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Abstract 
 
Clustering is needed in various applications such as biometric person 
authentication, speech coding and recognition, image compression and 
information retrieval. Hundreds of clustering methods have been proposed for 
the task in various fields but, surprisingly, there are few extensive studies 
actually comparing them. An important question is how much the choice of a 
clustering method matters for the final pattern recognition application. Our 
goal is to provide a thorough experimental comparison of clustering methods 
for text-independent speaker verification. We consider parametric Gaussian 
mixture model (GMM) and non-parametric vector quantization (VQ) model 
using the best known clustering algorithms including iterative (K-means, 
random swap, expectation-maximization), hierarchical (pairwise nearest 
neighbor, split, split-and-merge), evolutionary (genetic algorithm), neural 
(self-organizing map) and fuzzy (fuzzy C-means) approaches. We study 
recognition accuracy, processing time, clustering validity, and correlation of 
clustering quality and recognition accuracy. Experiments from these 
complementary observations indicate clustering is not a critical task in speaker 
recognition and the choice of the algorithm should be based on computational 
complexity and simplicity of the implementation. This is mainly because of 
three reasons: the data is not clustered, large models are used and only the best 
algorithms are considered. For low-order models, choice of the algorithm, 
however, can have a significant effect.  

 
Index Terms – Clustering methods, speaker recognition, vector quantization, 
Gaussian mixture model, universal background model 
 



List of abbreviations 
ANN Artificial neural network 
DET Detection error trade-off 
EER Equal error rate 
EM Expectation maximization 
FAR False acceptance rate 
FRR False rejection rate 
FCM Fuzzy C-means 
GMM Gaussian mixture model 
GA Genetic algorithm 
MAP Maximum a posteriori 
MFCC Mel-frequency cepstral coefficient 
PNN Pairwise nearest neighbor 
RS Randow swap 
SOM Self-organizing map 
SM Split-and-merge 
SVM Support vector machine 
UBM Universal background model 
VQ Vector quantization 
 

1 INTRODUCTION 
 
Text-independent speaker recognition [4, 9, 42] aims at recognizing persons from their 
voice. It consists of two different tasks: identification and verification. The identification 
task aims at finding the best match (or a set of potential matches) for an unknown voice 
from a speaker database. The goal of verification task, in turn, is either to accept or reject 
a claimed identity given by speaking (“I am Tomi, verify me”), or by typing a personal 
identification number (PIN), for instance. 
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Figure 1: System diagram of a spectral feature speaker recognizer, the focus of this study. Clustering 
methods are characterized here by their clustering quality, resulting speaker recognition accuracy, time 
consumption of the modeling, and usability aspects. There are two common ways to train speaker models, 
(a) maximum likelihood (ML) that trains the model using feature vectors of the speaker, and (b) maximum a 
posteriori (MAP) that uses in addition a universal background model (UBM) to generate a robust model. 
 
Speaker recognition process is illustrated in Fig. 1. When a new person is enrolled into 
the system, the audio signal is first converted into a set of feature vectors. Although 
short-term spectral features [34] are sensitive to noise and channel effects, they provide 
better recognition accuracy than prosodic and “high-level” features [69], and are 
therefore used in this study. Following feature extraction, a speaker model is trained and 
added into the database. In the matching phase, feature vectors are extracted from the 
unknown sample and compared with the model(s) in the database, providing a similarity 
score. To increase robustness to signal variability, recent solutions use sophisticated 
speaker model compensation [7, 41] and score normalization using background speakers 
[1, 68]. Finally, the normalized score is compared with a threshold (verification), or the 
best scoring speaker(s) is selected as such (identification). 

A number of different classifiers have been studied for speaker recognition; see [66, 42] 
for an overview. Speaker models can be divided into generative and discriminative 
models. Generative models characterize the distribution of the feature vectors within the 
classes (speakers), whereas discriminative modeling focuses on modeling the decision 
boundary between the classes. For generative modeling, vector quantization (VQ) [8, 28, 
32, 45, 74, 80] and Gaussian mixture model (GMM) [67, 68] are commonly used. For 



discriminative training, artificial neural networks (ANNs) [17, 83] and, more recently, 
support vector machines (SVMs) [10, 11] are representative techniques.  

In the past few years, research community has also focused on combining generative and 
discriminative models, leading to hybrid models. In particular, GMMs are extensively 
used for mapping variable-length vector sequences into fixed-dimensional supervectors 
[11, 13, 49] that are used as features in SVM. Parallel to, and in conjunction with this 
research trend, significant recent advances have also been made on intersession 
variability compensation of the supervectors [7, 13, 41]. A representative class of such 
techniques is factor analysis (FA) model in the GMM supervector space [13, 41]. Both 
the hybrid GMM-SVM approaches and the factor analysis models have excellent 
performance especially under severe channel and session mismatches. However, due to 
the additional training steps required for constructing the GMM front-end and, 
subsequently, the session variability models, the supervector methods typically require at 
least an order of magnitude more development data compared to traditional generative 
models [30, 32, 68], and are therefore much more CPU-intensive. Careful selection of the 
various modeling data sets is also a critical step1

1.1 Relevance of Clustering in a Large-Scale Pattern Recognition 
Problem  

.  

 

In this paper, we focus on the training methodology of two classical generative speaker 
models, GMM and VQ, for two reasons. Firstly, these methods underlie both the 
traditional maximum likelihood (or minimum distortion) trained speaker models [8, 28, 
45, 74, 80], their maximum a posteriori adapted extensions using universal background 
model (UBM) priors [30, 32, 68] and, importantly, also the recent hybrid GMM-SVM 
and FA models  [11, 13, 41, 49]. The way the underlying generative model is trained will 
have a major effect to the performance of all these methods. Secondly, while there are 
good guidelines for composing a balanced and representative training set for background 
modeling – see the recent study [30] and references therein – the question of how to 
model the generative model itself has received only little attention in literature. Typically, 
Gaussian mixture models, which are pertinent not only in speaker recognition but in all 
speech applications and general audio classification tasks [2], are trained using the 
expectation-maximization (EM) algorithm, or, in the case of vector quantization, the K-
means algorithm. 

