
Training linear ranking SVMs in linearithmic

time using red-black trees

Antti Airola, Tapio Pahikkala and Tapio Salakoski

Abstract

We introduce an efficient method for training the linear ranking sup-
port vector machine. The method combines cutting plane optimization
with red-black tree based approach to subgradient calculations, and has
O(ms + m log(m)) time complexity, where m is the number of training
examples, and s the average number of non-zero features per example.
Best previously known training algorithms achieve the same efficiency
only for restricted special cases, whereas the proposed approach allows
any real valued utility scores in the training data. Experiments demon-
strate the superior scalability of the proposed approach, when compared
to the fastest existing RankSVM implementations.

1 Introduction

Learning to rank has been a task of significant interest during the recent years.
The ranking problem has been largely motivated by applications in areas such
as web search and recommender systems. Due to the large amounts of data
available in these domains, it is necessary for the used algorithms to scale well,
preferably close to linear time methods are needed. For a detailed introduc-
tion to the topic of learning to rank, we refer to (Liu, 2009; Fürnkranz and
Hüllermeier, 2011).

In this work we assume the so-called scoring setting, where each data instance
is associated with a utility score reflecting its goodness with respect to the
ranking criterion. A successful approach for learning ranking functions has
been to consider pairwise preferences (Fürnkranz and Hüllermeier, 2005). In
this setting, the aim is to minimize the number of pairwise mis-orderings in
the ranking produced when ordering a set of examples according to predicted
utility scores. A number of machine learning algorithms optimizing relaxations
of this criterion have been proposed, such as the RankBoost (Freund et al.,
2003), RankNet (Burges et al., 2005), RankRLS (Pahikkala et al., 2007, 2009),
and the subject of this study, the ranking support vector machine (RankSVM)
algorithm (Herbrich et al., 1999; Joachims, 2002).

The original solution proposed for RankSVM optimization was to train a
support vector machine (SVM) classifier on pairs of data examples. Adapting
standard dual SVM solvers to RankSVM training leads to O(m4) scaling or

1

ar
X

iv
:1

00
5.

09
28

v2
 [

st
at

.M
L

]
 3

1
Ja

n
20

11

worse, with respect to the training set size m (Bottou and Lin, 2007). While
linear RankSVMs can be trained more efficiently by solving the primal opti-
mization problem for SVMs (Chapelle, 2007; Chapelle and Keerthi, 2010), still
the complexity of any method that is explicitly trained on all the pairs has at
the very least quadratic dependence on the number of training examples.

Joachims (2005, 2006) has shown that linear RankSVM can be trained
using cutting plane optimization, also known as bundle optimization, much
more efficiently in certain special settings. Joachims (2005) has proposed an
O(ms+m log(m)) time algorithm, where m is the number of training examples,
and s the average number of non-zero features per example, for the bipartite
ranking problem, where only two utility levels are allowed. The bipartite rank-
ing problem corresponds to maximizing the area under the receiving operating
characteristic curve (AUC) (Hanley and McNeil, 1982), a performance measure
widely used in machine learning (see e.g. (Bradley, 1997; Provost et al., 1998)).
An O(ms + m log(m) + rm) time generalization of the method has been pre-
sented for the case, where r different utility levels are allowed (Joachims, 2006).
Chapelle and Keerthi (2010) have recently further explored efficient methods
for training RankSVM, the proposed methods have similar scaling.

If r is assumed to be a small constant, the existing methods are compu-
tationally efficient. This is for example the case in the bipartite ranking case
where there are only two utility levels, corresponding to the “good” and the
“bad” objects. Similarly, movie ratings ranging from one to five stars could be
encoded using r = 5 distinct utility levels. However, in the general case where
unrestricted scores are allowed, if most of the training examples have different
scores r ≈ m leading to O(ms + m2) complexity. This worst scale quadratic
scaling with respect to the training set size limits the applicability of RankSVM
to large scale learning.

In this work we generalize the work of Joachims (2006) and present an
O(ms + m log(m)) time training algorithm for linear RankSVM, that is ap-
plicable in the most general case, where arbitrary real-valued utility scores are
allowed in the training data. The method is based on using modified red-black
tree data structures (Bayer, 1972; Cormen et al., 2001) for speeding up the eval-
uations needed in the optimization process. Computational experiments show
that the method has excellent scalability properties also in practice.

In Section 2 we introduce the general learning to rank setting, and in Sec-
tion 3 we formalize the regularized risk minimization problem, and present the
general optimization framework for solving it. In Section 4 we present our main
contribution, the efficient RankSVM subgradient and loss computation algo-
rithms, and in Section 5 we present an experimental evaluation of the resulting
training algorithm. We conclude in Section 6.

2 Learning setting

Let D be a probability distribution over a sample space Z = Rn×R. An example
z = (x, y) ∈ Z is a pair consisting of an n-dimensional column vector of real-

2

valued features, and an associated real-valued utility score. Let the sequence
Z = ((x1, y1), . . . , (xm, ym)) ∈ Zm drawn according to D be a training set of m
training examples. X ∈ Rn×m denotes the n ×m data matrix whose columns
contain the feature representations of the training examples, and y ∈ Rm is a
column vector containing the utility scores in the training set. Our task is to
learn from the training data a ranking function f : Rn → R. In the linear case
such a function can be represented as f(x) = wTx, where w ∈ Rn is a vector
of parameters.

