
Comparison of Clustering Methods: a Case Study
of Text-Independent Speaker Modeling

Tomi Kinnunen, Ilja Sidoroff, Marko Tuononen, Pasi Fränti

Speech and Image Processing Unit, School of Computing,
University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland

E-mail: {tkinnu,isido,mtuonon,franti}@cs.joensuu.fi

Abstract

Clustering is needed in various applications such as biometric person
authentication, speech coding and recognition, image compression and
information retrieval. Hundreds of clustering methods have been proposed for
the task in various fields but, surprisingly, there are few extensive studies
actually comparing them. An important question is how much the choice of a
clustering method matters for the final pattern recognition application. Our
goal is to provide a thorough experimental comparison of clustering methods
for text-independent speaker verification. We consider parametric Gaussian
mixture model (GMM) and non-parametric vector quantization (VQ) model
using the best known clustering algorithms including iterative (K-means,
random swap, expectation-maximization), hierarchical (pairwise nearest
neighbor, split, split-and-merge), evolutionary (genetic algorithm), neural
(self-organizing map) and fuzzy (fuzzy C-means) approaches. We study
recognition accuracy, processing time, clustering validity, and correlation of
clustering quality and recognition accuracy. Experiments from these
complementary observations indicate clustering is not a critical task in speaker
recognition and the choice of the algorithm should be based on computational
complexity and simplicity of the implementation. This is mainly because of
three reasons: the data is not clustered, large models are used and only the best
algorithms are considered. For low-order models, choice of the algorithm,
however, can have a significant effect.

Index Terms – Clustering methods, speaker recognition, vector quantization,
Gaussian mixture model, universal background model

List of abbreviations
ANN Artificial neural network
DET Detection error trade-off
EER Equal error rate
EM Expectation maximization
FAR False acceptance rate
FRR False rejection rate
FCM Fuzzy C-means
GMM Gaussian mixture model
GA Genetic algorithm
MAP Maximum a posteriori
MFCC Mel-frequency cepstral coefficient
PNN Pairwise nearest neighbor
RS Randow swap
SOM Self-organizing map
SM Split-and-merge
SVM Support vector machine
UBM Universal background model
VQ Vector quantization

1 INTRODUCTION

Text-independent speaker recognition [4, 9, 42] aims at recognizing persons from their
voice. It consists of two different tasks: identification and verification. The identification
task aims at finding the best match (or a set of potential matches) for an unknown voice
from a speaker database. The goal of verification task, in turn, is either to accept or reject
a claimed identity given by speaking (“I am Tomi, verify me”), or by typing a personal
identification number (PIN), for instance.

Short-term spectral
feature extractor

Speech
input

Clustering
algorithm

Similarity/distance
function

Feature extraction

Training phase

Matching phase

Decision
Thresholding or
picking max/min

Decision phase

Speaker
models

Speech data from a
large number speakers

Short-term spectral
feature extractor

Clustering
algorithm

Clustering
algorithm

Universal background
model (UBM)

Short-term spectral
feature extractor

Speech
input

Maximum a posteriori
(MAP) adaptation

Adapted
speaker model

Matching and UBM
score normalization

Decision Thresholding or
picking max/min

Off-line phase

Training phase

Matching phase Speaker
models

and UBM

(a) Maximum likelihood (ML) training

Feature extraction

Decision phase

(b) Maximum a posteriori (MAP) training

Figure 1: System diagram of a spectral feature speaker recognizer, the focus of this study. Clustering
methods are characterized here by their clustering quality, resulting speaker recognition accuracy, time
consumption of the modeling, and usability aspects. There are two common ways to train speaker models,
(a) maximum likelihood (ML) that trains the model using feature vectors of the speaker, and (b) maximum a
posteriori (MAP) that uses in addition a universal background model (UBM) to generate a robust model.

Speaker recognition process is illustrated in Fig. 1. When a new person is enrolled into
the system, the audio signal is first converted into a set of feature vectors. Although
short-term spectral features [34] are sensitive to noise and channel effects, they provide
better recognition accuracy than prosodic and “high-level” features [69], and are
therefore used in this study. Following feature extraction, a speaker model is trained and
added into the database. In the matching phase, feature vectors are extracted from the
unknown sample and compared with the model(s) in the database, providing a similarity
score. To increase robustness to signal variability, recent solutions use sophisticated
speaker model compensation [7, 41] and score normalization using background speakers
[1, 68]. Finally, the normalized score is compared with a threshold (verification), or the
best scoring speaker(s) is selected as such (identification).

A number of different classifiers have been studied for speaker recognition; see [66, 42]
for an overview. Speaker models can be divided into generative and discriminative
models. Generative models characterize the distribution of the feature vectors within the
classes (speakers), whereas discriminative modeling focuses on modeling the decision
boundary between the classes. For generative modeling, vector quantization (VQ) [8, 28,
32, 45, 74, 80] and Gaussian mixture model (GMM) [67, 68] are commonly used. For

discriminative training, artificial neural networks (ANNs) [17, 83] and, more recently,
support vector machines (SVMs) [10, 11] are representative techniques.

In the past few years, research community has also focused on combining generative and
discriminative models, leading to hybrid models. In particular, GMMs are extensively
used for mapping variable-length vector sequences into fixed-dimensional supervectors
[11, 13, 49] that are used as features in SVM. Parallel to, and in conjunction with this
research trend, significant recent advances have also been made on intersession
variability compensation of the supervectors [7, 13, 41]. A representative class of such
techniques is factor analysis (FA) model in the GMM supervector space [13, 41]. Both
the hybrid GMM-SVM approaches and the factor analysis models have excellent
performance especially under severe channel and session mismatches. However, due to
the additional training steps required for constructing the GMM front-end and,
subsequently, the session variability models, the supervector methods typically require at
least an order of magnitude more development data compared to traditional generative
models [30, 32, 68], and are therefore much more CPU-intensive. Careful selection of the
various modeling data sets is also a critical step1

1.1 Relevance of Clustering in a Large-Scale Pattern Recognition
Problem

.

In this paper, we focus on the training methodology of two classical generative speaker
models, GMM and VQ, for two reasons. Firstly, these methods underlie both the
traditional maximum likelihood (or minimum distortion) trained speaker models [8, 28,
45, 74, 80], their maximum a posteriori adapted extensions using universal background
model (UBM) priors [30, 32, 68] and, importantly, also the recent hybrid GMM-SVM
and FA models [11, 13, 41, 49]. The way the underlying generative model is trained will
have a major effect to the performance of all these methods. Secondly, while there are
good guidelines for composing a balanced and representative training set for background
modeling – see the recent study [30] and references therein – the question of how to
model the generative model itself has received only little attention in literature. Typically,
Gaussian mixture models, which are pertinent not only in speaker recognition but in all
speech applications and general audio classification tasks [2], are trained using the
expectation-maximization (EM) algorithm, or, in the case of vector quantization, the K-
means algorithm.