Better clustering algorithms have been introduced after K-means and EM [37], in terms 
of preventing local minima, being less sensitive to parameter setup and providing faster 
processing. Even though several literature surveys exist [36, 37, 60, 77], only a few 
extensive comparisons are available in image processing [24] and text retrieval [76] but 
none in speaker recognition. In clustering research, new methods are usually compared in 
                                                 
1In practice, the various datasets need to be selected according to the expected conditions of the actual 
application data, reflecting the channel conditions, noise levels, as well as the speaker population (e.g. 
native language of speakers). Additional care must be taken when the same speakers (but possibly different 
utterances) are re-used in background modeling and score normalization. The degrees of variability used in 
the NIST speaker recognition evaluation datasets (http://nist.gov/itl/iad/mig/sre.cfm) increases every year 
and proper selection of training datasets is critical. 

http://nist.gov/itl/iad/mig/sre.cfm�


terms of clustering quality. But should better clustering quality improve the recognition 
accuracy of the full pattern recognition system? Overall, given the long history of 
clustering research [37], existence of thousands of clustering methods, we feel that it is 
time to review the choice of clustering methodology in a large-scale, real-world pattern 
recognition problem involving tens of dimensions and hundreds of pattern classes of 
highly noisy data. In our view, text-independent speaker recognition is a representative 
application. The main goal of this paper is to bridge some of the gap between theoretical 
clustering research and large-scale pattern recognition applications, by focusing to an 
important practical design question: choice of clustering methodology. Before 
representing the research hypotheses, we first review the role of GMM and VQ clustering 
methods in our target application. 

1.2 Review of Clustering Methods in Speaker Recognition 
 
The VQ model (centroid model) is a collection of prototype vectors determined by 
minimizing a distance-based objective function. GMM is a model-based approach [59] 
where the data is assumed to follow Gaussian mixture distribution parameterized by 
mean vectors, covariance matrices and mixing weights. For a fixed number of clusters, 
GMM has more free parameters than VQ. Their main difference is the cluster overlap in 
GMM. In fact, VQ can be seen as a special case of the GMM in which the posterior 
probabilities have been hardened, and unit variance is assumed in all clusters. Similarly, 
k-means algorithm [52] can be considered as a special case of the expectation 
maximization (EM) algorithm for GMM [5]. 

The VQ model was first introduced to speaker recognition in [8, 74] and the GMM model 
in [67]. GMM remains a core component in state-of-the-art speaker recognition whereas 
VQ is usually seen as a simplified variant of GMM. GMM combined with UBM [68] is 
the de facto reference method (Fig. 1b). The role of VQ, on the other hand, has been 
mostly in reducing the number of training or testing vectors to reduce the computational 
overhead. VQ has also been used as a pre-processor for ANN and SVM classifiers in [54, 
81] to reduce the training time and for speeding up the GMM-based verification in [45, 
70]. In [50], VQ is used for partitioning the feature space into local decision regions 
modeled by SVMs to increase accuracy. Despite its secondary role, VQ gives comparable 
accuracy to GMM [6, 46] when equipped with a MAP adaptation [32]. The 
computational benefits over GMM are important in small-footprint implementations such 
as mobile devices [71]. Recently, similar to hybrids of GMM and SVM [11], combination 
of VQ with SVM has also been studied [6]. 

Fuzzy clustering [15] is a compromise between VQ and GMM models. It retains the 
simplicity of VQ while allowing soft cluster assignments using a membership function. 
Fuzzy extensions of both VQ [80] and GMM [79] have been studied in speaker 
recognition. For a useful review, refer to [78]. Another recent extension of GMM is based 
on nonlinear warping of the GMM density function [82]. These methods, however, lack 
formulation for the background model adaptation [68], which is an essential part of 
modern speaker verification relying on MAP training (Fig. 1b). 

The model order –  number of centroid vectors in VQ or Gaussian components in GMM 
–  is an important control parameter in both VQ and GMM. Typically the number varies 



from 64 to 2048, depending on the chosen features and their dimensionality, number of 
training vectors, and the selected clustering model (VQ or GMM). In general, increasing 
the number of clusters improves recognition accuracy, but it levels off after a certain 
point due to over-fitting. From the two clustering models, VQ was found to be less 
sensitive to the choice of the number of clusters in [75] when trained without the UBM 
adaptation. The model order in both VQ and GMM needs to be carefully optimized for 
the given data to achieve good performance [46]. 

The choice of the clustering method, on the other hand, has been much less studied. 
Usually K-means [52] and expectation-maximization (EM) [5, 57] methods have been 
used, although several better clustering methods exist [24]. This raises the questions of 
which clustering algorithm should be chosen, and whether the choice between VQ or 
GMM model matters. Regarding the choice between these models, experimental evidence 
is diverse. GMM has been shown to perform better for small model orders [75], but the 
difference vanishes when using larger model order [28, 45, 75]. However, GMM has 
been reported to work better than VQ only when cluster-dependent covariance matrices 
were used but perform worse when a shared covariance matrix was used [67]. Several 
authors have used GMM derived from the VQ model for faster training [47, 63, 73]. All 
these observations are based on the maximum likelihood (ML) training of speaker models 
though.  

Two recent studies include more detailed comparisons of GMM and VQ [46, 29]. In [46] 
the MAP trained VQ outperformed MAP-trained GMM for longer training data (2.5 
minutes) but the situation was reversed for 10-second speech samples. The study of [29] 
focused on the choice of dissimilarity measure (city-block, euclidean, Chebychev) in VQ 
and two different clustering initializations (binary LBG splitting [52] versus random 
selection). Differences in the identification and verification tasks, as well as ML versus 
MAP training were also considered. The authors found the distance measure and the 
number of clusters to be more important than the choice of the K-means initialization. 
ML-trained models performed better with the shorter NTIMIT data in speaker 
identification, whereas MAP-trained models (both GMM and VQ) worked better on 
longer training segments (NIST 2001). Regarding the choice between GMM and VQ, 
they performed equally well on the NIST 2001 verification task, regardless whether 
trained by ML or MAP. However, in the identification task, MAP-trained GMM 
outperformed MAP-trained VQ, on both corpuses.  
A recent study [6] compares MAP-trained GMM and VQ models when used as front-end 
features for SVM. From the two corpuses, GMM variant outperformed VQ on the YOHO 
corpus with short utterances, whereas VQ performed slightly better on the KING corpus 
with longer free-vocabulary utterances.  

1.3 Research Objectives and Hypotheses 
 
Existing literature lacks extensive comparison between different clustering algorithms 
that would be useful for practitioners. The existing comparisons in speaker recognition 
study only a few methods, use different features and datasets preventing meaningful 
cross-comparisons. Even in [29, 46], only the basic EM and K-means algorithms were 
studied. Thus, extensive comparison of better clustering algorithms is still missing.  



In the experimental section of this paper, we consider the GMM and VQ models both in 
the maximum likelihood (ML) and maximum a posteriori (MAP) training setting, without 
additional SVM back-end, inter-session compensation or score normalization [1]. 
Focusing on this computationally feasible core component enables detailed study of 
generative model training methodology without re-training the full recognition system 
from scratch every time the background models are changed; the same rationale was 
chosen recently in [30]. 