The difference between ranking and regression is that in ranking, the actual
values taken by the prediction function are typically not of interest. Rather,
what is of interest is how well the ordering acquired by sorting a set of new
examples according to their predicted scores matches the true underlying rank-
ing. This is a reasonable criterion for example in the web search engines and
recommender systems, where the task is to choose a suitable order in which to
present web pages or products to the end user. A popular way to model this
criterion is by considering the pairwise preferences induced by a ranking (see
e.g. (Fürnkranz and Hüllermeier, 2005)). We say that an example zi is preferred
over example zj , if yi > yj . In this case one would require from the ranking
function that f(xi) > f(xj).

The performance of a ranking function can be measured by the pairwise
ranking error defined as

1

N

∑
yi<yj

[f(xi) > f(xj)], (1)

where N is the number of pairs for which yi < yj holds true. The equation (1)
simply counts the number of swapped pairs between the true ranking and the
one produced by f .

By restricting the allowed range of utility scores we can recover some popular
special cases of the introduced setting. In ordinal regression (Herbrich et al.,
1999; Waegeman et al., 2008) it is assumed that there exists a finite, often quite
small set of possible discrete ordinal labels. For example, movie ratings ranging
from one star to five stars would constitute such a scale. In the bipartite ranking
task where only two possible scores are allowed equation (1) becomes equivalent
to the Wilcoxon-Mann-Whitney formula used to calculate AUC (Hanley and
McNeil, 1982; Cortes and Mohri, 2004).

In some learning to rank settings instead of having a total order over all
examples, the sample space is divided into disjoint subsets, and pairwise pref-
erences are induced only from pairwise comparisons between the scores of ex-
amples in the same subset. An example of an application settings where this
approach is commonly adopted is document retrieval, where data consists of
query-document pairs, and the scores represent the utility of the document
with respect to the associated user query (Joachims, 2002). Preferences are in-
duced only between query-document pairs from the same query, never between
examples from different queries. In such settings we can calculate (1) separately
for each subset, and take the average value as the final error.

3

Minimizing (1) directly is computationally intractable, successful approaches
to learning to rank according to the pairwise criterion typically minimize convex
relaxations instead. The relaxation considered in this work is the pairwise hinge
loss, which together with a quadratic regularizer forms the objective function of
RankSVM. Before formally defining the loss, we introduce a general optimiza-
tion method suitable for minimizing it.

3 Bundle Methods for Regularized Risk Mini-
mization

A large class of machine learning algorithms can be formulated as the uncon-
strained regularized risk minimization problem

w∗ = arg min
w∈Rn

J(w), (2)

where
J(w) = Remp(w) + λ‖w‖2,

w is the vector of parameters to be learned, Remp is the empirical risk measuring
how well w fits the training data, ‖w‖2 is the quadratic regularizer measuring
the complexity of the considered hypothesis, and λ ∈ R+ is a parameter. We
assume that Remp : Rn → R is convex and non-negative.

Different choices of Remp result in different machine learning methods such
as SVM classification (Cortes and Vapnik, 1995) or regression (Drucker et al.,
1997), regularized least-squares regression (Poggio and Girosi, 1990), structured
output prediction methods (Tsochantaridis et al., 2005), RankRLS (Pahikkala
et al., 2007, 2009) and RankSVM (Herbrich et al., 1999; Joachims, 2002).

Bundle methods for regularized risk minimization (BMRM) (Teo et al., 2007;
Smola et al., 2007; Teo et al., 2010), is a general and efficient optimization
technique for solving (2). The method is also known as the cutting plane method
in the machine learning literature, and it was under this name it was first
introduced for the purpose of efficiently optimizing large margin type of loss
functions (Tsochantaridis et al., 2005). It was later shown, that the method
can be generalized to arbitrary convex loss functions, as long as subgradient
evaluations for the loss can be done efficiently (Teo et al., 2007; Smola et al.,
2007). In the following we adopt our notation and terminology from the BMRM
literature.

BMRM iteratively constructs a piecewise linear lower bound approximation
of Remp. Let Rt be the piecewise linear approximation at iteration t. We
approximate (2) with

wt = arg min
w∈Rn

Jt(w), (3)

where
Jt(w) = Rt(w) + λ‖w‖2.

4

Thus the regularizer remains the same, but the empirical risk term is replaced
with the piecewise linear lower bound.

The empirical risk is lower bounded by its first order Taylor approximation
at any w′ ∈ Rn, defined as

Remp(w) ≥ Remp(w′) + 〈w −w′,a′〉,

where a′ is any subgradient of Remp at w′. By defining b′ = Remp(w
′)−〈w′,a′〉

due to the linearity of the inner product this can be re-written as

Remp(w) ≥ 〈w,a′〉+ b′,

〈w,a′〉+ b′ = 0 is called a cutting plane.
Using several cutting planes BMRM approximates Remp with

Rt(w) = max
i=1...t

{〈w,ai〉+ bi}}.

Using this approximation (3) can be solved by solving an equivalent quadratic
program whose size depends on the number of cutting planes used.

Algorithm 1: BMRM

Input: w0, ε ≥ 0
Output: wb

1 t← 0;
2 wb ← w0;
3 repeat
4 t← t+ 1;
5 at ← subgradient of Remp at wt−1;
6 bt ← Remp(wt−1)− 〈wt−1,at〉;
7 Update Rt(w) by adding the new cutting plane 〈·,at〉+ bt;
8 wt ← arg minw Jt(w);
9 if J(wt) < J(wb) then

10 wb ← wt

11 end
12 εt ← J(wb)− Jt(wt)

13 until εt < ε;

The procedure according to which BMRM builds the lower bound is de-
scribed in algorithm 1. The formulation given here differs slightly from that
of Teo et al. (2010) in that following the suggestion of Franc and Sonnenburg
(2009) we maintain the best this far seen solution wb, and only update the so-
lution when the new solution wt is better. The parts of the algorithm which
depend on the choice of Remp are the calculation of a subgradient and the value
of Remp at point wt−1, as well as the termination criterion.