Better clustering algorithms have been introduced after K-means and EM [37], in terms
of preventing local minima, being less sensitive to parameter setup and providing faster
processing. Even though several literature surveys exist [36, 37, 60, 77], only a few
extensive comparisons are available in image processing [24] and text retrieval [76] but
none in speaker recognition. In clustering research, new methods are usually compared in

1In practice, the various datasets need to be selected according to the expected conditions of the actual
application data, reflecting the channel conditions, noise levels, as well as the speaker population (e.g.
native language of speakers). Additional care must be taken when the same speakers (but possibly different
utterances) are re-used in background modeling and score normalization. The degrees of variability used in
the NIST speaker recognition evaluation datasets (http://nist.gov/itl/iad/mig/sre.cfm) increases every year
and proper selection of training datasets is critical.

http://nist.gov/itl/iad/mig/sre.cfm�

terms of clustering quality. But should better clustering quality improve the recognition
accuracy of the full pattern recognition system? Overall, given the long history of
clustering research [37], existence of thousands of clustering methods, we feel that it is
time to review the choice of clustering methodology in a large-scale, real-world pattern
recognition problem involving tens of dimensions and hundreds of pattern classes of
highly noisy data. In our view, text-independent speaker recognition is a representative
application. The main goal of this paper is to bridge some of the gap between theoretical
clustering research and large-scale pattern recognition applications, by focusing to an
important practical design question: choice of clustering methodology. Before
representing the research hypotheses, we first review the role of GMM and VQ clustering
methods in our target application.

1.2 Review of Clustering Methods in Speaker Recognition

The VQ model (centroid model) is a collection of prototype vectors determined by
minimizing a distance-based objective function. GMM is a model-based approach [59]
where the data is assumed to follow Gaussian mixture distribution parameterized by
mean vectors, covariance matrices and mixing weights. For a fixed number of clusters,
GMM has more free parameters than VQ. Their main difference is the cluster overlap in
GMM. In fact, VQ can be seen as a special case of the GMM in which the posterior
probabilities have been hardened, and unit variance is assumed in all clusters. Similarly,
k-means algorithm [52] can be considered as a special case of the expectation
maximization (EM) algorithm for GMM [5].

The VQ model was first introduced to speaker recognition in [8, 74] and the GMM model
in [67]. GMM remains a core component in state-of-the-art speaker recognition whereas
VQ is usually seen as a simplified variant of GMM. GMM combined with UBM [68] is
the de facto reference method (Fig. 1b). The role of VQ, on the other hand, has been
mostly in reducing the number of training or testing vectors to reduce the computational
overhead. VQ has also been used as a pre-processor for ANN and SVM classifiers in [54,
81] to reduce the training time and for speeding up the GMM-based verification in [45,
70]. In [50], VQ is used for partitioning the feature space into local decision regions
modeled by SVMs to increase accuracy. Despite its secondary role, VQ gives comparable
accuracy to GMM [6, 46] when equipped with a MAP adaptation [32]. The
computational benefits over GMM are important in small-footprint implementations such
as mobile devices [71]. Recently, similar to hybrids of GMM and SVM [11], combination
of VQ with SVM has also been studied [6].

Fuzzy clustering [15] is a compromise between VQ and GMM models. It retains the
simplicity of VQ while allowing soft cluster assignments using a membership function.
Fuzzy extensions of both VQ [80] and GMM [79] have been studied in speaker
recognition. For a useful review, refer to [78]. Another recent extension of GMM is based
on nonlinear warping of the GMM density function [82]. These methods, however, lack
formulation for the background model adaptation [68], which is an essential part of
modern speaker verification relying on MAP training (Fig. 1b).

The model order – number of centroid vectors in VQ or Gaussian components in GMM
– is an important control parameter in both VQ and GMM. Typically the number varies

from 64 to 2048, depending on the chosen features and their dimensionality, number of
training vectors, and the selected clustering model (VQ or GMM). In general, increasing
the number of clusters improves recognition accuracy, but it levels off after a certain
point due to over-fitting. From the two clustering models, VQ was found to be less
sensitive to the choice of the number of clusters in [75] when trained without the UBM
adaptation. The model order in both VQ and GMM needs to be carefully optimized for
the given data to achieve good performance [46].

The choice of the clustering method, on the other hand, has been much less studied.
Usually K-means [52] and expectation-maximization (EM) [5, 57] methods have been
used, although several better clustering methods exist [24]. This raises the questions of
which clustering algorithm should be chosen, and whether the choice between VQ or
GMM model matters. Regarding the choice between these models, experimental evidence
is diverse. GMM has been shown to perform better for small model orders [75], but the
difference vanishes when using larger model order [28, 45, 75]. However, GMM has
been reported to work better than VQ only when cluster-dependent covariance matrices
were used but perform worse when a shared covariance matrix was used [67]. Several
authors have used GMM derived from the VQ model for faster training [47, 63, 73]. All
these observations are based on the maximum likelihood (ML) training of speaker models
though.

Two recent studies include more detailed comparisons of GMM and VQ [46, 29]. In [46]
the MAP trained VQ outperformed MAP-trained GMM for longer training data (2.5
minutes) but the situation was reversed for 10-second speech samples. The study of [29]
focused on the choice of dissimilarity measure (city-block, euclidean, Chebychev) in VQ
and two different clustering initializations (binary LBG splitting [52] versus random
selection). Differences in the identification and verification tasks, as well as ML versus
MAP training were also considered. The authors found the distance measure and the
number of clusters to be more important than the choice of the K-means initialization.
ML-trained models performed better with the shorter NTIMIT data in speaker
identification, whereas MAP-trained models (both GMM and VQ) worked better on
longer training segments (NIST 2001). Regarding the choice between GMM and VQ,
they performed equally well on the NIST 2001 verification task, regardless whether
trained by ML or MAP. However, in the identification task, MAP-trained GMM
outperformed MAP-trained VQ, on both corpuses.
A recent study [6] compares MAP-trained GMM and VQ models when used as front-end
features for SVM. From the two corpuses, GMM variant outperformed VQ on the YOHO
corpus with short utterances, whereas VQ performed slightly better on the KING corpus
with longer free-vocabulary utterances.

1.3 Research Objectives and Hypotheses

Existing literature lacks extensive comparison between different clustering algorithms
that would be useful for practitioners. The existing comparisons in speaker recognition
study only a few methods, use different features and datasets preventing meaningful
cross-comparisons. Even in [29, 46], only the basic EM and K-means algorithms were
studied. Thus, extensive comparison of better clustering algorithms is still missing.

In the experimental section of this paper, we consider the GMM and VQ models both in
the maximum likelihood (ML) and maximum a posteriori (MAP) training setting, without
additional SVM back-end, inter-session compensation or score normalization [1].
Focusing on this computationally feasible core component enables detailed study of
generative model training methodology without re-training the full recognition system
from scratch every time the background models are changed; the same rationale was
chosen recently in [30].

In the experiments, we consider both controlled laboratory quality speech (TIMIT
corpus) and noisy conversional telephony speech (NIST 1999 and NIST 2006 corpuses).
Our main evaluation criteria are the recognition accuracy, processing time and ease of
implementation. We aim at answering the following questions:

1. Is clustering needed or would random sub-sampling be sufficient?
2. What is the best algorithm in terms of quality, efficiency and simplicity?
3. What is the difference between the accuracy of the VQ and GMM models?

It was hypothesized in [43] that a clustering would be required but the choice of
clustering algorithm would not be critical. A possible explanation is that the speech data
may not have a clustering tendency [44]. These observations were based on a small 25-
speaker laboratory-quality data collected using the same microphone and read sentences.
In this paper, we aim at confirming these hypotheses via extensive large scale
experiments. Since the main advantage of speaker recognition over other biometric
modalities is possibility for low-cost remote authentication, we experiment using realistic
telephony data including different handsets, transmission lines, GSM coding and
environmental noises. The two NIST corpuses used in the study include 290,521 (NIST
1999) and 53,966 (NIST 2006) verification trials including 539 and 816 speakers,
respectively. Furthermore, in NIST 2006 corpus, all the verification trials are from highly
mismatched channel conditions. This makes it a very challenging pattern recognition
problem.