In the experiments, we consider both controlled laboratory quality speech (TIMIT 
corpus) and noisy conversional telephony speech (NIST 1999 and NIST 2006 corpuses). 
Our main evaluation criteria are the recognition accuracy, processing time and ease of 
implementation. We aim at answering the following questions:  

1. Is clustering needed or would random sub-sampling be sufficient? 
2. What is the best algorithm in terms of quality, efficiency and simplicity? 
3. What is the difference between the accuracy of the VQ and GMM models? 

It was hypothesized in [43] that a clustering would be required but the choice of 
clustering algorithm would not be critical. A possible explanation is that the speech data 
may not have a clustering tendency [44]. These observations were based on a small 25-
speaker laboratory-quality data collected using the same microphone and read sentences. 
In this paper, we aim at confirming these hypotheses via extensive large scale 
experiments. Since the main advantage of speaker recognition over other biometric 
modalities is possibility for low-cost remote authentication, we experiment using realistic 
telephony data including different handsets, transmission lines, GSM coding and 
environmental noises. The two NIST corpuses used in the study include 290,521 (NIST 
1999) and 53,966 (NIST 2006) verification trials including 539 and 816 speakers, 
respectively. Furthermore, in NIST 2006 corpus, all the verification trials are from highly 
mismatched channel conditions. This makes it a very challenging pattern recognition 
problem.  

Regarding the difference between the VQ and GMM models, our results reveal insights 
which are not obvious, and sometimes contradict previous understanding based on 
literature. For example, even though the models are of similar quality in terms of average 
speaker verification accuracy (equal error rate), their performance differs systematically 
at the extreme cases where small false acceptance or false rejection errors are required. 

 

2 CLUSTERING MODELS AS SPEAKER MODELS 

2.1 Problem formulation 
 
We consider a training set X = {x1,…,xN}, where dd

iii xx Rx ∈= ),...,( )()1(  are the d-
dimensional feature vectors. In the centroid-based model, also known as the vector 
quantization (VQ) model, the clustering structure is represented by a set of code vectors 
known as the codebook, which is denoted here as C = {c1,…cK}, where K << N. The size 
of the codebook (K) is considered as a control parameter. For a fixed K, the clustering 



problem can be defined as an optimization problem, in which the goal is to find a 
codebook C that minimizes a given objective function. Here we use the mean square 
error (MSE): 
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In Gaussian mixture model (GMM), each cluster is represented by three parameters: 
mean vector μk, covariance matrix ∑k, and the mixing weight wk. By considering K 
Gaussian components, the clustering objective function can be defined as the average 
log-likelihood:  
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multivariate Gaussian density function with parameters μk and Σk. The mixing weights wk 
are constrained to be positive and to sum up to 1.  

In early studies, speaker models were trained by optimizing (1) or (2) directly on the 
enrolment data of that speaker. The same optimization criteria would then be used as the 
similarity score between unknown sample and the given model(s). The current paradigm, 
however, uses a two-stage training process. First, a universal background model (UBM) 
is trained by pooling a large number feature vectors from different speakers and 
optimizing (1) or (2) with any suitable clustering algorithm. The UBM serves as prior 
information about the general (speaker-independent) distribution of the spectral feature 
space, and it is used as a form of regularization (smoothing) in the training. To be precise, 
for the GMM model the mean vectors of the UBM, UBM

kμ  , are adapted as, 
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Here P(k|xi) is the posterior probability of vector xi originating from the kth Gaussian, nk 
is the soft count of vectors assigned to the kth Gaussian, and r is a fixed constant known 
as relevance factor. Typically r is a fixed constant [68] but data-adaptive relevance factor 
using fuzzy control rule has also been suggested [38]. In this study, we use fixed constant 
r=16 as usually done in speaker verification. Note that only the mean vectors are adapted, 
and the rest of the parameters are shared between speakers. For more details, refer to 
[68]. For the VQ model, the adaptation formulae are a special case of (3) and (4) with the 
assumption that P(k|xi) = 1 for the nearest centroid vector in UBM, and P(k|xi) = 0 
otherwise. For the VQ adaptation, we use relevance factor r=12 as in [32]. 



In the recognition phase, the average log likelihood (mean square error in the case of VQ) 
of the data, in respect both to the target speaker and the UBM, are evaluated, and their 
difference gives the normalized score. Normalization with the background model 
equalizes the score ranges of different speakers and test segments so that a common 
verification threshold can be used. The normalized score is finally compared with a 
verification threshold to give the accept/reject decision.  

2.2 Clustering Algorithms 
 
Optimal algorithms for solving the clustering problem have exponential time complexity 
[26]. Thus, all methods for data sets consisting of thousands or millions of training 
vectors are based on different heuristics; several hundreds of methods have been 
proposed in literature [36]. For the comparisons in this paper, we include algorithms that, 
according to our experience [24], consistently provide high quality clustering, and 
algorithms that are popular due to their simplicity or for other reasons. We include two 
hierarchical algorithms (PNN, SPLIT) and six iterative algorithms (K-means, SOM, RS, 
SM, FCM, GA). Random clustering is used as reference points. GMM, on the other hand, 
is the de facto standard in text-independent speaker recognition, and provides another 
good reference point. 

Random: A trivial method for modeling the data is to construct the codebook from K 
randomly chosen data vectors. The random codebook will also be used as the initial 
solution for the iterative algorithms described below, but serves also as a reference 
solution for measuring the quality of the clustering algorithms. A good clustering 
algorithm should produce significantly better codebook than the random selection. 

Repeated K-means: K-means [58] starts from any initial solution, which is then 
iteratively improved by two optimization steps as long as improvement is achieved. The 
algorithm is known as Linde-Buzo-Gray (LBG) or generalized Lloyd algorithm (GLA) in 
vector quantization [52]. Since K-means is sensitive to the initial solution, we apply it 
repeatedly each time starting from a new random initial solution [14]. The codebook 
providing the smallest MSE is retained as the final solution. 

SOM: Self-organizing map [61] is a neural network approach to the clustering problem. 
The neurons in the network are connected with a 1-D or 2-D structure, and they 
correspond to the code vectors. Each feature vector is fed to the network by finding the 
nearest code vector. The best matched code vector and its neighboring vectors in the 
network are updated by moving them towards the input vector. After processing the 
training set by a predefined number of times, the neighborhood size is shrunk. The entire 
process is repeated until the neighborhood size shrinks to zero.  