The rate of convergence is for BMRM independent of the training set size
(Smola et al., 2007). The size of the quadratic program solved on line 8 does grow

5

with the number of iterations, but its computational cost is on large datasets
insignificant compared to the cost of computing the cutting plane. Thus what is
required for efficient learning with a convex loss function is an efficient algorithm
for computing its value and subgradient.

4 Efficient computation of loss and subgradient

Next we present an efficient algorithm for evaluating the empirical risk and its
subgradient for RankSVM. First, in Section 4.1 we recall results from Joachims
(2006) to identify the computational bottleneck in RankSVM training, which oc-
curs in the loss and subgradient computation. Next, in Section 4.2 we introduce
search tree algorithms, which we use to speed up these computations. Build-
ing on these results we present an efficient algorithm for loss and subgradient
computation in Section 4.3.

4.1 Preliminaries

The following results were first presented by Joachims (2006), who formulated
the RankSVM optimization problem as a constrained optimization problem.
In this work we follow a different but equivalent formulation of RankSVM as
an unconstrained optimization problem within the BMRM framework (see Teo
et al. (2010)).

The average pairwise hinge loss computed over the training set, with respect
to a given solution w is

Remp(w) =
1

N

∑
yi<yj

max(0, 1 + wTxi −wTxj), (4)

where N is the number of pairs for which yi < yj holds true.
The pairwise hinge loss, together with the quadratic regularizer forms the

objective function of RankSVM. The most obvious approach to evaluating (4),
and also its subgradient involves going explicitly through all the pairs in the
training set. However, this would lead to O(m2) complexity, which is inefficient
on large data sets. Let us define

ci = |{j : (yi < yj) ∧ (wTxi > wTxj − 1) ∧ (1 ≤ j ≤ m)}| (5)

and
di = |{j : (yi > yj) ∧ (wTxi < wTxj + 1) ∧ (1 ≤ j ≤ m)}|. (6)

Using the frequencies (5) and (6), we recover an alternative formulation for
the empirical risk.

Lemma 1 (Joachims (2006); Teo et al. (2010)). The average pairwise hinge
loss (4) can be equivalently expressed as

1

N

m∑
i=1

((ci − di)wTxi + ci). (7)

6

Similarly, computation of (5) and (6) allows the computation of a subgradient
of the empirical risk.

Lemma 2 (Joachims (2006); Teo et al. (2010)). A subgradient of (4) can be
expressed as

∇Remp(w) =
1

N

m∑
i=1

(ci − di)xi. (8)

Inner product evaluations, scalar-vector multiplications and vector summa-
tions are needed to calculate (7) and (8). These take each O(s) time, the average
number of nonzero elements in a feature vector. Provided that we know the val-
ues of ci, di and N , both the loss and subgradient can thus be evaluated in
O(ms) time.

Joachims (2006) (and equivalently Teo et al. (2010)) describe a way to cal-
culate efficiently these frequencies, and subsequently the loss and subgradient.
However, the work assumes that the range of possible utility score values is re-
stricted to r different values, with r being quite small. The algorithm requires
O(r) passes through the training set, contributing a O(rm) term to the overall
complexity, which is O(ms+m log(m) + rm). If the number of allowed scores is
not restricted, at worst case r = m with the resulting complexity O(ms+m2),
meaning quadratic behavior with respect to the training set size. However, as
we show next, the dependence on r can be removed from the algorithm by uti-
lizing order statistics trees, resulting in O(ms+m log(m)) cost also in the most
general case, where arbitrary real valued utility scores are allowed.

4.2 Order statistics tree

The order statistics tree (Cormen et al., 2001) is a balanced binary search tree,
which has been augmented to support logarithmic time computation of order
statistics, such as the rank of a given element in the tree, or the recovery of the
k:th element in the tree. As we will show in the following, the data structure
also allows efficient computation of the frequencies needed in the RankSVM
loss and subgradient computations. Next, we introduce the order statistics tree,
recall its main properties, and introduce algorithms which act as building blocks
for the fast RankSVM training method. In the following, we assume that the
number of elements inserted to the search tree is bounded by m.

The binary search tree is one of the most fundamental data structures in
computer science. It is a linked data structure consisting of nodes. A given
node x contains a real valued key(x), and pointers to a parent node par(x), a
left child left(x), and a right child right(x). A parent or a child may be missing,
denoted by the value ∅. Only a single node known as the root node is allowed
to have missing parent. Nodes with no children are called leaf nodes. The root
of an empty tree is assumed to be ∅. The height of a binary search tree is the
length of the path from the root node to the lowest leaf node, and the size of a
tree is the number of elements it contains. We call the tree rooted at left(x) the
left subtree of x, and the tree rooted at right(x) the right subtree of x. The tree

7

always satisfies the binary search tree property, requiring that the nodes stored
in the left subtree of a node have smaller than or equal keys as the node, and
the nodes in the right subtree have larger than or equal keys as the node.