Regarding the difference between the VQ and GMM models, our results reveal insights
which are not obvious, and sometimes contradict previous understanding based on
literature. For example, even though the models are of similar quality in terms of average
speaker verification accuracy (equal error rate), their performance differs systematically
at the extreme cases where small false acceptance or false rejection errors are required.

2 CLUSTERING MODELS AS SPEAKER MODELS

2.1 Problem formulation

We consider a training set X = {x1,…,xN}, where dd

iii xx Rx ∈=),...,()()1(are the d-
dimensional feature vectors. In the centroid-based model, also known as the vector
quantization (VQ) model, the clustering structure is represented by a set of code vectors
known as the codebook, which is denoted here as C = {c1,…cK}, where K << N. The size
of the codebook (K) is considered as a control parameter. For a fixed K, the clustering

problem can be defined as an optimization problem, in which the goal is to find a
codebook C that minimizes a given objective function. Here we use the mean square
error (MSE):

∑
=

≤≤ −=
N

i
kiKkN

CX
1

2
1min1),(MSE cx , (1)

where ∑ =
=

d

j ix
1

22x denotes the squared Euclidean norm.

In Gaussian mixture model (GMM), each cluster is represented by three parameters:
mean vector μk, covariance matrix ∑k, and the mixing weight wk. By considering K
Gaussian components, the clustering objective function can be defined as the average
log-likelihood:

),|(log1),(L
1 1

kk

N

i

K

k
ik Nw

N
X Σμx∑ ∑

= =

=Θ , (2)

where { }K
kkkk w 1,, =Σ=Θ µ denotes the model parameters, and N(xi|μk, Σk) is the

multivariate Gaussian density function with parameters μk and Σk. The mixing weights wk
are constrained to be positive and to sum up to 1.

In early studies, speaker models were trained by optimizing (1) or (2) directly on the
enrolment data of that speaker. The same optimization criteria would then be used as the
similarity score between unknown sample and the given model(s). The current paradigm,
however, uses a two-stage training process. First, a universal background model (UBM)
is trained by pooling a large number feature vectors from different speakers and
optimizing (1) or (2) with any suitable clustering algorithm. The UBM serves as prior
information about the general (speaker-independent) distribution of the spectral feature
space, and it is used as a form of regularization (smoothing) in the training. To be precise,
for the GMM model the mean vectors of the UBM, UBM

kμ , are adapted as,

UBMadapted)1()(kkkkk X μEμ αα −+= , (3)

where

)|(

)|(

1

1

i
N

i

N

i i
k

kPr

kP

x

x

∑
∑

=

=

+
=α and ∑=

=
N

i ii
k

k kP
n

X
1

)|(1)(xxE . (4)

Here P(k|xi) is the posterior probability of vector xi originating from the kth Gaussian, nk
is the soft count of vectors assigned to the kth Gaussian, and r is a fixed constant known
as relevance factor. Typically r is a fixed constant [68] but data-adaptive relevance factor
using fuzzy control rule has also been suggested [38]. In this study, we use fixed constant
r=16 as usually done in speaker verification. Note that only the mean vectors are adapted,
and the rest of the parameters are shared between speakers. For more details, refer to
[68]. For the VQ model, the adaptation formulae are a special case of (3) and (4) with the
assumption that P(k|xi) = 1 for the nearest centroid vector in UBM, and P(k|xi) = 0
otherwise. For the VQ adaptation, we use relevance factor r=12 as in [32].

In the recognition phase, the average log likelihood (mean square error in the case of VQ)
of the data, in respect both to the target speaker and the UBM, are evaluated, and their
difference gives the normalized score. Normalization with the background model
equalizes the score ranges of different speakers and test segments so that a common
verification threshold can be used. The normalized score is finally compared with a
verification threshold to give the accept/reject decision.

2.2 Clustering Algorithms

Optimal algorithms for solving the clustering problem have exponential time complexity
[26]. Thus, all methods for data sets consisting of thousands or millions of training
vectors are based on different heuristics; several hundreds of methods have been
proposed in literature [36]. For the comparisons in this paper, we include algorithms that,
according to our experience [24], consistently provide high quality clustering, and
algorithms that are popular due to their simplicity or for other reasons. We include two
hierarchical algorithms (PNN, SPLIT) and six iterative algorithms (K-means, SOM, RS,
SM, FCM, GA). Random clustering is used as reference points. GMM, on the other hand,
is the de facto standard in text-independent speaker recognition, and provides another
good reference point.

Random: A trivial method for modeling the data is to construct the codebook from K
randomly chosen data vectors. The random codebook will also be used as the initial
solution for the iterative algorithms described below, but serves also as a reference
solution for measuring the quality of the clustering algorithms. A good clustering
algorithm should produce significantly better codebook than the random selection.

Repeated K-means: K-means [58] starts from any initial solution, which is then
iteratively improved by two optimization steps as long as improvement is achieved. The
algorithm is known as Linde-Buzo-Gray (LBG) or generalized Lloyd algorithm (GLA) in
vector quantization [52]. Since K-means is sensitive to the initial solution, we apply it
repeatedly each time starting from a new random initial solution [14]. The codebook
providing the smallest MSE is retained as the final solution.

SOM: Self-organizing map [61] is a neural network approach to the clustering problem.
The neurons in the network are connected with a 1-D or 2-D structure, and they
correspond to the code vectors. Each feature vector is fed to the network by finding the
nearest code vector. The best matched code vector and its neighboring vectors in the
network are updated by moving them towards the input vector. After processing the
training set by a predefined number of times, the neighborhood size is shrunk. The entire
process is repeated until the neighborhood size shrinks to zero.

PNN: Pairwise nearest neighbor [16, 23] generates the codebook hierarchically. It starts
by initializing each feature vector as a separate code vector. Two code vectors are merged
at each step of the algorithm and the process is repeated until the desired size of the
codebook is obtained. The code vectors to be merged are always the ones that results in
the least distortion. We use the fast exact PNN algorithm introduced in [23].

SPLIT: An opposite top-down approach starts with a single cluster of all the feature
vectors. New clusters are then created one at a time by dividing the existing clusters. The

splitting process is repeated until the desired number of clusters is reached. This approach
usually requires much less computation than the PNN. We use the algorithm in [19] that
always selects the optimal hyperplane, dividing the particular cluster along its principal
axis, augmented with a local repartitioning phase at each division step. This variant gives
comparable results to that of the PNN but with much faster algorithm.

SM: Split-and-Merge [39] is an iterative algorithm that modifies the codebook by a series
of split and merge operations. At every step, the code vectors to be split and merged are
chosen as the ones that provide best improvement (split), or least increase (merge) in the
distortion. The algorithm provides high quality codebooks but with a significantly more
complex implementation than the other algorithms.

RS: Random swap algorithm [22] starts with a random codebook, which is then
iteratively improved. At every step, a randomly selected code vector is tentatively re-
allocated to a randomly chosen training vector. The new candidate codebook is fine-
tuned by two iterations of K-means, the solution is then evaluated and accepted if it
improves the previous solution. The algorithm is iterated for a fixed number of iterations.
This trial-and-error approach is much simpler to implement than the split-and-merge
algorithm, and is surprisingly effective. It was shown to find the optimal global allocation
of the codebook in an expected time of O(N2K) [25]. See Figure 2 for illustration of the
algorithm.

