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Abstract7

We reformulate the Quadratic Programming Feature Selection (QPFS) method in a kernel space to obtain a

vector which maximizes the quadratic objective function of QPFS. We demonstrate that the vector obtained

by Kernel Quadratic Programming Feature Selection is equivalent to the Kernel Fisher vector and, therefore,

a new interpretation of the Kernel Fisher Discriminant Analysis is given which provides some computational

advantages for highly unbalanced datasets.

Keywords: Kernel Fisher Discriminant, Quadratic Programming Feature Selection, Feature Selection,8

Kernel Methods.9

1. Introduction10

Identifying a proper representation of data is a problem of growing importance in machine learning11

because of the increasing size and dimensionality of real-world datasets. Linear feature selection and extrac-12

tion methods, such as Principal Component Analysis (PCA) (Jolliffe, 2002), Canonical Correlation Analysis13

(CCA) (Afifi and Clark, 1999) and Linear Discriminant Analysis (LDA) (Fukunaga, 1972), are preferable14

due to their computational speed and simplicity but for most real-world data they are not complex enough.15

They are conducted in the original space and cannot handle nonlinear relationships in the data. One option16

to tackle this problem is making use of kernel methods (Shawe-Taylor and Cristianini, 2004) which maps the17

data from an original space to a feature space F via a (nonlinear) mapping Φ : Rl −→ F . The dot-product in18
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the feature space F is defined by a Mercer kernel (Mercer, 1909) K : Rl×R
l −→ R and, the reformulation of19

traditional linear methods using only dot-products of training samples yields implicitly a nonlinear method20

in the input space. Examples of these methods are Kernel-PCA (Schlkopf et al., 1998), Kernel-CCA (Lai21

and Fyfe, 2000) and the Kernel Fisher Discriminant (Mika et al., 1999).22

In this work, we adapt our previous feature selection method QPFS (Rodriguez-Lujan et al., 2010) in a ker-23

nel space to provide a vector in the kernel space which maximizes the quadratic objective function. Using24

the Quadratic Program representation of the KFD proposed by (Mika et al., 2000), we demonstrate the25

equivalence between KFD and KQPFS. This equivalence provides a new interpretation of the Kernel Fisher26

vector which only depends on the kernel matrix and the labels of training samples making unnecessary the27

kernelized between and within class scatter matrices calculation. We also study the training cost of both28

algorithms.29

The present manuscript is organized as follows. Section 2 reformulates the Kernel Fisher Discriminant Anal-30

ysis to a Quadratic Program. Section 3 presents the formulation of the QPFS algorithm in a kernel space,31

including a regularized version to overcome numerical problems. Section 4 shows the equivalence between32

KFD and KQPFS and how this equivalence provides a new interpretation of KFD. Section 5 compares their33

computational complexity. Finally, Section 6 shows the empirical equivalence of KFD and KQPFS in several34

well-known artificial and real-world datasets. The runtime of both methods as a function of the class label35

prior probabilities is also provided.36

37

38

2. Kernel Fisher Discriminant39

Let X1 = {x1
1, . . . , x

1
l1
} and X2 = {x2

1, . . . , x
2
l2
} be samples from two different classes, xi ∈ R

d and40

X = X1 ∪X2 the complete set of l (l = l1 + l2)training samples. And let y ∈ {−1, 1}
l
be the vector with the41

corresponding labels.42

The Kernel Fisher Discriminant (KFD) consists on finding nonlinear directions by first mapping the data43

nonlinearly into the feature space F and computing Fisher’s linear discriminant there (Mika et al., 1999).44
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Specifically, let Φ : Rd −→ F be the mapping function to the kernel space and K(x, y) =< Φ(x),Φ(y) >45

the Mercer kernel which defines the dot-product in F . To find the linear discriminant in F we need to46