PNN: Pairwise nearest neighbor [16, 23] generates the codebook hierarchically. It starts 
by initializing each feature vector as a separate code vector. Two code vectors are merged 
at each step of the algorithm and the process is repeated until the desired size of the 
codebook is obtained. The code vectors to be merged are always the ones that results in 
the least distortion. We use the fast exact PNN algorithm introduced in [23]. 

SPLIT: An opposite top-down approach starts with a single cluster of all the feature 
vectors. New clusters are then created one at a time by dividing the existing clusters. The 



splitting process is repeated until the desired number of clusters is reached. This approach 
usually requires much less computation than the PNN. We use the algorithm in [19] that 
always selects the optimal hyperplane, dividing the particular cluster along its principal 
axis, augmented with a local repartitioning phase at each division step. This variant gives 
comparable results to that of the PNN but with much faster algorithm. 

SM: Split-and-Merge [39] is an iterative algorithm that modifies the codebook by a series 
of split and merge operations. At every step, the code vectors to be split and merged are 
chosen as the ones that provide best improvement (split), or least increase (merge) in the 
distortion. The algorithm provides high quality codebooks but with a significantly more 
complex implementation than the other algorithms.  

RS: Random swap algorithm [22] starts with a random codebook, which is then 
iteratively improved. At every step, a randomly selected code vector is tentatively re-
allocated to a randomly chosen training vector. The new candidate codebook is fine-
tuned by two iterations of K-means, the solution is then evaluated and accepted if it 
improves the previous solution. The algorithm is iterated for a fixed number of iterations. 
This trial-and-error approach is much simpler to implement than the split-and-merge 
algorithm, and is surprisingly effective. It was shown to find the optimal global allocation 
of the codebook in an expected time of O(N2K) [25]. See Figure 2 for illustration of the 
algorithm.  

FCM: Fuzzy C-means [15] generalizes K-means to fuzzy clustering, in which data 
vectors can belong to several partitions at the same time with a given weight. Traditional 
K-means is then applied in the final step in order to obtain the centroids (codebook) from 
the fuzzy partitions. Another alternative would be to formulate fuzzy-MAP adaptation 
based on the fuzzy memberships. Since we are not aware of such formulation, we use the 
centroids obtained from the hard partitions. 

GA: Genetic algorithm generates a set of solutions (called population) and evolves it 
using the survival of the fittest principle. In [18], PNN is used as the crossover to 
generate new candidates, which are further fine-tuned by K-means. The algorithm has 
outperformed so far every competitive clustering algorithm for more than a decade 
already. Slightly better results have been reported only by other (more complicated) GA 
variants [FräntiShrink2006]. It therefore serves as a good reference point for clustering 
model.  

GMM: We use the Expectation-Maximization (EM) algorithm [5, 57] for training the 
GMM as described in [67]. In the EM algorithm, an initial guess is made for the model 
parameters, and the solution is then improved by using two optimization steps similar to 
K-means. Since the EM algorithm is also sensitive for the initialization, we apply it 
repeatedly starting from a new random solution, which is always first fine-tuned by K-
means. The result providing the highest likelihood is retained as the final model. An 
important consideration in GMM is the type of the covariance matrices of the Gaussian 
components. As generally done with MFCC features, we use diagonal covariance 
matrices instead of full covariances due to numerical and computational reasons: for 
limited data, full covariance matrices easily become singular (ill-conditioned). Using 
diagonal covariances is also computationally efficient since no full covariance matrix 
inversions are required. 



 
Figure 2. Illustration of a single step of the random swap (RS) algorithm. A randomly chosen centroid is 
re-allocated to new location, followed by K-means fine-tuning. The new solution is accepted if it provides 
smaller distortion than the original codebook. 

2.3 Number of Clusters  
 
The number of clusters (model order) is a control parameter of a clustering algorithm 
which must be optimized for a given application. In recognition applications, this is 
usually done by picking the model order that gives best recognition accuracy on a 
development set. Practice has shown that, irrespective of the implementation details, 
corpus and chosen short-term features, the best accuracy is typically found using K=64 to 
K=2048 code vectors or Gaussian components. The main drawback of this approach is 
the expensive computations involved – for each considered model order, one needs to re-
train speaker models (and UBM if MAP adaptation is used) and re-classify the 
development test samples.  

In clustering research, large number of clustering validity indices have been proposed for 
automatically detecting the number of clusters (e.g. [3, 12, 27, 57, 60, 72]). In early phase 
of this study, we also evaluated the classical F-ratio (based on ANOVA test procedure 
[35]) and Davis-Bouldin index (DBI) [12] in VQ-based speaker modeling, but found the 
selected model order to correlate poorly with recognition accuracy. Even though these 
indices have been reported to work reasonably well for low-dimensional features and data 
with clear clustering tendency [48], they are affected by overlapping clusters and noise 
(e.g. [3]), as well as increasing dimensionality. Since speech features have tens of 
dimensions and are unlikely to have any clustering tendency [44], this may explain the 
result. For practitioners, we therefore recommend to use the optimize-on-devset 
procedure. 



  

3 EXPERIMENTAL SETUP 

3.1 Corpora and Features 
 
For the experiments, we use three corpora: TIMIT, NIST 1999 and NIST 2006 as 
documented in Tables 1 and 2. TIMIT represents laboratory quality speech recorded in 
highly controlled conditions. It was selected for the purpose of parameter optimization in 
an initial stage of our study. The NIST 1999 and NIST 2006 corpora, on the other hand, 
represent uncontrolled, conversational telephone quality speech, which is expected in real 
applications. We use 12- and 36-dimensional mel-frequency cepstral coefficient (MFCC) 
features for the NIST 1999 and NIST 2006, respectively (see below). 

The TIMIT corpus [53] consists of 630 speakers, and for each speaker there are 10 
speech files. We split the files into non-overlapping training and test sections of 70 % (22 
sec.) and 30 % (9 sec.), respectively. For consistency with the NIST files, TIMIT files 
were anti-alias filtered and downsampled from 16 kHz to 8 kHz. 

The NIST 1999 corpus [56] consists of 539 speakers (230 males, 309 females). We use 
the training section of the corpus for our experiments. Each speaker’s training data is 
given in two files labeled “a” and “b”, and each has duration of one minute. We use the 
“a” files for training and the “b” files for classification. For a given speaker, these two 
files are from the same telephone number but from two different telephone calls 
(sessions). Different speakers may have same or different type of handset (electret or 
carbon button). To evaluate verification performance, we match each of the test files per 
each of the speakers, yielding a total number of 539×539=290,521 test trials, of which 
539 are genuine and the remaining 289,982 are impostor trials. 