The worst-case cost of searching for an element in the tree, or inserting or
deleting an element is proportional to the height of the tree. To guarantee
the efficiency of such operations, self-balancing binary trees combine basic tree
update operations with maintenance operations that maintain O(log(m)) tree
height. One of the most popular self-balancing search tree variants is the red-
black tree (Bayer, 1972; Cormen et al., 2001). Further, (Cormen et al., 2001)
describe a modified variant of the red-black tree defined as follows:

Definition 1 (Order statistics tree (Cormen et al. (2001))). The order statistics
tree is a self-balancing binary search tree, with the following properties

• The binary search tree property: “Let x be a node in a binary search tree.
If y is a node in the left subtree of x, then key(y) ≤ key(x). If y is a node
in the right subtree of x, then key(x) ≤ key(y).”

• Balance: O(log(m)) height after arbitrary insertions and deletions.

• Each node of the order statistics tree stores an additional attribute size
defined as

size(x) =

{
0 if x = ∅
size(left(x)) + size(right(x)) + 1 otherwise

.

The correct value for this attribute is maintained after arbitrary insertions
and deletions.

Note that the definition allows the existence of multiple nodes with the same
key value in the tree.

Let Tree-Insert(T, x) be the insertion operation of an arbitrary node x to an
order statistics tree T , whose size is bounded by m. Tree-Insert adds the new
node to the tree, maintaining the binary search tree property, the correct values
of the size attribute in the nodes, and the O(log(m)) height of the tree. The
time complexity of the operation is characterized by the following Lemma:

Lemma 3 (Cormen et al. (2001)). The time complexity of Tree-Insert to order
statistics tree is O(log(m)).

Further, for the RankSVM computations we require routines that efficiently
compute the number of elements in the tree with a smaller, or a larger value than
a given argument. Let k be a real value, and let T be an order statistics tree,
whose size is bounded by m. Then, Count-Smaller(root(T), k) (Algorithm 2)
returns the number of nodes in T with a smaller key value than k. The al-
gorithm Count-Larger(root(T), k), which is not presented separately, works in
analogous fashion returning the number of nodes with a larger key value than
the argument.

Lemma 4. The correctness of Count-Smaller and Count-Larger.

8

Proof. Let C(x, k) denote the number of values smaller than k stored in a binary
search tree whose root x is. Due to Definition 1, the following always holds

C(x, k) =

 0 if x = ∅
C(right(x), k) + size(left(x)) + 1 if key(x) < k
C(left(x), k) otherwise

.

This recursive equation supplies us directly with an algorithm for computing
C(x, k), which is implemented in Count-Smaller. The proof for Count-Larger is
analogous.

Lemma 5. Count-Smaller and Count-Larger have O(log(m)) complexity.

Proof. On each call of Count-Smaller or Count-Larger, O(1) cost computations
are performed, and additionally the routine may call itself once with a child
node of the input node. At worst case the recursion proceeds until the lowest
leaf node in the tree is reached, requiring a number of calls proportional to the
height of the tree, which is according to Definition 1 guaranteed to be of the
order O(log(m)).

Algorithm 2: Count-Smaller

Input: x, k
1 if x = ∅ then return 0;
2 else if key(x) < k then return

Count-Smaller(right(x), k) + size(left(x)) + 1;
3 return Count-Smaller(left(x), k);

Let r be the number of distinct keys stored in the tree. In the presence of
a large number of duplicates, meaning r << m, the order statistics tree can
be implemented more efficiently by storing duplicate keys to the same node. In
such an implementation, each node contains an additional attribute nodesize(x),
which measures how many times key(x) has been inserted to the tree. When in-
serting a new key, a new node is not created if the key already exists in the tree,
but rather the nodesize attribute of the existing node is incremented by one.
Thus, we need to re-define size(x) = size(left(x)) + size(right(x)) + nodesize(x).
For this modified variant of the order statistics tree, the height of the tree,
and the cost of Tree-Insert, Count-Smaller and Count-Larger are bounded by
O(log(r)). However, this improvement does not translate into further improve-
ments in the asymptotic cost of RankSVM training, due to O(m log(m)) cost of
a sorting operation that is required on each iteration of training.

4.3 Subgradient computation

Algorithm 3 presents the main contribution of this paper, an O(ms+m log(m))
time method for calculating the RankSVM loss and subgradient. The algorithm
uses order statistics trees to efficiently compute the frequencies (5) and (6),

9

Algorithm 3: Subgradient and loss computation

Input: X, y, w, N
Output: a, loss

1 p← XTw;
2 c← m length column vector of zeros;
3 d← m length column vector of zeros;
4 π ← training set indices, sorted in ascending order according to p;
5 T ← new empty search tree;
6 j ← 1;
7 for i← 1 to m do
8 while (j ≤ m) and (p[π[i]]] > p[π[j]]− 1) do
9 Tree-Insert(T,y[π[j]]);

10 j ← j + 1;

11 end
12 c[π[i]]← Count-Larger(root(T),y[π[i]]);

13 end
14 T ← new empty search tree;
15 j ← m;
16 for i← m to 1 do
17 while (j ≥ 1) and (p[π[i]] < p[π[j]] + 1) do
18 Tree-Insert(T,y[π[j]]);
19 j ← j − 1;

20 end
21 d[π[i]]← Count-Smaller(root(T),y[π[i]]);

22 end

23 loss← 1
N

∑m
i=1((c[i]− d[i]) ∗ p[i] + c[i]);

24 a← 1
NX(c− d);

10

which are necessary in computing the value of the loss (7) and a subgradient
(8).

Theorem 1. The correctness of Algorithm 3.