maximizing,47

J(w) =
wTSΦ

Bw

wTSΦ
Ww

(1)48

where w ∈ F and SΦ
B and SΦ

W are the corresponding between and within scatter matrices in F , i.e.49

SΦ
B = (mΦ

1 −mΦ
2 )(m

Φ
1 −mΦ

2 )
T

50

SΦ
W =

∑

i=1,2

∑

x∈χi

(Φ(x)−mΦ
i )(Φ(x)−mΦ

i )
T

51

with mΦ
i = 1

li

∑li
j=1 Φ(x

i
j).52

53

54

Finding a solution to Equation 1 in the kernel space F requires to reformulate it in terms of only dot55

products of the input patterns (Mika et al., 1999). From the theory of reproducing kernels (Saitoh, 1988),56

any solution w ∈ F must lie in the span of all training samples in F . Therefore w can be expressed as,57

w =

l
∑

i=1

αiΦ(xi)58

Therefore, maximizing Equation 1 is equivalent to maximize59

J(α) =
αTMα

αTNα
60

61

being62
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M = (M1 −M2)(M1 −M2)
T

63

(Mi)j =
1

li

li
∑

k=1

K(xj , x
i
k)64

N =
∑

j=1,2

Kj(I − 1lj )K
T
j65

where Kj is a N × lj matrix with (Kj)nm = k(xn, x
j
m), I is the identity matrix and 1lj the matrix with66

all entries 1
lj
.67

This problem can be solved by finding the leading eigenvector of N−1M or computing α∗
KFD = N−1(M2−68

M1). In the last case, some kind of regularization is needed because the problem is ill-posed (Tikhonov and69

Arsenin, 1977): the dimension of the feature space is usually larger than the number of training samples,70

which makes matrixN not positive. Regularization functions as ‖α‖2, ‖w‖2 and others have been proposed in71

(Mika et al., 1999; Friedman, 1989; Hastie et al., 1993). In (Mika et al., 1999), the matrix N is approximated72

by Nµ = N + µNI being µN the minimum value which makes N positive definite.73

3. Kernel Quadratic Programming Feature Selection74

The proposed QPFS method (Rodriguez-Lujan et al., 2010) consists on minimizing a multivariate75

quadratic function subjected to linear constraints as follows,76

min
x

1
2
xTQx− FTx (2)77

s.t. xi ≥ 0 ∀i = 1 . . .M78

‖x‖1 = 1.79

Where x is an d -dimensional vector, Q ∈ R
d×d is a symmetric positive semidefinite matrix, and F is a80

vector in R
d with non-negative entries. Q represents the similarity among variables (redundancy), and F81

measures how correlated each feature is with the target class (relevance). The components of the solution82

vector x∗ represents the weight of each feature, and we chose to normalize the contribution of each feature83
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to the cost function. Thus, the aim of Equation 3 is to select those features which provide a good tradeoff84

between relevance and redundancy for the classification task.85

The formulation of Equation 3 in a kernel space is not straightforward. For some kernels, it is not86

possible to give a weight to each feature in the kernel space due to its potential infinite dimension. However,87

maintaining the goal of redundancy minimization of the features and relevance maximization of each feature88

with the target class, the Equation 3 can be adapted to find an optimal direction w to project the data into89

the kernel space. As before, let Φ be the nonlinear mapping to the feature space F then, the adapted QPFS90

objective function is defined as,91

min
x

1

2
wTQΦw −

(

FΦ
)T

w (3)92

where QΦ is the redundancy among features in the kernel space, FΦ is the relevance of each feature93

with the target class in the kernel space. Thus Equation 3 represents a feature extraction method, KQPFS,94

instead of a feature selection technique as the original QPFS method.95

In the original QPFS approach, correlation and mutual information were considered as similarity mea-96

sures of redundancy and relevance. For our problem in Equation 3, a linear dependence must be applied97

because w induces a linear projection of the data. Intuitively, it is possible to adapt mutual information or98

correlation in the kernel space. However, the mapping function Φ is usually implicit and the dimension of99

the kernel space F may be infinite forcing the search of a basis set in the kernel space. If instead of mutual100

information or correlation, the covariance is used as similarity measure, the KQPFS formulation does not101

require the presence of an explicit basis in the kernel space. More precisely, the QΦ and FΦ matrices are102

defined as follows,103

QΦ =
∑

x∈X

(

Φ(x)−mΦ
) (

Φ(x)−mΦ
)T

104

FΦ =
∑

x∈X

(yx −my)
(

Φ(x)−mΦ
)

