disagreed about the performance of one of the CVIs.
In any case, to obtain robust results, we suggest to combine the results obtained
by several similarity measures.

We also reviewed a set of previous studies evaluating cluster validity indices.
A few of them somehow considered the algorithm correctness assumption, while
most of them did not. We do not claim their conclusions are wrong, but we con-
sider their results should be checked to asses their validity. However, the analysis
of the work related to cluster validation led us to conclude that the lack of a
standard methodology is not the only problem in the area. We also found that
there is no agreement on the datasets and algorithms chosen; not even on the
general properties they should have. For the datasets, there are many properties
that will influence the results obtained: the number of dimensions, number of
clusters, number of instances, the size and shape of the clusters. . . For the algo-
rithms also, many different options can be chosen: partitional vs. hierarchical,
hard vs. fuzzy, and so on. The way the parameters of parameterized CVIs must
be defined is also an untreated issue (Chou et al., 2004; Dimitriadou et al., 2002;
Hardy, 1996; Kim and Ramakrishna, 2005; Kothari and Pitts, 1999; Maulik and
Bandyopadhyay, 2002; Milligan and Cooper, 1985; Pal and Biswas, 1997).
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In this context we argue that a theoretical framework is needed in the area of
cluster validation, and that standard procedures should be specified in order to
achieve important improvements in this area. We claim that the methodology
we have presented in this work should be used wherever a cluster validity index
must be evaluated and that it should be part of these standard procedures.

Appendix A Definition of the complementary similarity measures

In this section we describe the four similarity measures used to replicate the
experiment performed with the Variation of Information similarity measure.

Assuming that we must compare partitions P and P ′ we define a as the
number of object pairs that belong to the same clusters in both partitions; b as
the number of object pairs that belong to the same cluster in P , but not in P ′;
c as the number of object pairs that belong to the same cluster in P ′, but not in
P ; and d as the number of object pairs that belong to different clusters in both
partitions. Based in Jain and Dubes (1988) we define the mentioned similarity
measures as:

Rand =
a+ d

a+ b+ c+ d

Jaccard =
a

a+ b+ c

Fowlkes−Mallows =
a√

(a+ b)(a+ c)

Modified Rand =

[
(a+ d)/

(
n
2

)]
− E

[
(a+ d)/

(
n
2

)]
1− E

[
(a+ d)/

(
n
2

)]
Appendix B Results corresponding to the complementary similarity

measures

The results obtained with the new methodology and the four complementary
similarity measures are shown in Table B.1 (Rand), Table B.2 (Jaccard), Table
B.3 (Fowlkes-Mallows) and Table B.4 (Modified Rand).
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Calinski- C- Gamma G(+) Davies- McClain- Dunn
Harabasz Index Bouldin Rao

Spheres 10 10 10 9 8 0 8
Noisy 9 9 10 8 5 0 5
Density 4 8 10 8 3 0 5
Size 10 10 10 10 0 0 10
3x3 10 9 10 10 4 0 2
Arcs 0 6 7 5 6 4 3
T&U 0 0 0 0 0 0 0
Iris 6 0 0 0 0 0 0
Glass 0 0 0 5 0 4 0
Ecoli 0 4 4 0 0 0 4
Total 49 56 61 55 26 8 37

Table B.1: Number of times each index proposes the P̂ partition (according to the Rand
similarity measure) as the best partition in each dataset.

Calinski- C- Gamma G(+) Davies- McClain- Dunn
Harabasz Index Bouldin Rao

Spheres 10 10 10 9 8 0 8
Noisy 9 9 10 8 5 0 5
Density 4 8 10 8 3 0 5
Size 10 10 10 10 0 0 10
3x3 9 10 9 9 4 0 3
Arcs 9 0 0 0 0 0 1
T&U 0 0 0 0 0 0 0
Iris 6 0 0 0 0 0 0
Glass 2 10 10 0 2 0 8
Ecoli 0 6 3 0 0 0 6
Total 59 63 62 44 22 0 46

Table B.2: Number of times each index proposes the P̂ partition (according to the Jaccard
similarity measure) as the best partition in each dataset.
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Calinski- C- Gamma G(+) Davies- McClain- Dunn
Harabasz Index Bouldin Rao

Spheres 10 10 10 9 8 0 8
Noisy 9 9 10 8 5 0 5
Density 4 8 10 8 3 0 5
Size 10 10 10 10 0 0 10
3x3 9 10 9 9 4 0 3
Arcs 9 0 0 0 0 0 1
T&U 0 0 0 0 0 0 0
Iris 6 0 0 0 0 0 0
Glass 3 9 9 0 3 0 7
Ecoli 0 5 1 0 0 0 8
Total 60 61 59 44 23 0 47

Table B.3: Number of times each index proposes the P̂ partition (according to the Fowlkes-
Mallows similarity measure) as the best partition in each dataset.

Calinski- C- Gamma G(+) Davies- McClain- Dunn
Harabasz Index Bouldin Rao

Spheres 10 10 10 9 8 0 8
Noisy 9 9 10 8 5 0 5
Density 4 8 10 8 3 0 5
Size 10 10 10 10 0 0 10
3x3 9 10 9 9 4 0 3
Arcs 6 1 1 1 1 1 1
T&U 0 0 0 0 0 0 0
Iris 6 0 0 0 0 0 0
Glass 2 6 6 0 2 1 4
Ecoli 0 5 4 0 0 0 5
Total 56 59 60 45 23 2 41

Table B.4: Number of times each index proposes the P̂ partition (according to the Modified
Rand similarity measure) as the best partition in each dataset.
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