FCM: Fuzzy C-means [15] generalizes K-means to fuzzy clustering, in which data
vectors can belong to several partitions at the same time with a given weight. Traditional
K-means is then applied in the final step in order to obtain the centroids (codebook) from
the fuzzy partitions. Another alternative would be to formulate fuzzy-MAP adaptation
based on the fuzzy memberships. Since we are not aware of such formulation, we use the
centroids obtained from the hard partitions.

GA: Genetic algorithm generates a set of solutions (called population) and evolves it
using the survival of the fittest principle. In [18], PNN is used as the crossover to
generate new candidates, which are further fine-tuned by K-means. The algorithm has
outperformed so far every competitive clustering algorithm for more than a decade
already. Slightly better results have been reported only by other (more complicated) GA
variants [FräntiShrink2006]. It therefore serves as a good reference point for clustering
model.

GMM: We use the Expectation-Maximization (EM) algorithm [5, 57] for training the
GMM as described in [67]. In the EM algorithm, an initial guess is made for the model
parameters, and the solution is then improved by using two optimization steps similar to
K-means. Since the EM algorithm is also sensitive for the initialization, we apply it
repeatedly starting from a new random solution, which is always first fine-tuned by K-
means. The result providing the highest likelihood is retained as the final model. An
important consideration in GMM is the type of the covariance matrices of the Gaussian
components. As generally done with MFCC features, we use diagonal covariance
matrices instead of full covariances due to numerical and computational reasons: for
limited data, full covariance matrices easily become singular (ill-conditioned). Using
diagonal covariances is also computationally efficient since no full covariance matrix
inversions are required.

Figure 2. Illustration of a single step of the random swap (RS) algorithm. A randomly chosen centroid is
re-allocated to new location, followed by K-means fine-tuning. The new solution is accepted if it provides
smaller distortion than the original codebook.

2.3 Number of Clusters

The number of clusters (model order) is a control parameter of a clustering algorithm
which must be optimized for a given application. In recognition applications, this is
usually done by picking the model order that gives best recognition accuracy on a
development set. Practice has shown that, irrespective of the implementation details,
corpus and chosen short-term features, the best accuracy is typically found using K=64 to
K=2048 code vectors or Gaussian components. The main drawback of this approach is
the expensive computations involved – for each considered model order, one needs to re-
train speaker models (and UBM if MAP adaptation is used) and re-classify the
development test samples.

In clustering research, large number of clustering validity indices have been proposed for
automatically detecting the number of clusters (e.g. [3, 12, 27, 57, 60, 72]). In early phase
of this study, we also evaluated the classical F-ratio (based on ANOVA test procedure
[35]) and Davis-Bouldin index (DBI) [12] in VQ-based speaker modeling, but found the
selected model order to correlate poorly with recognition accuracy. Even though these
indices have been reported to work reasonably well for low-dimensional features and data
with clear clustering tendency [48], they are affected by overlapping clusters and noise
(e.g. [3]), as well as increasing dimensionality. Since speech features have tens of
dimensions and are unlikely to have any clustering tendency [44], this may explain the
result. For practitioners, we therefore recommend to use the optimize-on-devset
procedure.

3 EXPERIMENTAL SETUP

3.1 Corpora and Features

For the experiments, we use three corpora: TIMIT, NIST 1999 and NIST 2006 as
documented in Tables 1 and 2. TIMIT represents laboratory quality speech recorded in
highly controlled conditions. It was selected for the purpose of parameter optimization in
an initial stage of our study. The NIST 1999 and NIST 2006 corpora, on the other hand,
represent uncontrolled, conversational telephone quality speech, which is expected in real
applications. We use 12- and 36-dimensional mel-frequency cepstral coefficient (MFCC)
features for the NIST 1999 and NIST 2006, respectively (see below).

The TIMIT corpus [53] consists of 630 speakers, and for each speaker there are 10
speech files. We split the files into non-overlapping training and test sections of 70 % (22
sec.) and 30 % (9 sec.), respectively. For consistency with the NIST files, TIMIT files
were anti-alias filtered and downsampled from 16 kHz to 8 kHz.

The NIST 1999 corpus [56] consists of 539 speakers (230 males, 309 females). We use
the training section of the corpus for our experiments. Each speaker’s training data is
given in two files labeled “a” and “b”, and each has duration of one minute. We use the
“a” files for training and the “b” files for classification. For a given speaker, these two
files are from the same telephone number but from two different telephone calls
(sessions). Different speakers may have same or different type of handset (electret or
carbon button). To evaluate verification performance, we match each of the test files per
each of the speakers, yielding a total number of 539×539=290,521 test trials, of which
539 are genuine and the remaining 289,982 are impostor trials.

From the NIST 2006 corpus, we have selected the common “core condition” as specified
in the NIST 2006 SRE evaluation plan [62]. This benchmark test consists of 816 target
speakers (354 males, 462 females) and a total number of 53,966 verification trials (5077
genuine, 48,889 impostors).

Table 1: Summary of the speech material

 TIMIT NIST 1999 NIST 2006
Language English English Mostly English*
Speakers 630 539 816
Test trials N/A 539 genuine +

289,982 impostor
5077 genuine +
48,889 impostor

Speech type Read Conversational Conversational
Quality Laboratory Telephone Telephone
Sampling rate 8.0 kHz 8.0 kHz 8.0 kHz
Session mismatch matched mismatched mismatched
Channel mismatch matched mixed mismatched
Training data (avg.) 22 sec. ~1 min ~2.5 min.
Test data (avg.) 9 sec. ~1 min ~2.5 min.

 *Small part of the data contains Arabic, Mandarin, Russian, or Spanish speakers.

We use the mel-frequency cepstral coefficients (MFCCs) as the acoustic features [34], see
Table 2. Each frame is multiplied by a 30 msec Hamming window, shifted by 10 msec.
From the windowed frame, magnitude spectrum using fast Fourier transform (FFT) is
computed and then filtered with a bank of 27 triangular filters spaced linearly on the mel-
frequency scale. The log-compressed filter outputs are then converted into cepstral
coefficients by discrete cosine transform (DCT), and the coefficients 1-12 are retained.

For the TIMIT and NIST 1999 corpus, we use the 12 MFCCs as features, followed by
utterance-level mean and variance normalization to give zero mean, unit-variance
features. For these two corpora, voice activity detection (VAD) is not needed; TIMIT
samples are short and of high-quality, containing mostly speech. The NIST 1999 corpus,
in turn, has been pre-processed by NIST for silence removal. This simple setup is
sufficient on these data sets according to our experience.

For the more challenging NIST 2006 data, our front-end includes additional RelAtive
SpecTrAl (RASTA) filtering [33] to mitigate convolutive channel effects, followed by
estimation of the Δ and Δ2 parameters to capture local spectral dynamics. Finally, an
adaptive energy-based algorithm is used for picking speech-only frames, followed by
utterance-level mean and variance normalization. For the NIST 2006 corpus, voice
activity detection is crucial – according to [31], error rates may increase near chance level
if VAD is excluded. The Matlab code of the energy VAD used in this study is available
in [42].
Table 2: Evaluation set-up for each corpus. UBM = universal background model, d = feature
dimensionality, N = number of vectors.