105

where mΦ and my are the mean value of the training samples and the training labels, respectively. That106
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is,107

mΦ =
1

l

∑

x∈X

Φ(x)108

my =
1

l

l
∑

i=1

yi .109

Again, we first need a formulation of Equation 3 in terms of only dot products of input patterns and110

applying the theory of reproducing kernels (Saitoh, 1988), w is represented as w =
∑l

i=1 αiΦ(xi). Therefore,111

Equation 3 can be formulated as the minimization of function G(α),112

G(α) =
1

2
αTK (I − 1l)Kα− yT (I − 1l)Kα (4)113

where I is the l-dimensional identity matrix and 1l is a l-dimensional square matrix with all entries 1
l
.114

Let QK = K (I − 1l)K and FK = K (I − 1l) y, the optimal value of α∗
KQPFS is obtained making the115

gradient of G(α) equals to zero,116

α∗
KQPFS = (QK)

−1
FK117

If the QK matrix is invertible, the formulation of the optimal direction is straightforward,118

α∗
KQPFS = (QK)

−1
FK119

= K−1 (I − 1l)
−1

K−1K (I − 1l) y120

= K−1y121

Unfortunately, the matrix QK = K (I − 1l)K is always singular because its rank is upper-bounded by122

the rank l − 1 of matrix (I − 1l). Therefore, following (Mika et al., 1999), a multiple of the identity matrix123

is added to QK matrix: Qµ = QK + µQI.124

Replacing QK by Qµ in Equation 4, we obtain the regularized version of KQPFS,125

Gµ(α) =
1

2
αT (QK + µQI)α− FT

Kα126

6



which is equivalent to,127

Gµ(α) =
1

2
αTQKα− FT

Kα+
µQ

2
‖α‖2. (5)128

And the regularized KQPFS direction is given by,129

α∗
KQPFS = (QK + µQI)

−1
FK (6)130

µQ is the minimum value which makes Qµ positive definite. A process to estimate the parameter µQ is131

needed. The KQPFS solution obtained in Equation 6 has an easy interpretation as the projection direction132

which minimizes the covariance among features in the kernel space and maximizes the covariance of each133

feature in the kernel space with the target class. Moreover, the expression of such direction is quite simple134

depending only on the kernel matrix K and the class labels y.135

4. Equivalence of KFD and KQPFS136

In this section we will demonstrate that the optimal solution of KQPFS is equivalent to the solution of137

KFD when the same regularization criteria is applied in both cases. Without loss of generality, we will use138

the regularization defined in Sections 2 and 3. It is straightforward to show that the following proof is also139

valid for other regularization functions.140

As shown in (Mika et al., 2000), the KFD can be reformulated as the following quadratic programming141

problem,142

min
α

αTNα+ CP (α) (7)143

Subject to:144

αT (M1 −M2) = 2 (8)145

where P (α) is a regularization term which makes explicit the N regularization and C ∈ R the regular-146

ization constant. It can be shown (Mika et al., 2000) that solving the problem given in Equations 7 and 8147

is equivalent to optimize,148
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min
α,b,ξ

‖ξ‖2 + CP (α) (9)149

Subject to:150

Kα+
−→
1 b = y + ξ (10)151

−→
1Ti ξ = 0 for i = 1, 2 (11)152

being
−→
1 ∈ R

l a vector with all entries 1 and
−→
1iR

l binary vectors with j-th entry equals to 1 if the j-th153

sample belongs to class i and 0 otherwise. The quadratic optimization problem defined in Equations 9-11154

can be understood as the minimization of the variance of the data along the projection and the maximization155

of the distance between the average outputs for each class at the same time.156

Replacing N by Nµ in Equation 7, the regularization term P (α) is equal to ‖α‖2, the regularization157