Proof. The algorithm computes the predicted utility scores for the training set
with p = XTw (note that p[i] = wTxi). Next, an index list π is created, where
the indices of the training examples are ordered in an increasing order, according
to the magnitudes of their predicted scores, so that p[π[1]] ≤ p[π[2]] ≤ . . . ≤
p[π[m]].

Let us consider the i:th iteration of the for-loop on lines 7−11, with 1 ≤ i ≤
m. After the while loop on lines 8− 10 has been executed, the index j divides
the training set into two parts. For 1 ≤ k < j it holds that p[π[i]] > p[π[k]]− 1
and for j ≤ k ≤ m it holds that p[π[i]] ≤ p[π[k]] − 1. The keys corresponding
to the indices π[1] . . . π[j − 1] have, either on this or on previous iterations,
been inserted to the order statistics tree T , by the Tree-Insert call on line 9.
Therefore, on line 11 where Count-Larger(root(T),y[π[i]]) is called, T contains
the labels of the training examples indexed by the set

{k : (p[π[i]] > p[k]− 1) ∧ (1 ≤ k ≤ m)}

According to Lemma 5, Count-Larger(root(T),y[π[i]]) returns the number of
keys in T , with a larger value than the argument y[π[i]]. Thus, line 11 stores to
c[π[i]] the value

|{k : (y[π[i]] < yk) ∧ (p[π[i]] > p[k]− 1) ∧ (1 ≤ k ≤ m)}|,

which, according to (5) is the frequency cπ[i].
It can be verified analogously, that the for-loop on lines 14 − 18 computes

the frequencies d1 . . . dm according to (6). After line 18 has been executed,
the algorithm has thus filled two arrays, c = [c1, . . . , cm] and d = [d1, . . . , dm].
Using these frequencies, the loss is computed on line 19 according to (7), and
the subgradient on line 20 according to (8).

Theorem 2. The complexity of calculating the loss and the subgradient with
Algorithm 3 is O(ms+m log(m)) for any training set of size m and sparsity s,
with unrestricted range for utility score values allowed.

Proof. The cost of computing XTw on line 1 using standard sparse matrix -
vector product multiplication algorithms is O(ms). Initializing the m-length
arrays on lines 2 and 3 is a O(m) operation, whereas the empty search tree
initializations in lines 5 and 12 take O(1) time. The sorting operation on line 4
can be done in O(m log(m)) using for example the heapsort algorithm (Williams,
1964). Tree-Insert on line 9, and Count-Larger on line 11 are both called exactly
m times, once for each training example. According to Lemmas 3 and 5, both
operations have O(log(m)) cost, resulting in O(m log(m)) complexity for the
lines 7− 11 altogether. Analogously, lines 14− 18 have also O(m log(m)) cost,

11

since Tree-Insert on line 16 and the Count-Smaller on line 18 are both called
exactly m times. Finally, the loss computation on line 19 requires O(m) floating
point operations, and the subgradient computation on line 20 requires a O(ms)
matrix-vector product. Summing all the complexities together, the resulting
computational complexity of Algorithm 3 is O(ms+m log(m)).

Next, we present a theorem that characterizes the overall complexity of
RankSVM training using the introduced subgradient and loss computation al-
gorithm. The theorem and its proof are similar to those presented by Joachims
(2006). However, unlike Joachims, we do not (implicitly) assume the number of
different relevance level to be constant.

Theorem 3. For any fixed ε > 0 and λ > 0, the computational cost of linear
RankSVM training with BMRM (Algorithm 1) using Algorithm 3 for loss and
subgradient computations is O(ms + m log(m)) for any training set of size m
and sparsity s, with unrestricted range for utility score values allowed.

Proof. Theorem 5 in (Smola et al., 2007) states that the BMRM has, under
minor technical assumptions, O(1

ελ) speed of convergence to ε-accurate solution.
The convergence speed does not depend on the values of m and s. During
initialization, the exact value of N can be computed in O(m log(m)) by sorting
the true utility scores of the training examples. Further, the only computations
within each iteration that depend on m and s are the loss and the subgradient
computations. Therefore, the computational complexity of training RankSVM
is the same as that of Algorithm 3, which is according to Theorem 2 O(ms +
m log(m)).

As discussed previously, in some ranking settings we do not have a global
ranking over all examples. Instead, the training data may be divided into
separate subsets, over each of which a ranking is defined. Let the training
data set be divided into R subsets, each consisting on average of m

R examples.
Then we can calculate the loss and the subgradient as the average over the
losses and subgradients for each subset. The computational complexity becomes
O(R ∗ (mR s+ m

R log(mR)) = O(ms+m log(mR)).

5 Computational experiments

In the computational experiments we compare the scalability of the proposed
O(ms+m log(m)) time training algorithm to the fastest previously known ap-
proach. In addition, we compare our implementation to the existing publicly
available RankSVM solvers. The considered data sets each contain a single
global ranking, and the utility scores are real valued. This means that r ≈ m,
and the number of pairwise preferences in the training sets grows quadratically
with m. In Section 5.1 we describe the experimental setup, and in Section 5.2
we present the experimental results.

12

103 104

Training set size

10-2

10-1

100

101
CP

U
tim

e

TreeRSVM
PairRSVM

103 104 105

Training set size

10-2

10-1

100

101

102

103

104

CP
U

tim
e

TreeRSVM
PairRSVM

Figure 1: Average iteration cost. Cadata (left) and Reuters (right).