From the NIST 2006 corpus, we have selected the common “core condition” as specified 
in the NIST 2006 SRE evaluation plan [62]. This benchmark test consists of 816 target 
speakers (354 males, 462 females) and a total number of 53,966 verification trials (5077 
genuine, 48,889 impostors). 
 



 
Table 1: Summary of the speech material 

 TIMIT NIST 1999  NIST 2006 
Language English English Mostly English* 
Speakers 630 539 816 
Test trials N/A 539 genuine +  

289,982 impostor 
5077 genuine +  
48,889 impostor 

Speech type Read Conversational Conversational 
Quality Laboratory Telephone Telephone 
Sampling rate 8.0 kHz 8.0 kHz 8.0 kHz 
Session mismatch matched mismatched mismatched 
Channel mismatch matched mixed mismatched 
Training data (avg.) 22 sec. ~1 min ~2.5 min. 
Test data (avg.) 9 sec. ~1 min ~2.5 min. 

    *Small part of the data contains Arabic, Mandarin, Russian, or Spanish speakers. 
 
We use the mel-frequency cepstral coefficients (MFCCs) as the acoustic features [34], see 
Table 2. Each frame is multiplied by a 30 msec Hamming window, shifted by 10 msec. 
From the windowed frame, magnitude spectrum using fast Fourier transform (FFT) is 
computed and then filtered with a bank of 27 triangular filters spaced linearly on the mel-
frequency scale. The log-compressed filter outputs are then converted into cepstral 
coefficients by discrete cosine transform (DCT), and the coefficients 1-12 are retained.  

For the TIMIT and NIST 1999 corpus, we use the 12 MFCCs as features, followed by 
utterance-level mean and variance normalization to give zero mean, unit-variance 
features. For these two corpora, voice activity detection (VAD) is not needed; TIMIT 
samples are short and of high-quality, containing mostly speech. The NIST 1999 corpus, 
in turn, has been pre-processed by NIST for silence removal. This simple setup is 
sufficient on these data sets according to our experience.  

For the more challenging NIST 2006 data, our front-end includes additional RelAtive 
SpecTrAl (RASTA) filtering [33] to mitigate convolutive channel effects, followed by 
estimation of the Δ and Δ2 parameters to capture local spectral dynamics. Finally, an 
adaptive energy-based algorithm is used for picking speech-only frames, followed by 
utterance-level mean and variance normalization. For the NIST 2006 corpus, voice 
activity detection is crucial – according to [31], error rates may increase near chance level 
if VAD is excluded. The Matlab code of the energy VAD used in this study is available 
in [42]. 
Table 2: Evaluation set-up for each corpus. UBM = universal background model, d = feature 
dimensionality, N = number of vectors. 

Corpus Evaluation 
task 

Features used UBM training data and 
UBM type 

UBM training 
vectors 

TIMIT Identif. MFCC  
(d=12) 

N/A N/A 

NIST 
1999 

Verif. MFCC  
(d=12) 

NIST 2000, single 
UBM 

N=591.378 

NIST 
2006 

Verif. MFCC+Δ+Δ2 
(d=36) 

NIST 2004, gender-
dependent UBMs 

N=500.000 per 
gender 



For the NIST 1999 and NIST 2006 corpora, we need universal background models. For 
the NIST 1999 data, we use a subset of the 1-speaker detection task training files of the 
NIST 2000 speaker recognition corpus [53] and for the NIST 2006 data, we use a subset 
of the 1-side training files of the NIST 2004 SRE corpus. For NIST 1999 we use gender-
independent UBM and for NIST 2006 we use separate UBMs for female and male 
speakers.  

3.2 Performance Criteria 
 
To assess speaker verification performance, we use the detection error tradeoff (DET) 
curve [55] as an evaluation tool. The DET curve presents the trade-off between the two 
detection error rates, false acceptance rate (FAR) and false rejection rate (FRR), in a 
normal deviate scale over all decision thresholds. For Gaussian score distributions, the 
resulting DET curves are straight lines. As an average error measurement, we report the 
equal error rates (EERs), i.e. the error rate corresponding to point FAR=FRR. We also 
provide the FAR and FRR at a few additional operating points corresponding to security 
and user-convenient application scenarios. 

To measure computational efficiency of background model training, we use the average 
CPU time over 10 repetitions. All the clustering algorithms have been implemented using 
either C or C++ languages. The NIST 2006 experiments were carried out in a Dell 
PE2900 workstation with two 3 GHz X5450 CPUs, 48 GB of RAM and CentOS release 
5.3 operating system. Care was taken in excluding the file I/O overhead from the running 
times. The TIMIT and NIST 1999 experiments were carried out in two older Dell 
Optiplex G270 computers (2.8 GHz CPU) and 1 GB RAM.  

3.3 Parameter Setting of the Clustering Algorithms 
 
The clustering algorithms have several control parameters that should be fixed 
beforehand. We document the selection of the parameters and comment their importance 
for the success of the algorithm in the following. Summary is given in Table 3. Note that, 
even though the number of clusters (K) is a control parameter, it is common for all the 
algorithms and hence not counted here. 

Random: This algorithm has no control parameters. 

Repeated K-means: K-means does not have any control parameters but its quality 
strongly depends on the initial solution. We therefore repeat the algorithm several times 
(R) by restarting from different random initial solutions as originally proposed in [14]. As 
a negative side, this also multiplies the processing time R times compared to that of a 
single run of K-means. Here we set R=10. 

SOM: The SOM algorithm does not depend much on the initialization but it is very 
sensitive to the parameter setup [20]. We fix the initial neighborhood size (Dmax) to 16, 
and then study the learning rate (α), and the number of iterations (I) on TIMIT corpus. 
Based on the identification results in Table 2, we fix the learning rate as α=0.01, and the 
number of iterations to I = 1000. 



PNN and SPLIT: The hierarchical algorithms (PNN and SPLIT) have no control 
parameters and they always produce the same result. The SPLIT approach itself includes 
several design alternatives such as which cluster to split and how to split it. However, the 
proposed solution in [19] works very well for all data sets without the need of any data-
dependent parameter tuning. It was also aimed at maximum quality (at the cost of speed). 
But since it remains the fastest among the tested algorithms, the faster variants are not 
considered. 

SM: In the SM algorithm, there is one control parameter (step size H), which defines how 
many subsequent split steps are performed before the same amount of merge operations. 
We follow the recommendation of [39], and fix it to be equal to the size of the codebook 
(H=K). Smaller values would provide slightly higher MSE using less processing time, 
whereas higher values do not provide much further improvement. The exact choice of 
this parameter is not critical. The other parameters are insignificant and the default values 
described in [39] can be used. 