constant C is µN and the regularized quadratic problem in Equations 9-11 is reformulated as,158

min
α,b,ξ

‖ξ‖2 + µN‖α‖2. (12)159

Subject to:160

Kα+
−→
1 b = y + ξ (13)161

−→
1Ti ξ = 0 for i = 1, 2 (14)162

Proposition 1. Given µN ∈ R and let µN = µQ, any optimal solution (α∗, b∗, ξ∗) to the optimization163

problem (12-14) is also optimal for (5) and vice versa.164

Proof. Working out ξ in the constraint given in Equation 14 leads to165

ξ (α, b) = Kα+
−→
1 b− y .166

By expanding ‖ξ (α, b) ‖2 the optimization problem of Equation 12 is reformulated as167

min
α,b

{αTKKα− lb2 − 2yTKα+ yT y + µN‖α‖2}168
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subject to:169

−→
1Ti ξ(α, b) = 0 for i = 1, 2170

The value of b can be expressed as a function of α using the second constraint:171

b(α) = −
1

l
1lKα+ 1ly . (15)172

Therefore, we have an optimization problem with no constraints:173

minα {αTKKα− l (b(α))
2

(16)174

−2yTKα+ yT y + µN‖α‖2}. (17)175

Then, substituting b(α) in Equation 17 by the value obtained in Equation 15 we obtain176

minα {αTK (I − 1l)Kα177

−2yT (I − 1l)Kα+
µN

2
‖α‖2 +D} (18)178

with D being a constant. It follows that the minimum value of Equation 18 is the same as the obtained for179

the objective function of the regularized KQPFS (Equation 5) when µN = µQ.180

2181

This equivalence provides a new solution of the Fisher direction which not depends explicitly on the182

un-intuitive kernelized within scatter matrix N (Equation 6). Moreover, the Fisher solution has a simple183

interpretation as the direction which minimizes the covariance among features and maximizes the covariance184

of each feature with the target class.185

5. Computational Cost Comparison186

In this section we study the computational cost of KFD and KQPFS to determine whether it is possible187

to get any computational advantage from the new KFD formulation as the kernelization of QPFS. Even188

though several algorithms have been proposed to speed up KFD (Cai, 2007; Mika, 2001; Xiong et al., 2004)189

we are interested in analyzing an equivalent problem to the KQPFS as given in Equation 6. Let us to obtain190

the standard KFD solution as α∗
KFD = (Nµ)

−1(M1 − M2) where matrices Nµ, M1 and M2 are defined in191

9



1: INPUT: l,K, y, µN

2: pos = (y==1);

3: neg = (y==-1);

4: l1 = sum(pos);

5: l2= sum(neg);

6: N =

7: K(:,pos)*(eye(l1)-
(1/l1)*ones(l1))*(K(:,pos))’+

8: K(:,neg)*(eye(l2)-
(1/l2)*ones(l2))*(K(:,neg))’+

9: diag(µN*ones(l,1));

10: M = ((1/l1)*(sum(K(:,pos),2))) -

11: ((1/l2)*(sum(K(:,neg),2)));

12: αKFD = N\M;

13: OUTPUT: αKFD

1: INPUT: l,K, y, µQ

2: A=K*(eye(l)-((1/l)*ones(l));

3: Q=A*K+diag(µQ*ones(l,1));

4: B = A*y;

5: αKQPFS = Q \B

6: OUTPUT: αKQPFS

Figure 1: MATLAB code of KFD (left) and KQPFS (right) algorithms.