Corpus Evaluation
task

Features used UBM training data and
UBM type

UBM training
vectors

TIMIT Identif. MFCC
(d=12)

N/A N/A

NIST
1999

Verif. MFCC
(d=12)

NIST 2000, single
UBM

N=591.378

NIST
2006

Verif. MFCC+Δ+Δ2
(d=36)

NIST 2004, gender-
dependent UBMs

N=500.000 per
gender

For the NIST 1999 and NIST 2006 corpora, we need universal background models. For
the NIST 1999 data, we use a subset of the 1-speaker detection task training files of the
NIST 2000 speaker recognition corpus [53] and for the NIST 2006 data, we use a subset
of the 1-side training files of the NIST 2004 SRE corpus. For NIST 1999 we use gender-
independent UBM and for NIST 2006 we use separate UBMs for female and male
speakers.

3.2 Performance Criteria

To assess speaker verification performance, we use the detection error tradeoff (DET)
curve [55] as an evaluation tool. The DET curve presents the trade-off between the two
detection error rates, false acceptance rate (FAR) and false rejection rate (FRR), in a
normal deviate scale over all decision thresholds. For Gaussian score distributions, the
resulting DET curves are straight lines. As an average error measurement, we report the
equal error rates (EERs), i.e. the error rate corresponding to point FAR=FRR. We also
provide the FAR and FRR at a few additional operating points corresponding to security
and user-convenient application scenarios.

To measure computational efficiency of background model training, we use the average
CPU time over 10 repetitions. All the clustering algorithms have been implemented using
either C or C++ languages. The NIST 2006 experiments were carried out in a Dell
PE2900 workstation with two 3 GHz X5450 CPUs, 48 GB of RAM and CentOS release
5.3 operating system. Care was taken in excluding the file I/O overhead from the running
times. The TIMIT and NIST 1999 experiments were carried out in two older Dell
Optiplex G270 computers (2.8 GHz CPU) and 1 GB RAM.

3.3 Parameter Setting of the Clustering Algorithms

The clustering algorithms have several control parameters that should be fixed
beforehand. We document the selection of the parameters and comment their importance
for the success of the algorithm in the following. Summary is given in Table 3. Note that,
even though the number of clusters (K) is a control parameter, it is common for all the
algorithms and hence not counted here.

Random: This algorithm has no control parameters.

Repeated K-means: K-means does not have any control parameters but its quality
strongly depends on the initial solution. We therefore repeat the algorithm several times
(R) by restarting from different random initial solutions as originally proposed in [14]. As
a negative side, this also multiplies the processing time R times compared to that of a
single run of K-means. Here we set R=10.

SOM: The SOM algorithm does not depend much on the initialization but it is very
sensitive to the parameter setup [20]. We fix the initial neighborhood size (Dmax) to 16,
and then study the learning rate (α), and the number of iterations (I) on TIMIT corpus.
Based on the identification results in Table 2, we fix the learning rate as α=0.01, and the
number of iterations to I = 1000.

PNN and SPLIT: The hierarchical algorithms (PNN and SPLIT) have no control
parameters and they always produce the same result. The SPLIT approach itself includes
several design alternatives such as which cluster to split and how to split it. However, the
proposed solution in [19] works very well for all data sets without the need of any data-
dependent parameter tuning. It was also aimed at maximum quality (at the cost of speed).
But since it remains the fastest among the tested algorithms, the faster variants are not
considered.

SM: In the SM algorithm, there is one control parameter (step size H), which defines how
many subsequent split steps are performed before the same amount of merge operations.
We follow the recommendation of [39], and fix it to be equal to the size of the codebook
(H=K). Smaller values would provide slightly higher MSE using less processing time,
whereas higher values do not provide much further improvement. The exact choice of
this parameter is not critical. The other parameters are insignificant and the default values
described in [39] can be used.

RS: In the RS algorithm, we must select the number of iterations (I), which determines
the trade-off between processing time and quality. Our previous experience indicates that
the number of iterations should be proportional to the number of input vectors (N) to
guarantee high quality result. We consider the values I=2500 and I=5000. The first one
will be used later as there was not much difference in accuracy when tested with TIMIT.

FCM: We need to fix the number of iterations. According to previous experiments
[VirmajokiShrink2006], they are fixed as shown in Table 2.

GA: We need to fix the population size and the number of generations. Their selection is
merely a trade-off between quality and time. The results in [21] has shown that even the
faster variant provides very good performance. We therefore fix the generation size to
z=10, accordingly, and iterate the algorithm until no improvement is found (usually 5-20
iterations).

GMM: The initial mean vectors for the expectation-maximization (EM) algorithm are
initialized by random selection from the training set, followed by 10 K-means iterations.
Following this, the covariance matrices are computed from the vectors assigned to each
cluster, and the weights are set to the relative count of vectors assigned to the cluster.
After initialization, the expectation and maximization steps are iteratively repeated until
the relative increase in likelihood falls below a given threshold (ε). Like in K-means, we
repeat the algorithm R times, each time starting from a new random solution, and choose
the final model as the one which yields the highest likelihood. Here, we fix the
parameters as ε = 2-16 and R=10. We also need to set a variance floor (σ2

min) for each
dimension to prevent components becoming singular [67]. The values were optimized on
the TIMIT data and fixed to 1.52×10-5 times the variance of the training set. The number
of restarts (R) and the variance floor are important control parameters of the algorithm,
which must be setup experimentally since there are no good theoretical guidelines how to
set them optimally for a given data set [67]. The selection of the convergence threshold
(ε), on the other hand, is much less critical and can be considered a fixed constant.
Table 3: Dependency of the SOM performance on the control parameters for TIMIT corpus using
codebook size = 32. The reported numbers are closed-set identification error rates (IER %) over the whole
TIMIT corpus with 630 speakers.

Number of
Iterations (I)

Learning rate (α)
0.001 0.01 0.1 1

5 66.0 15.9 3.2 60.5
10 48.1 10.3 3.2 59.5
20 21.4 5.2 2.9 60.3
50 19.7 2.7 1.4 59.2
100 11.4 2.2 2.9 61.4
1000 1.7 1.4 4.0 62.2

Table 4: List of control parameters of the algorithms, and the values considered. The selected values are
shown in boldface.

Algorithm Control parameters Values tested

Random - N/A N/A
Rep. K-means - Number of restarts (R) R = 5, 10, 100
SOM - Number of iterations (I)

- Maximum learning rate (α)
- Size of the initial neighborhood (Dmax)

I = 5, 10, 20, 50, 100, 1000, 10000
α = 0.001, 0.01, 0.1, 1
Dmax = 16

PNN - N/A N/A
SPLIT - N/A N/A
RS - Number of iterations (I) I = 2500, 5000
SM - Number of splits before merging (H) H = K (codebook size)
GA - Number of generations (I).

- Size of generation (Z)
I = until no improvement
Z = 10

FCM - Number of FCM iterations (IFCM)
- Number of K-means iterations (Ikm)

IFCM = 200
Ikm = 10, 100

GMM - Number of restarts (R)
- Variance floor (σ2

min)
R = 10
σ2

min=1.52×10-5×σ2

4 RESULTS AND DISCUSSION

4.1 Speaker Recognition Accuracy

First, we present results on the NIST 1999 corpus and study the effect of the background
model. We use the random swap (RS) as a representative vector quantization method, and
compare it against the Gaussian mixture model (GMM) trained with the repeated
expectation-maximization (EM) algorithm. The speaker models are trained independently
without UBM and without score normalization (EM, RS), or by using MAP adaptation
from the UBM and with UBM score normalization (EM+MAP, RLS+MAP). The DET
plots are presented in Fig. 3 and representative score distributions are shown in Fig. 5.