RS: In the RS algorithm, we must select the number of iterations (I), which determines 
the trade-off between processing time and quality. Our previous experience indicates that 
the number of iterations should be proportional to the number of input vectors (N) to 
guarantee high quality result. We consider the values I=2500 and I=5000. The first one 
will be used later as there was not much difference in accuracy when tested with TIMIT. 

FCM: We need to fix the number of iterations. According to previous experiments 
[VirmajokiShrink2006], they are fixed as shown in Table 2.  

GA: We need to fix the population size and the number of generations. Their selection is 
merely a trade-off between quality and time. The results in [21] has shown that even the 
faster variant provides very good performance. We therefore fix the generation size to 
z=10, accordingly, and iterate the algorithm until no improvement is found (usually 5-20 
iterations). 

GMM: The initial mean vectors for the expectation-maximization (EM) algorithm are 
initialized by random selection from the training set, followed by 10 K-means iterations. 
Following this, the covariance matrices are computed from the vectors assigned to each 
cluster, and the weights are set to the relative count of vectors assigned to the cluster. 
After initialization, the expectation and maximization steps are iteratively repeated until 
the relative increase in likelihood falls below a given threshold (ε). Like in K-means, we 
repeat the algorithm R times, each time starting from a new random solution, and choose 
the final model as the one which yields the highest likelihood. Here, we fix the 
parameters as ε = 2-16 and R=10. We also need to set a variance floor (σ2

min) for each 
dimension to prevent components becoming singular [67]. The values were optimized on 
the TIMIT data and fixed to 1.52×10-5 times the variance of the training set. The number 
of restarts (R) and the variance floor are important control parameters of the algorithm, 
which must be setup experimentally since there are no good theoretical guidelines how to 
set them optimally for a given data set [67]. The selection of the convergence threshold 
(ε), on the other hand, is much less critical and can be considered a fixed constant. 
Table 3: Dependency of the SOM performance on the control parameters for TIMIT corpus using 
codebook size = 32. The reported numbers are closed-set identification error rates (IER %) over the whole 
TIMIT corpus with 630 speakers. 



Number of 
Iterations (I) 

Learning rate (α) 
0.001 0.01 0.1 1 

5 66.0 15.9 3.2 60.5 
10 48.1 10.3 3.2 59.5 
20 21.4 5.2 2.9 60.3 
50 19.7 2.7 1.4 59.2 
100 11.4 2.2 2.9 61.4 
1000 1.7 1.4 4.0 62.2 

 
Table 4: List of control parameters of the algorithms, and the values considered. The selected values are 
shown in boldface.  

Algorithm Control parameters Values tested 

Random - N/A N/A 
Rep. K-means - Number of restarts (R) R = 5, 10, 100 
SOM  - Number of iterations (I) 

- Maximum learning rate (α) 
- Size of the initial neighborhood (Dmax) 

I = 5, 10, 20, 50, 100, 1000, 10000 
α = 0.001, 0.01, 0.1, 1 
Dmax  = 16 

PNN - N/A N/A 
SPLIT - N/A N/A 
RS - Number of iterations (I) I = 2500, 5000 
SM - Number of splits before merging  (H) H = K (codebook size) 
GA - Number of generations (I). 

- Size of generation (Z) 
I = until no improvement 
Z = 10 

FCM - Number of FCM iterations (IFCM) 
- Number of K-means iterations (Ikm) 

IFCM = 200 
Ikm = 10, 100 

GMM - Number of restarts (R) 
- Variance floor (σ2

min) 
R = 10 
σ2

min=1.52×10-5×σ2 

 

4 RESULTS AND DISCUSSION 

4.1 Speaker Recognition Accuracy 
 
First, we present results on the NIST 1999 corpus and study the effect of the background 
model. We use the random swap (RS) as a representative vector quantization method, and 
compare it against the Gaussian mixture model (GMM) trained with the repeated 
expectation-maximization (EM) algorithm. The speaker models are trained independently 
without UBM and without score normalization (EM, RS), or by using MAP adaptation 
from the UBM and with UBM score normalization (EM+MAP, RLS+MAP). The DET 
plots are presented in Fig. 3 and representative score distributions are shown in Fig. 5. 

VQ achieves higher accuracy at small FAR levels, but the differences become smaller 
when UBMs are used. The UBM adaptation and normalization improves the accuracy of 
both methods. For the rest of the experiments, we use background modeling and thus, the 
focus is on comparing different clustering methods to train the UBM. 



  1     2     5     10    20    40    1   

  2   

  5   

  10  

  20  

  40  

False acceptance rate (FAR %)

Fa
ls

e 
re

je
ct

io
n 

ra
te

 (F
R

R
 %

)

Model order = 64
 

 

GMM (EM), EER = 12.99
VQ (RS), EER = 12.43
GMM-UBM (EM+MAP),  EER = 10.42
VQ-UBM  (RS+MAP), EER = 10.95

 
  1     2     5     10    20    40    1   

  2   

  5   

  10  

  20  

  40  

False acceptance rate (FAR %)

Fa
ls

e 
re

je
ct

io
n 

ra
te

 (F
R

R
 %

)

 

 

Model order = 256

GMM (EM), EER = 12.61
VQ (RS), EER = 12.55
GMM-UBM (EM+MAP),  EER = 10.76
VQ-UBM  (RS+MAP), EER = 9.75

 
Figure 3: Results on the NIST 1999 corpus (Model orders K=64 and K=256) using VQ and GMM 
approaches, with and without UBM. 
 
While UBM adaptation and score normalization are known to improve accuracy, it is 
much less studied how the set-up of UBM training affects recognition accuracy. To study 
this in more detail, we consider two different methods to initialize GMM: (1) the repeated 
EM method described in Sections 2.2 and 3.3, and (2) a deterministic method used in 
[46]. The latter was specifically optimized on the latest NIST corpora to give good 
recognition accuracy with small time consumption. It uses splitting algorithm to generate 
an initial codebook, which is fine-tuned by seven K-means iterations; the covariances and 
weights are then initialized from the codebook partitions; finally, two EM iterations are 
executed (further EM iterations did not improve accuracy in [46]). Comparative results 
with VQ-UBM (using the random swap algorithm) are shown in Fig. 4. 