5.1 Experimental setup

We implement the proposed method, denoted as TreeRSVM, as well as a base-
line method PairRSVM, which iterates over all pairs to calculate the frequencies
necessary for the loss and subgradient computation. Both methods are based
on our own implementation of BMRM, and are integrated to the RLScore1 open
source machine learning software framework developed by us. The majority of
the code is written in Python. All matrix operations are implemented in NumPy
and SciPy, and for solving the quadratic program arising in each BMRM itera-
tion we use the CVXOPT2 open source convex optimization software. The most
computationally demanding parts of the subgradient and loss computations, in-
cluding the search tree implementation, are written in C language. The only
difference between the two implementations is in the subgradient computation
routine.

In addition, we compare our method to the fastest publicly available previous
implementations of RankSVM. The SVMrank software is a C-language imple-
mentation of the method described by Joachims (2006). In theory, SVMrank

and PairRSVM implement exactly the same method. In practice, implemen-
tational differences such as the use of different quadratic optimizers, and the
inclusion of certain additional heuristics within SVMrank, mean that there may
be some differences in their behavior. PRSVM implements in MATLAB a trun-
cated Newton optimization based method for training RankSVM (Chapelle and

1http://www.tucs.fi/rlscore
2http://abel.ee.ucla.edu/cvxopt/

13

http://www.tucs.fi/rlscore
http://abel.ee.ucla.edu/cvxopt/

103 104

Training set size

10-1

100

101

102

103

104
CP

U
tim

e

TreeRSVM
PairRSVM
SVMrank

PRSVM

103 104 105

Training set size

100

101

102

103

104

105

106

CP
U

tim
e

TreeRSVM
PairRSVM
SVMrank

PRSVM

Figure 2: Runtimes for different RankSVM implementations. Cadata (left) and
Reuters (right).

Keerthi, 2010). PRSVM optimizes a slightly different objective function than
the other implementations, since it minimizes a squared version of the pairwise
hinge loss. Finally, there exists an implementation of RankSVM in the SVMlight

software package. It has however been previously shown to be orders of mag-
nitude slower than either SVMrank or PRSVM (Joachims, 2006; Chapelle and
Keerthi, 2010), and therefore we do not include it in our comparison.

TreeRSVM has O(ms + m log(m)) training time complexity, whereas all
the other methods have O(ms + m2) training time complexity. Therefore,
TreeRSVM should on large datasets scale substantially better than the other im-
plementations. Further, all the methods other than PRSVM have O(ms) mem-
ory complexity due to cost of storing the data matrix. PRSVM has O(ms+m2)
memory complexity, since it also forms a sparse data matrix that contains two
entries per each pairwise preference in the training set. (Chapelle and Keerthi,
2010) also describe an improved version of the method which they state to have
similar scalability as SVMrank, but there is no publicly available implementation
of this method.

The experiments are run on a desktop computer with 2.4 GHz Intel Core 2
Duo E6600 processor, 8 GB of main memory, and 64-bit Ubuntu Linux 10.10
operating system. For TreeRSVM, PairRSVM and SVMrank we use the ter-
mination criterion ε < 0.001, which is the default setting of SVMrank. The
ε parameter has exactly the same meaning and scaling for all of these imple-
mentations. For PRSVM we use the termination criterion Newton decrement
< 10−6, as according to Chapelle and Keerthi (2010) this is roughly equivalent

14

103 104 105

Training set size

100

101

102

103

104

M
B

TreeRSVM
SVMrank

PRSVM

Figure 3: Memory usage for different RankSVM implementations, measured on
Reuters.

to the termination criterion we use for the BMRM based methods. SVMrank

and PRSVM use a regularization parameter C that is multiplied to the empir-
ical risk term rather than λ, and do not normalize the empirical risk by the
number of pairwise preferences N . Therefore, the proper conversion between
the λ and C values is C = 1

λN .
We run experiments of two publicly available data sets. Cadata 3 is a low-

dimensional data set consisting of approximately approximately 20000 examples,
each having 8 features. The real valued labels are used directly as utility scores.
Our second data set is constructed from the Reuters RCV1 collection (Lewis
et al., 2004), and consists of approximately 800000 documents. Here, we use
a high dimensional feature representation, with each example having approx-
imately 50000 tf-idf values as features. The data set is sparse, meaning that
most features are zero-valued. The utility scores are generated as follows. First,
we remove one target example randomly from the data set. Next, we compute
the dot products between each example and the target example, and use these
as utility scores. In effect, the aim is now to learn to rank documents according
to how similar they are to the target document.

Similarly to the scalability experiments of Chapelle and Keerthi (2010), we
compute the running times using a fixed value for the regularization parameter,
and a sequence of exponentially growing training set sizes. We use λ = 10−1

for Cadata, and λ = 10−5 for Reuters, as these were observed to lead to good
test performance. The relative differences in running times between the methods

3http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

15

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

103 104

training set size

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24
ra

nk
in

g
er

ro
r

TreeRSVM
SVMrank

PRSVM

103 104 105

training set size

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

ra
nk

in
g

er
ro

r

TreeRSVM
SVMrank

PRSVM

Figure 4: Test error for different RankSVM implementations. Cadata (left) and
Reuters (right).

were observed to be similar also for any other tested choices of the regularization
parameter values, though the absolute runtimes are for all the methods the
larger the smaller the value of λ is. For Cadata we consider the training set
sizes [1000, 2000, 4000, 8000, 16000]. For Reuters we consider the training set
sizes [1000, 2000, 4000, 8000, 16000, 32000, 64000, 128000, 256000, 512000].