VQ achieves higher accuracy at small FAR levels, but the differences become smaller
when UBMs are used. The UBM adaptation and normalization improves the accuracy of
both methods. For the rest of the experiments, we use background modeling and thus, the
focus is on comparing different clustering methods to train the UBM.

 1 2 5 10 20 40 1

 2

 5

 10

 20

 40

False acceptance rate (FAR %)

Fa
ls

e
re

je
ct

io
n

ra
te

 (F
R

R
 %

)

Model order = 64

GMM (EM), EER = 12.99
VQ (RS), EER = 12.43
GMM-UBM (EM+MAP), EER = 10.42
VQ-UBM (RS+MAP), EER = 10.95

 1 2 5 10 20 40 1

 2

 5

 10

 20

 40

False acceptance rate (FAR %)

Fa
ls

e
re

je
ct

io
n

ra
te

 (F
R

R
 %

)

Model order = 256

GMM (EM), EER = 12.61
VQ (RS), EER = 12.55
GMM-UBM (EM+MAP), EER = 10.76
VQ-UBM (RS+MAP), EER = 9.75

Figure 3: Results on the NIST 1999 corpus (Model orders K=64 and K=256) using VQ and GMM
approaches, with and without UBM.

While UBM adaptation and score normalization are known to improve accuracy, it is
much less studied how the set-up of UBM training affects recognition accuracy. To study
this in more detail, we consider two different methods to initialize GMM: (1) the repeated
EM method described in Sections 2.2 and 3.3, and (2) a deterministic method used in
[46]. The latter was specifically optimized on the latest NIST corpora to give good
recognition accuracy with small time consumption. It uses splitting algorithm to generate
an initial codebook, which is fine-tuned by seven K-means iterations; the covariances and
weights are then initialized from the codebook partitions; finally, two EM iterations are
executed (further EM iterations did not improve accuracy in [46]). Comparative results
with VQ-UBM (using the random swap algorithm) are shown in Fig. 4.

The two alternative methods of training GMM do exhibit different performance. At small
FRR levels (lower right corner), the repeated EM clearly outperforms the faster heuristic
variant; at small FAR levels (upper left corner), in turn, the order is reversed, even though
the difference is smaller. RS algorithm gives the same performance with repeated EM at
small FRR levels and model size K=512; however, RS outperforms EM at small FAR
levels. This difference is even larger when model order is increased to K=2048. At small
FRR levels and with K=2048, repeated EM gives the best performance. In summary, VQ-
UBM is better suited for security applications (small FAR desired), whereas GMM-UBM
is better for user-convenience applications (small FRR desired).

 1 2 5 10 20 40 1

 2

 5

 10

 20

 40

False acceptance rate (FAR %)

Fa
ls

e
re

je
ct

io
n

ra
te

 (F
R

R
 %

)

Model order = 512

VQ-UBM (RS)
EER = 9.65
GMM-UBM (Repeated EM),
EER = 9.61
GMM-UBM (Split + 7 Kmeans + 2 EM iter)
EER = 10.34

 1 2 5 10 20 40 1

 2

 5

 10

 20

 40

False acceptance rate (FAR %)

Fa
ls

e
re

je
ct

io
n

ra
te

 (F
R

R
 %

)

Model order = 2048

VQ-UBM (RS)
EER = 8.94
GMM-UBM (Repeated EM)
EER = 9.55
GMM-UBM (Split + 7 Kmeans + 2 EM iter)
EER = 9.97

Figure 4: Comparing random swap (RS) to GMM with two different initializations on the NIST 2006
corpus. The UBMs are trained with the indicated methods.

For more complete analysis, Table 5 summarizes error rates at a few selected operating
scenarios for both the NIST 1999 and the NIST 2006 corpora. The notation “FAR @
FRR=1%” means that the verification threshold has been adjusted to give 1% FRR, and
the corresponding FAR is reported in the table; similarly for the other error type.
Independent of the corpus and feature set-up, GMM-UBM seems to be better for user-
convenience and VQ-UBM for security application, respectively.

McNemar’s significance test at 95% confidence level [34, 51] was performed at each
operating point between GMM-UBM (repeated EM) and VQ-UBM (RS). We measure
the difference in the decisions on the impostor trials in case of user-convenience
application (FAR @ FRR = 1..10%), difference in the genuine trials in case of secure
application (FRR @ FAR = 1..10%), and all trials at the EER operating point.
Statistically significant differences are indicated by an asterisk (*) in Table 5. On NIST
2006, GMM-UBM outperforms VQ-UBM at the user-convenient scenario, whereas the
situation is reversed in the security scenario. In the NIST 1999, the same conclusion
holds except in a few cases. In general, the differences are smaller near the EER
operating point and only in impostor but not in genuine trials. The reason why differences
are not always significant for genuine trials on the NIST 1999 is due to much smaller
number of genuine trials in comparison to NIST 2006.

Table 5: Error rates for the VQ-UBM and GMM-UBM for two application scenarios. Here
d=feature dimensionality, K=model order, rep.EM = repeated expectation-maximization (EM),
heur.EM = Split + 7 Kmeans initialization, followed by two EM iterations. * = significantly
different from GMM-UBM (rep. EM), at the confidence level of 95%, as evaluated using
McNemar’s test.

Corpus, feature dimensionality
(d) and model order (K)

NIST 1999
d=12, K=256

NIST 2006
d=36, K=2048

Application
scenario

Model and UBM
training method

VQ-
UBM
(RS)

GMM-
UBM

(rep.EM)

VQ-
UBM
(RS)

GMM-
UBM

(heur.EM)

GMM-
UBM

(rep.EM)
EER 9.75 10.76 8.94 9.97 9.55

User-
convenient
application

FAR@FRR=1%
FAR@FRR=2%
FAR@FRR=5%
FAR@FRR=10%

85.56*
74.64
41.65*
9.69*

80.82
74.87
36.41
12.84

67.51*
41.01*
18.09*
7.73*

99.42
48.97
21.14
9.96

52.36
32.82
17.16
9.22

Security
application

FRR@FAR=1%
FRR@FAR=2%
FRR@FAR=5%
FRR@FAR=10%

21.71*
17.07*
12.99
9.65

30.98
20.59
14.10
11.32

30.75*
23.30*
13.69*
8.29*

42.17
31.91
18.20
9.97

48.20
32.62
17.61
9.18

-0.4 -0.2 0 0.2 0.4
0

0.005

0.01

0.015

0.02

Match score

Fr
eq

ue
nc

y

VQ-UBM

impostor
scores

genuine
scores

Θ
1
 = -0.19

FAR = 76 %
FRR = 2 %

Θ
2
 = 0.02

FAR = 2 %
FRR = 17 %

 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Match score

Fr
eq

ue
nc

y

GMM-UBM

genuine
scores

impostor
scores

Θ
1
 = -0.71

FAR = 78 %
FRR = 2 %

Θ
2
 = 0.37

FAR = 2 %
FRR = 21 %

Figure 5: Match score distributions for VQ-UBM and GMM-UBM on the NIST 1999 corpus for model size
256. Two operating points (thresholds) with the corresponding error rates are indicated.