The two alternative methods of training GMM do exhibit different performance. At small 
FRR levels (lower right corner), the repeated EM clearly outperforms the faster heuristic 
variant; at small FAR levels (upper left corner), in turn, the order is reversed, even though 
the difference is smaller. RS algorithm gives the same performance with repeated EM at 
small FRR levels and model size K=512; however, RS outperforms EM at small FAR 
levels. This difference is even larger when model order is increased to K=2048. At small 
FRR levels and with K=2048, repeated EM gives the best performance. In summary, VQ-
UBM is better suited for security applications (small FAR desired), whereas GMM-UBM 
is better for user-convenience applications (small FRR desired). 
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Model order = 2048

VQ-UBM (RS)
EER = 8.94
GMM-UBM (Repeated EM)
EER = 9.55
GMM-UBM (Split + 7 Kmeans + 2 EM iter)
EER = 9.97

 
Figure 4: Comparing random swap (RS) to GMM with two different initializations on the NIST 2006 
corpus. The UBMs are trained with the indicated methods. 
 
For more complete analysis, Table 5 summarizes error rates at a few selected operating 
scenarios for both the NIST 1999 and the NIST 2006 corpora. The notation “FAR @ 
FRR=1%” means that the verification threshold has been adjusted to give 1% FRR, and 
the corresponding FAR is reported in the table; similarly for the other error type. 
Independent of the corpus and feature set-up, GMM-UBM seems to be better for user-
convenience and VQ-UBM for security application, respectively.  

McNemar’s significance test at 95% confidence level [34, 51] was performed at each 
operating point between GMM-UBM (repeated EM) and VQ-UBM (RS). We measure 
the difference in the decisions on the impostor trials in case of user-convenience 
application (FAR @ FRR = 1..10%), difference in the genuine trials in case of secure 
application (FRR @ FAR = 1..10%), and all trials at the EER operating point. 
Statistically significant differences are indicated by an asterisk (*) in Table 5. On NIST 
2006, GMM-UBM outperforms VQ-UBM at the user-convenient scenario, whereas the 
situation is reversed in the security scenario. In the NIST 1999, the same conclusion 
holds except in a few cases. In general, the differences are smaller near the EER 
operating point and only in impostor but not in genuine trials. The reason why differences 
are not always significant for genuine trials on the NIST 1999 is due to much smaller 
number of genuine trials in comparison to NIST 2006. 
 



Table 5: Error rates for the VQ-UBM and GMM-UBM for two application scenarios. Here 
d=feature dimensionality, K=model order, rep.EM = repeated expectation-maximization (EM), 
heur.EM = Split + 7 Kmeans initialization, followed by two EM iterations. * = significantly 
different from GMM-UBM (rep. EM), at the confidence level of 95%, as evaluated using 
McNemar’s test. 

Corpus, feature dimensionality  
(d) and model order (K) 

NIST 1999 
d=12, K=256 

NIST 2006 
d=36, K=2048 

 
 

Application 
scenario 

Model and UBM 
training method 

VQ-
UBM 
(RS) 

GMM-
UBM 

(rep.EM) 

VQ- 
UBM 
(RS) 

GMM-
UBM 

(heur.EM) 

GMM-
UBM 

(rep.EM) 
EER 9.75 10.76 8.94 9.97 9.55 

User-
convenient 
application 

FAR@FRR=1% 
FAR@FRR=2% 
FAR@FRR=5% 
FAR@FRR=10% 

85.56* 
74.64 
41.65* 
9.69* 

80.82 
74.87 
36.41 
12.84 

67.51* 
41.01* 
18.09* 
7.73* 

99.42 
48.97 
21.14 
9.96 

52.36 
32.82 
17.16 
9.22 

Security 
application 

FRR@FAR=1% 
FRR@FAR=2% 
FRR@FAR=5% 
FRR@FAR=10% 

21.71* 
17.07* 
12.99 
9.65 

30.98 
20.59 
14.10 
11.32 

30.75* 
23.30* 
13.69* 
8.29* 

42.17 
31.91 
18.20 
9.97 

48.20 
32.62 
17.61 
9.18 
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Figure 5: Match score distributions for VQ-UBM and GMM-UBM on the NIST 1999 corpus for model size 
256. Two operating points (thresholds) with the corresponding error rates are indicated.  
 
Full comparison of all clustering methods is shown in Fig. 6 on the NIST 2006 corpus. 
Firstly, all the methods produce significantly better result than random clustering. 
Secondly, the VQ and GMM methods are equal in terms of EER. Generally VQ methods 
outperform GMM at small FAR levels (security application), whereas GMM outperforms 
VQ at small FRR levels (user-convenience applications) when the model order is 
increased to K=1024 or K=2048. Comparing the VQ methods, the recognition accuracies 
are very close to each other, in particular for models with large number of clusters. For a 
smaller number of clusters (K=16), there are some differences: SOM gives significantly 
poorer accuracy than the other methods, and the hierarchical methods, PNN and Split, are 
also slightly poorer. This is hardly significant since the larger codebook sizes are 
expected to be used in most applications. It must also be noted that, although SOM works 
reasonably well in these tests, the parameter tuning was a crucial step, which makes it 
unfavorable method. 
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Figure 6. Recognition results for the NIST 2006 SRE corpus. 
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Figure 7. Clustering quality versus recognition accuracy for model order K=1024. Here quality is measured 
as the mean square error (MSE) of the (male) universal background model. 
 
An interesting question is whether the clustering quality correlates with increased 
recognition accuracy. To answer this, we present mean square error (MSE) of the 
background model in NIST 2006 corpus against the three different error metrics used in 
Table 5. The results for model order K=1024 in Fig. 7 suggest that there exists a weak 
correlation: the PNN, which yields the highest MSE among the tested methods, yields 
also slightly poorer recognition accuracy. However, the rest of the methods are so close 
to each other in clustering quality that the differences in recognition accuracy cannot 
originate from a better clustering algorithm.  
 

4.3 Processing Time 
 
In the following examples, we study the computational efficiency of the clustering 
methods. In the case of iterative algorithms, the processing time increases with the size of 
the model. In Fig. 8, this can be seen most clearly for K-means and GMM. On the other 
hand, we use the reduced-search variant of the K-means [40], also in RS, SM and GA, 
and it exploits the fact that only small portion of the code vectors changes during each 
iteration. In the case of large codebooks, this proportion becomes smaller and smaller, 
which makes the dependency on the size of the codebook rather conservative. 
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Figure 8: Running times of the model training for the NIST 1999 (left) and NIST 2006 (right) corpora. The 
dimensionality of the corresponding features spaces are d=12 and d=36. (Processing times of FCM and GA 
for NIST 1999 are missing due to historical reasons.) 

 
In the case of hierarchical algorithms, the processing time depends mainly on the 
direction of the process. In divisive approach (SPLIT), the algorithm processes from K=1 
to K=N, and therefore, the processing time increases as a function of the codebook size. 
In the merge-based approach (PNN), the situation is the opposite as it processes from 
K=N down to K=1. However, most of the time will be spent in the early stage of the 
process when there are a large number of code vectors, and therefore, the increase at the 
smaller sizes does not show anymore in Fig. 8. 