Section 2. Figure 1 shows the MATLAB code for both methods. The number of float-point operations192

needed by KFD is 4l (lines 2-5), l21 + l22 + l2 + 2l(l21 + l22) + 3l2 (lines 6-9), l2 + 3l (lines 10-11) and O(l3)193

(line 12) which makes a total cost of O(l3) + 2l(l21 + l22) + 5l2 + l21 + l22 + 7l operations. In the case of the194

KQPFS algorithm, l2 + l3 operations are needed in line 2, 2l2 + l3 in line 3, l2 in line 4 and O(l3) in line 5195

that is, a total cost of O(l3) + 2l3 + 4l2 float-point operations. As the line 12 of KFD and line 5 of KQPFS196

work with dimensionality equivalent matrices, we will suppose that the cost of these lines is the same in197

both cases therefore, we obtain that KQPFS is computationally faster than the proposed version of KFD if198

(l21 + l22)(2l + 1) + 5l2 + 7l ≫ 2l3 + 4l2. The inequality is satisfied when the prior distributions of the class199

labels are highly unbalanced i.e., when l1 → l or l2 → l. Summing up, the KFD cost depends on the prior200

distribution of classes and KQPFS is more efficient for highly unbalanced classification problems.201

6. Experiments202

A theoretical proof of the equivalence between KFD and KQPFS has been given in Proposition 1 and in203

this section we show that the numerical solutions given by KFD and KQPFS provide the same projection204

direction.205

We followed part of the experimental setup described in (Mika et al., 1999): for KFD and KQPFS we206

used Gaussian kernels and the regularized matrices Nµ and Qµ as described in Sections 2 and 3, respectively.207
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Thirteen artificial and real world datasets were considered from the Rätsch benchmark repository1. Some208

of these datasets were not binary so they were transformed into two-classes problems and all of them were209

partitioned into 100 pairs of training and test sets (about 60%:40%).210

The experiments require to estimate two parameters, the width of the Gaussian kernel K(x, y) = e
‖x−y‖2

σ211

and the regularization parameter µN of the within class scatter matrix N in KFD (see section 2). The212

procedure to estimate these parameters consists on running 5-fold cross validation on the first five realizations213

of the training sets and taking the model parameter to be the median over the five estimates. The value of214

these parameters is known (Mika et al., 1999). Note that the equivalence of KQPFS and KFD holds when215

the same regularization form and regularization constant is applied in both cases. Therefore, there is no216

need to estimate the KQPFS regularization parameter µQ.217

The empirical equivalence of KFD and KQPFS has been confirmed measuring the cosine between the218

solutions α∗
KFD and α∗

KQPFS. Ideally, the value of the cosine should be close to 1 or to −1 which means219

parallel directions. In all the datasets, the cosine of both directions was 1 for every training set.220

Finally, let us provide numerical results of the KFD and KQPFS complexity analyzed in Section 5. The221

experiment consists on modifying the prior probability of one of the classes, without loss of generality the222

class of positive labels, and compare the runtime of KFD and KQPFS codes (Figure 1). The regression223

dataset Abalone available in the LIBSVM repository (Chang and Lin, 2001) was used. The dataset has 4177224

samples (l) in a 8-dimensional space. To carry out the experiments, the samples were arranged in ascending225

order according to the regression variable and the prior probability of the positive class p1 was modified226

from 0 to 1 with a stepwise of 0.05. A pattern is assigned to the positive class if it is among the first p1l227

patterns. Figure 2 shows the runtime in training as a function of the prior probability of the positive class.228

As expected, the KFD algorithm cost is dependent on the class prior probabilities being faster than KQPFS229

except when the class distributions are highly unbalanced. The KQPFS complexity is independent on the230

prior distributions.231

1The datasets are available at http://ftp.tuebingen.mpg.de/pub/fml/raetsch-lab/benchmarks/
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Figure 2: Abalone. Training time in seconds for the KFD and KQPFS algorithms.

7. Conclusions232

This paper reformulates the Quadratic Programming Feature Selection (QPFS) method to obtain an233

optimal projection direction in a kernel space (KQPFS). The projection direction given by KQPFS is equiv-234

alent to those obtained by the Kernel Fisher Discriminant (KFD) which leads to a new interpretation of the235

KFD vector as the direction which minimizes the covariance among features and maximizes the covariance236

of each feature with the target class in the kernel space. This equivalence provides a new solution for KFD237

disregarding the explicitly dependence on the kernelized between and within scatter matrices. In addition, a238

more efficient computation of the Kernel Fisher direction is proposed when the classes are highly unbalanced.239
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