Full comparison of all clustering methods is shown in Fig. 6 on the NIST 2006 corpus.
Firstly, all the methods produce significantly better result than random clustering.
Secondly, the VQ and GMM methods are equal in terms of EER. Generally VQ methods
outperform GMM at small FAR levels (security application), whereas GMM outperforms
VQ at small FRR levels (user-convenience applications) when the model order is
increased to K=1024 or K=2048. Comparing the VQ methods, the recognition accuracies
are very close to each other, in particular for models with large number of clusters. For a
smaller number of clusters (K=16), there are some differences: SOM gives significantly
poorer accuracy than the other methods, and the hierarchical methods, PNN and Split, are
also slightly poorer. This is hardly significant since the larger codebook sizes are
expected to be used in most applications. It must also be noted that, although SOM works
reasonably well in these tests, the parameter tuning was a crucial step, which makes it
unfavorable method.

 1 2 5 10 20 40 1

 2

 5

 10

 20

 40

False acceptance rate (FAR %)

Fa
ls

e
re

je
ct

io
n

ra
te

 (F
R

R
 %

)
Model order = 16

Random (EER = 22.65)
K-means (EER = 12.82)
SOM (EER = 16.45)
PNN (EER = 13.78)
Split (EER = 13.96)
SM (EER = 13.24)
RS (EER = 13.10)
FCM (EER = 12.77)
GA (EER = 13.20)
GMM (EER = 13.53)

Split Random

SOM
Other
methods

PNN

 1 2 5 10 20 40 1

 2

 5

 10

 20

 40

False acceptance rate (FAR %)

Fa
ls

e
re

je
ct

io
n

ra
te

 (F
R

R
 %

)

Model order = 64

Random (EER = 22.69)
K-means (EER = 10.85)
SOM (EER = 11.50)
PNN (EER = 11.36)
Split (EER = 10.84)
SM (EER = 11.18)
RS (EER = 10.97)
FCM (EER = 11.10)
GA (EER = 10.82)
GMM (EER = 11.44)

SOM
PNN

Other
methods

Random

GMM

 1 2 5 10 20 40 1

 2

 5

 10

 20

 40

False acceptance rate (FAR %)

Fa
ls

e
re

je
ct

io
n

ra
te

 (F
R

R
 %

)

Model order = 256

Random (EER = 21.06)
K-means (EER = 9.87)
SOM (EER = 9.81)
PNN (EER = 9.91)
Split (EER = 9.81)
SM (EER = 9.89)
RS (EER = 9.67)
FCM (EER = 9.89)
GA (EER = 9.71)
GMM (EER = 10.32)

K-means

GMM

Other
methods

Random

 1 2 5 10 20 40 1

 2

 5

 10

 20

 40

False acceptance rate (FAR %)

Fa
ls

e
re

je
ct

io
n

ra
te

 (F
R

R
 %

)

Model order = 512

Random (EER = 20.43)
K-means (EER = 9.67)
SOM (EER = 9.55)
PNN (EER = 9.67)
Split (EER = 9.53)
SM (EER = 9.62)
RS (EER = 9.65)
FCM (EER = 9.68)
GA (EER = 9.55)
GMM (EER = 9.61)

Random

GMM

Other
methods

 1 2 5 10 20 40 1

 2

 5

 10

 20

 40

False acceptance rate (FAR %)

Fa
ls

e
re

je
ct

io
n

ra
te

 (F
R

R
 %

)

Model order = 1024

Random (EER = 20.88)
K-means (EER = 9.26)
SOM (EER = 9.19)
PNN (EER = 9.61)
Split (EER = 9.34)
SM (EER = 9.28)
RS (EER = 9.32)
FCM (EER = 9.42)
GA (EER = 9.36)
GMM (EER = 9.08)

GMM

Other
methods

GMM
Random

PNN

 1 2 5 10 20 40 1

 2

 5

 10

 20

 40

False acceptance rate (FAR %)

Fa
ls

e
re

je
ct

io
n

ra
te

 (F
R

R
 %

)

Model order = 2048

Random (EER = 20.58)
K-means (EER = 9.05)
SOM (EER = 9.14)
PNN (EER = 9.78)
Split (EER = 9.30)
SM (EER = 9.00)
RS (EER = 8.94)
FCM (EER = 9.26)
GA (EER = 9.40)
GMM (EER = 9.55)

Random

GMM

GMM

PNN

Other
methods

Figure 6. Recognition results for the NIST 2006 SRE corpus.

18.6 18.8 19 19.2

9.2

9.3

9.4

9.5

9.6

K-means

Mean square error (MSE) of the UBM

E
qu

al
 e

rro
r r

at
e

(E
E

R
 %

)

SOM

PNN

Split

SM

RS

FCM
GA

18.6 18.8 19 19.2

80

82

84

86

K-means

Mean square error (MSE) of the UBM

FA
R

 @
 F

R
R

 =
 1

.0
 %

SOM

PNN

Split

SM

RS FCM

GA

18.6 18.8 19 19.2
31

32

33

34

35

36

K-means

Mean square error (MSE) of the UBM

FR
R

 @
 F

A
R

 =
 1

.0
 %

SOM

PNN

Split

SM

RS
FCM

GA

Security applicationEqual error rates User-convenient application

Figure 7. Clustering quality versus recognition accuracy for model order K=1024. Here quality is measured
as the mean square error (MSE) of the (male) universal background model.

An interesting question is whether the clustering quality correlates with increased
recognition accuracy. To answer this, we present mean square error (MSE) of the
background model in NIST 2006 corpus against the three different error metrics used in
Table 5. The results for model order K=1024 in Fig. 7 suggest that there exists a weak
correlation: the PNN, which yields the highest MSE among the tested methods, yields
also slightly poorer recognition accuracy. However, the rest of the methods are so close
to each other in clustering quality that the differences in recognition accuracy cannot
originate from a better clustering algorithm.

4.3 Processing Time

In the following examples, we study the computational efficiency of the clustering
methods. In the case of iterative algorithms, the processing time increases with the size of
the model. In Fig. 8, this can be seen most clearly for K-means and GMM. On the other
hand, we use the reduced-search variant of the K-means [40], also in RS, SM and GA,
and it exploits the fact that only small portion of the code vectors changes during each
iteration. In the case of large codebooks, this proportion becomes smaller and smaller,
which makes the dependency on the size of the codebook rather conservative.

0.01

0.1

1

10

100

1000

2 4 8 16 32 64 128 256

Model size

C
PU

 ti
m

e
(s

ec
on

ds
)

Random
K-Means
SOM
PNN
SPLIT
RLS
SM
GMM

NIST 1999

0.1

1.0

10.0

100.0

1000.0

10000.0

100000.0

2 4 8 16 32 64 128 256 512 1024 2048
Model size

CP
U

tim
e

(s
ec

on
ds

)

Random
K-Means
SOM
PNN
SPLIT
RLS
SM
FCM
GA
GMM

NIST 2006

Figure 8: Running times of the model training for the NIST 1999 (left) and NIST 2006 (right) corpora. The
dimensionality of the corresponding features spaces are d=12 and d=36. (Processing times of FCM and GA
for NIST 1999 are missing due to historical reasons.)