5.2 Experimental results

In Figure 1 we plot the average time needed for subgradient computation by
the TreeRSVM and the PairRSVM. It can be seen that the results are consis-
tent with the computational complexity analysis, the proposed method scales
much better than the one based on iterating over the pairs of training examples
in subgradient and loss evaluations. On Reuters with half a million training
examples PairRSVM already takes 2760 seconds (46 minutes) to finish a single
iteration, whereas the same is achieved by TreeRSVM in 7 seconds.

Next, we compare the scalability of the different RankSVM implementations.
In Figure 2 we present the runtimes of all the different implementations, when
trained to convergence. As expected, TreeRank achieves orders of magnitude
faster training times than the other alternatives. PRSVM could not be trained
beyond 8000 examples due to large memory consumption. On Cadata SVMrank

showed much worse scalability than should be expected. More detailed study
of the SVMrank results revealed that almost all of the runtime was consumed
by the quadratic solver, which on some iterations failed to make progress for a

16

substantial amount of time. The behavior seemed to be caused by numerical
problems, our implementations which use the CVXOPT solver did not have
similar issues. On the Reuters data SVMrank did not have such problems, the
method showed similar scaling as PairRSVM, as expected. With 512000 training
examples on Reuters training SVMrank took 83 hours, and training PairRSVM
took 122 hours, whereas training TreeRSVM took only 18 minutes in the same
setting.

In Figure 3 we plot the peak memory usage of the considered implementa-
tions to give a rough idea about their scalability in terms of memory efficiency.
We present results only for the Reuters data, since the Cadata has too few train-
ing examples and features per example to allow reliable benchmarking of the
methods which have linear scaling in memory usage. PairRSVM is left out of the
comparison, since it has almost identical memory consumption as TreeRSVM.
PRSVM has quadratic memory complexity with respect to the training set size,
and therefore consumes several GB of memory already at 8000 training exam-
ples. Both TreeRSVM and SVMrank start to show linear behavior in memory
complexity once the sample size grows large enough, as expected. At first the
Python based TreeRSVM implementation is much less memory efficient than
the C-language SVMrank implementation, but as the sample size grows the dif-
ference becomes smaller. For the largest sample sizes TreeRSVM uses roughly
2.5 times the amount of memory used by SVMrank. The difference is due to
the fact that the TreeRSVM implementation maintains two copies of the data
matrix, one optimized for fast row- and one for fast column access. Better
memory efficiency could thus be achieved by maintaining only one copy of data
matrix, but initial experiments showed that this would lead to roughly sevenfold
increase in training time as measured on Reuters data.

Finally. in Figure 4 we plot the pairwise ranking errors, for the different im-
plementations, as measured on independent test sets. For Cadata we use 4000,
and for Reuters 20000 test examples for computing the test errors. PairRSVM
is left out of the comparison, since it always reaches exactly the same solution
as TreeRSVM. These measurements act as a sanity check, showing that de-
spite the implementational differences TreeRSVM and SVMrank reach similar
performance. Further, we see in the results that even though PRSVM opti-
mizes a squared version of the pairwise hinge loss, it still achieves similar test
performance as the other methods.

6 Conclusion

In this work we have proposed an O(ms+m log(m)) time method for training
RankSVM. Empirical results support the complexity analysis, showing that the
method scales well to large data sets. The experiments demonstrate orders of
magnitude improvements in training time on large enough data sets, compared
to the fastest existing previous implementations. Though we have only con-
sidered the linear RankSVM, the approach could also be used to speed up its
kernelized version using a reduced set approximation, such as the one proposed

17

by Joachims and Yu (2009). A possible future research direction would be to
improve the convergence speed of the BMRM for RankSVM training by devising
a line search procedure similar to the one proposed by Franc and Sonnenburg
(2009) for SVM classification.

Acknowledgment

This work has been supported by the Academy of Finland.

References

Bayer, R., 1972. Symmetric binary B-trees: Data structure and maintenance
algorithms. Acta Informatica 1 (4), 290–306.

Bottou, L., Lin, C.-J., 2007. Support vector machine solvers. In: Bottou, L.,
Chapelle, O., DeCoste, D., Weston, J. (Eds.), Large-Scale Kernel Machines.
Neural Information Processing. MIT Press, Cambridge, MA, USA, pp. 1–28.

Bradley, A. P., 1997. The use of the area under the ROC curve in the evaluation
of machine learning algorithms. Pattern Recognition 30 (7), 1145–1159.

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N.,
Hullender, G., 2005. Learning to rank using gradient descent. In: Raedt,
L. D., Wrobel, S. (Eds.), Proceedings of the 22nd international conference on
Machine learning (ICML 2005). Vol. 119 of ACM International Conference
Proceeding Series. ACM, New York, NY, USA, pp. 89–96.

Chapelle, O., 2007. Training a support vector machine in the primal. Neural
Computation 19 (5), 1155–1178.

Chapelle, O., Keerthi, S. S., 2010. Efficient algorithms for ranking with SVMs.
Information Retrieval 13 (3), 201–215.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C., 2001. Introduction to
Algorithms, 2nd Edition. MIT Press, Cambridge, MA, USA.

Cortes, C., Mohri, M., 2004. AUC optimization vs. error rate minimization. In:
Thrun, S., Saul, L., Schölkopf, B. (Eds.), Advances in Neural Information
Processing Systems 16. MIT Press, Cambridge, MA, USA.