The difference of the feature space affects SPLIT and SM methods because they need to 
calculate principle axis at every splitting stage (SPLIT and SM). These steps have 
quadratic, O(d2) time dependency on the dimensionality, and thus, the methods become 
somewhat slower when the dimensionality increases. All other methods depend linearly 
on the dimensionality and the size of data, except PNN, which has quadratic, O(N2), 
dependency on the size of data.  

In summary, the SPLIT method is the fastest of the tested methods. Among the other 
methods, RS and the Repeated K-means are somewhat slow for the highest codebook 
sizes, but both of them were tuned here for maximal quality instead of speed. 
 

5 IMPLEMENTATION CONSIDERATIONS 
 
A somewhat less appreciated property of an algorithm is the human effort needed to 
make the algorithm work in practice. There are two viewpoints: (1) programmer’s 
viewpoint: complexity of the implementation, and (2) user’s viewpoint: efforts required to 
tune up the parameters for a certain corpus. In general, these two factors are difficult to 
measure quantitatively given the varying skills of programmers and users. To give 
a rough indication of the first factor, we estimate the number of functions and program 
code length. Program code length was estimated as the number of lines in the source 
code, and the file size of the binary code. All programs were compiled using GCC 
version 4.1.12, without code optimization and debug information. To give an indication 
of the user effort, we count the number of control parameters.  

The numbers in Table 5 match to our own experience in implementing these algorithms. 
All the programs (except FCM and GMM) consist of the same data structures for the 
feature vectors, codebooks, partition, and the same functions for distance calculations. In 
addition to these, K-means includes four functions to generate the partition and centroids 
for finding the nearest code vector, and for summing up the distortion value. The reduced 
search variant includes one more. In addition to these, RS includes swap and selection 
procedures. Thus, their corresponding code sizes are almost the same. In our opinion, 
these two algorithms are the simplest ones to implement.  

The SOM, PNN and FCM algorithms have somewhat longer codes but their 
implementations are also quite straightforward. The SPLIT, however, is significantly 
more complex to implement, which is partly reflected in its code size, as well. The 



algorithm includes functions for calculating the principal component (power method), 
finding the optimal dividing hyper plane, projection, sorting the data vectors, and a binary 
tree structure for efficient selection of the next cluster to split, procedure for re-
partitioning, and several smaller routines. 

Split-and-Merge is basically a combination of the PNN and SPLIT codes added with the 
main routine coordinating between these two steps. However, additional difficulties arise 
from the fact that updating one of the data structures either by split and merge, will 
influence the other data structure of the other. As the success of the algorithm requires 
that both of these steps are implemented accurately, it is far from trivial to make the 
algorithm work in practice. According to our experience, we cannot really recommend 
this method for practitioners due to its complex implementation. 

GA is combination of PNN and K-means algorithm, including a few additional steps in 
the crossover stage, handling a set of solutions instead of only one, and implementing the 
selection step. The parameters are rather straightforward to set according to previous 
recommendations, and the method works rather robust from data set to another. It is to be 
considered if top performances and the extra (usually insignificant) quality increase in 
comparison to, say RS or PNN, is desired. 

Robust implementation of EM algorithm for GMM requires knowledge of linear algebra 
and issues related to numerical precision. First of all, in our experience double accuracy 
should always be used with the EM algorithm. In contrast, standard K-means can be 
implemented even with fixed-point arithmetic on a hand-held device [71]. However, in 
GMM, the covariance matrices can become singular (or non-invertible). The common 
options are either to limit the variance, or to set the component weight to zero, thus 
effectively decreasing the model size. Another option is to relocate the component 
elsewhere with new covariance matrix, or to copy the component from the previous 
iteration of the EM algorithm. In summary, implementing GMM requires more care with 
numerics than VQ. 

The source codes of the clustering algorithms used in this paper have been made publicly 
available at http://cs.joensuu.fi/sipu/clustering/. 
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Table 6: Measures estimating the difficulty of implementation. 

 
Number of 

control 
parameters 

Number of 
functions 

Lines in  
source code 

Binary code 
size (bytes) 

Random 0 2 26 64,448 
Repeated K-means 1 5 162 71,821 

RS 1 7 226 70,690 
SOM 3 7 252 95,448 
PNN 0 12 317 107,530 

SPLIT 0 22 947 101,778 
SM 1 38 1381 131,834 
GA 2 21 573 105,956 

FCM* 2 11 295 128,735 
GMM* 2 44 1111 87,535 

* C++ implementation, other methods are in ANSI C. 
 

5 CONCLUSIONS 
 
We have presented an extensive comparison of clustering methods in a demanding 
pattern recognition task including highly noisy telephony speech data. Our main 
conclusion is that the most important parameter is the order of the model, whereas the 
choice of the clustering algorithm is less important. It is therefore enough that the data is 
modelled by any reasonably good clustering algorithm, as long as the size of the 
codebook or the number of Gaussians is sufficiently large.  

We found the choice of the algorithm to be critical only if very small model size is used. 
However, the result of random clustering indicated that the recognition rate can be 
significantly high if no clustering is done. We therefore conclude that some clustering 
algorithm is needed and random sub-sampling is not enough. Regarding the choice of the 
algorithm, for practitioners we recommend the random swap (RS) algorithm because of 
its simple implementation and robust performance in all test conditions. If the running 
time is critical, we recommend the SPLIT algorithm even though its implementation is 
more complex. 

In the current study, all VQ algorithms were optimized for the same squared-error cost 
function. This explains rather similar results obtained with different VQ variants. For the 
same reason, since GMM is based on a different objective function, the differences 
between GMM and VQ type of models tend to be generally larger. In two recent 
independent studies [29, 6], differences between these two clustering models were 
reported for different distance functions [29] and in SVM back-end setting [6]. We 
conclude that training methodology and data selection for UBM [30] are worth re-
addressing. 



According to our tests, GMM-UBM works better for user-convenience applications 
where false rejections must be minimized, however, the order was reversed in the favor 
of VQ-UBM when small false acceptances were considered. The observations were 
similar for both the 12-dimensional MFCC features (NIST 1999 corpus) and the 36-
dimensional MFCC+Δ+Δ2 features (NIST 2006). Differences in the EER region, on the 
other hand, were not found statistically significant. Interestingly, similar observations 
have been recently made in another study for NIST 2001; see Fig. 14 in [29].  

Regarding clustering quality, the results are consistent with the comparisons made with 
image data [24]. We expect the results to generalize to other variations of spectral 
features as well, and to some extent, to other pattern recognition applications. 
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