Cortes, C., Vapnik, V., 1995. Support-vector networks. Machine Learning 20 (3),
273–297.

Drucker, H., Burges, C. J., Kaufman, L., Smola, A., Vapnik, V., 1997. Sup-
port vector regression machines. In: Mozer, M., Jordan, M., Petsche, T.
(Eds.), Advances in Neural Information Processing Systems 9. MIT Press,
Cambridge, MA, USA, pp. 155–161.

18

Franc, V., Sonnenburg, S., 2009. Optimized cutting plane algorithm for large-
scale risk minimization. Journal of Machine Learning Research 10, 2157–2192.

Freund, Y., Iyer, R., Schapire, R. E., Singer, Y., 2003. An efficient boosting
algorithm for combining preferences. Journal of Machine Learning Research
4, 933–969.

Fürnkranz, J., Hüllermeier, E., 2005. Preference learning. Künstliche Intelligenz
19 (1), 60–61.

Fürnkranz, J., Hüllermeier, E. (Eds.), 2011. Preference Learning, 1st Edition.
Springer, Berlin, Heidelberg, Germany.

Hanley, J. A., McNeil, B. J., 1982. The meaning and use of the area under a
receiver operating characteristic (ROC) curve. Radiology 143 (1), 29–36.

Herbrich, R., Graepel, T., Obermayer, K., 1999. Support vector learning for
ordinal regression. In: Willshaw, D., Murray, A. (Eds.), Proceedings of the
Ninth International Conference on Articial Neural Networks (ICANN 1999).
Institute of Electrical Engineers, London, pp. 97–102.

Joachims, T., 2002. Optimizing search engines using clickthrough data. In:
Hand, D., Keim, D., Ng, R. (Eds.), Proceedings of the 8th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD 2002). ACM
Press, New York, NY, USA, pp. 133–142.

Joachims, T., 2005. A support vector method for multivariate performance mea-
sures. In: Raedt, L. D., Wrobel, S. (Eds.), Proceedings of the 22nd Interna-
tional Conference on Machine learning (ICML 2005). Vol. 119 of ACM Inter-
national Conference Proceeding Series. ACM Press, New York, NY, USA, pp.
377–384.

Joachims, T., 2006. Training linear SVMs in linear time. In: Eliassi-Rad, T.,
Ungar, L. H., Craven, M., Gunopulos, D. (Eds.), Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and data
mining (KDD 2006). ACM Press, New York, NY, USA, pp. 217–226.

Joachims, T., Yu, C.-N. J., 2009. Sparse kernel SVMs via cutting-plane training.
Machine Learning 76 (2-3), 179–193.

Lewis, D. D., Yang, Y., Rose, T. G., Li, F., 2004. RCV1: A new benchmark col-
lection for text categorization research. Journal of Machine Learning Research
5, 361–397.

Liu, T.-Y., 2009. Learning to rank for information retrieval. Foundations and
Trends in Information Retrieval 3 (3), 225–331.

Pahikkala, T., Tsivtsivadze, E., Airola, A., Boberg, J., Järvinen, J., 2009. An ef-
ficient algorithm for learning to rank from preference graphs. Machine Learn-
ing 75 (1), 129–165.

19

Pahikkala, T., Tsivtsivadze, E., Airola, A., Boberg, J., Salakoski, T., 2007.
Learning to rank with pairwise regularized least-squares. In: Joachims, T.,
Li, H., Liu, T.-Y., Zhai, C. (Eds.), SIGIR 2007 Workshop on Learning to
Rank for Information Retrieval. pp. 27–33.

Poggio, T., Girosi, F., 1990. Networks for approximation and learning. Proceed-
ings of the IEEE 78 (9).

Provost, F. J., Fawcett, T., Kohavi, R., 1998. The case against accuracy estima-
tion for comparing induction algorithms. In: Shavlik, J. (Ed.), Proceedings
of the Fifteenth International Conference on Machine Learning (ICML 1998).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 445–453.

Smola, A. J., Vishwanathan, S. V. N., Le, Q., 2007. Bundle methods for machine
learning. In: McCallum, A. (Ed.), Advances in Neural Information Processing
Systems 20. MIT Press, Cambridge, MA, USA.

Teo, C. H., Smola, A., Vishwanathan, S. V., Le, Q. V., 2007. A scalable modu-
lar convex solver for regularized risk minimization. In: Berkhin, P., Caruana,
R., Wu, X., Gaffney, S. (Eds.), Proceedings of the 13th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining (KDD 2007).
ACM, New York, NY, USA, pp. 727–736.

Teo, C. H., Vishwanathan, S. V., Smola, A., Le, Q. V., 2010. Bundle methods
for regularized risk minimization. Journal of Machine Learning Research 11,
311–365.

Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y., 2005. Large mar-
gin methods for structured and interdependent output variables. Journal of
Machine Learning Research 6, 1453–1484.

Waegeman, W., De Baets, B., Boullart, L., 2008. ROC analysis in ordinal re-
gression learning. Pattern Recognition Letters 29 (1), 1–9.

Williams, J. W. J., 1964. Algorithm 232 - Heapsort. Communications of the
ACM 7 (6), 347–348.

20

	1 Introduction
	2 Learning setting
	3 Bundle Methods for Regularized Risk Minimization
	4 Efficient computation of loss and subgradient
	4.1 Preliminaries
	4.2 Order statistics tree
	4.3 Subgradient computation

	5 Computational experiments
	5.1 Experimental setup
	5.2 Experimental results

	6 Conclusion