In the case of hierarchical algorithms, the processing time depends mainly on the
direction of the process. In divisive approach (SPLIT), the algorithm processes from K=1
to K=N, and therefore, the processing time increases as a function of the codebook size.
In the merge-based approach (PNN), the situation is the opposite as it processes from
K=N down to K=1. However, most of the time will be spent in the early stage of the
process when there are a large number of code vectors, and therefore, the increase at the
smaller sizes does not show anymore in Fig. 8.

The difference of the feature space affects SPLIT and SM methods because they need to
calculate principle axis at every splitting stage (SPLIT and SM). These steps have
quadratic, O(d2) time dependency on the dimensionality, and thus, the methods become
somewhat slower when the dimensionality increases. All other methods depend linearly
on the dimensionality and the size of data, except PNN, which has quadratic, O(N2),
dependency on the size of data.

In summary, the SPLIT method is the fastest of the tested methods. Among the other
methods, RS and the Repeated K-means are somewhat slow for the highest codebook
sizes, but both of them were tuned here for maximal quality instead of speed.

5 IMPLEMENTATION CONSIDERATIONS

A somewhat less appreciated property of an algorithm is the human effort needed to
make the algorithm work in practice. There are two viewpoints: (1) programmer’s
viewpoint: complexity of the implementation, and (2) user’s viewpoint: efforts required to
tune up the parameters for a certain corpus. In general, these two factors are difficult to
measure quantitatively given the varying skills of programmers and users. To give
a rough indication of the first factor, we estimate the number of functions and program
code length. Program code length was estimated as the number of lines in the source
code, and the file size of the binary code. All programs were compiled using GCC
version 4.1.12, without code optimization and debug information. To give an indication
of the user effort, we count the number of control parameters.

The numbers in Table 5 match to our own experience in implementing these algorithms.
All the programs (except FCM and GMM) consist of the same data structures for the
feature vectors, codebooks, partition, and the same functions for distance calculations. In
addition to these, K-means includes four functions to generate the partition and centroids
for finding the nearest code vector, and for summing up the distortion value. The reduced
search variant includes one more. In addition to these, RS includes swap and selection
procedures. Thus, their corresponding code sizes are almost the same. In our opinion,
these two algorithms are the simplest ones to implement.

The SOM, PNN and FCM algorithms have somewhat longer codes but their
implementations are also quite straightforward. The SPLIT, however, is significantly
more complex to implement, which is partly reflected in its code size, as well. The

algorithm includes functions for calculating the principal component (power method),
finding the optimal dividing hyper plane, projection, sorting the data vectors, and a binary
tree structure for efficient selection of the next cluster to split, procedure for re-
partitioning, and several smaller routines.

Split-and-Merge is basically a combination of the PNN and SPLIT codes added with the
main routine coordinating between these two steps. However, additional difficulties arise
from the fact that updating one of the data structures either by split and merge, will
influence the other data structure of the other. As the success of the algorithm requires
that both of these steps are implemented accurately, it is far from trivial to make the
algorithm work in practice. According to our experience, we cannot really recommend
this method for practitioners due to its complex implementation.

GA is combination of PNN and K-means algorithm, including a few additional steps in
the crossover stage, handling a set of solutions instead of only one, and implementing the
selection step. The parameters are rather straightforward to set according to previous
recommendations, and the method works rather robust from data set to another. It is to be
considered if top performances and the extra (usually insignificant) quality increase in
comparison to, say RS or PNN, is desired.

Robust implementation of EM algorithm for GMM requires knowledge of linear algebra
and issues related to numerical precision. First of all, in our experience double accuracy
should always be used with the EM algorithm. In contrast, standard K-means can be
implemented even with fixed-point arithmetic on a hand-held device [71]. However, in
GMM, the covariance matrices can become singular (or non-invertible). The common
options are either to limit the variance, or to set the component weight to zero, thus
effectively decreasing the model size. Another option is to relocate the component
elsewhere with new covariance matrix, or to copy the component from the previous
iteration of the EM algorithm. In summary, implementing GMM requires more care with
numerics than VQ.

The source codes of the clustering algorithms used in this paper have been made publicly
available at http://cs.joensuu.fi/sipu/clustering/.

http://cs.joensuu.fi/sipu/clustering/�

Table 6: Measures estimating the difficulty of implementation.

Number of

control
parameters

Number of
functions

Lines in
source code

Binary code
size (bytes)

Random 0 2 26 64,448
Repeated K-means 1 5 162 71,821

RS 1 7 226 70,690
SOM 3 7 252 95,448
PNN 0 12 317 107,530

SPLIT 0 22 947 101,778
SM 1 38 1381 131,834
GA 2 21 573 105,956

FCM* 2 11 295 128,735
GMM* 2 44 1111 87,535

* C++ implementation, other methods are in ANSI C.

5 CONCLUSIONS

We have presented an extensive comparison of clustering methods in a demanding
pattern recognition task including highly noisy telephony speech data. Our main
conclusion is that the most important parameter is the order of the model, whereas the
choice of the clustering algorithm is less important. It is therefore enough that the data is
modelled by any reasonably good clustering algorithm, as long as the size of the
codebook or the number of Gaussians is sufficiently large.

We found the choice of the algorithm to be critical only if very small model size is used.
However, the result of random clustering indicated that the recognition rate can be
significantly high if no clustering is done. We therefore conclude that some clustering
algorithm is needed and random sub-sampling is not enough. Regarding the choice of the
algorithm, for practitioners we recommend the random swap (RS) algorithm because of
its simple implementation and robust performance in all test conditions. If the running
time is critical, we recommend the SPLIT algorithm even though its implementation is
more complex.

In the current study, all VQ algorithms were optimized for the same squared-error cost
function. This explains rather similar results obtained with different VQ variants. For the
same reason, since GMM is based on a different objective function, the differences
between GMM and VQ type of models tend to be generally larger. In two recent
independent studies [29, 6], differences between these two clustering models were
reported for different distance functions [29] and in SVM back-end setting [6]. We
conclude that training methodology and data selection for UBM [30] are worth re-
addressing.

According to our tests, GMM-UBM works better for user-convenience applications
where false rejections must be minimized, however, the order was reversed in the favor
of VQ-UBM when small false acceptances were considered. The observations were
similar for both the 12-dimensional MFCC features (NIST 1999 corpus) and the 36-
dimensional MFCC+Δ+Δ2 features (NIST 2006). Differences in the EER region, on the
other hand, were not found statistically significant. Interestingly, similar observations
have been recently made in another study for NIST 2001; see Fig. 14 in [29].

Regarding clustering quality, the results are consistent with the comparisons made with
image data [24]. We expect the results to generalize to other variations of spectral
features as well, and to some extent, to other pattern recognition applications.

Acknowledgements
The works of T. Kinnunen and P. Fränti were supported by the Institute for Infocomm
Research (I2R) and Nanyang Technological University (NTU) in Singapore, and by the
Academy of Finland. The works of I. Sidoroff and M. Tuononen were supported by
TEKES under the 4-year PUMS-program. The authors would like to thank Mrs. Amanda
Hajnal for carrying out spell-checking on the manuscript.

REFERENCES

[1] R. Auckenthaler, M. Carey, and H. Lloyd-Thomas, “Score Normalization for Text-Independent Speaker
Verification Systems”, Digital Signal Processing, 10, pp. 42-54, 2000.

[2] U. Bagci and E. Erzin, “Automatic classification of musical genres using inter-gender similarity”, IEEE
Signal Processing Letters, 14(8), pp. 521—524, August 2007.

[3] J. Bezdek and N. Pal, “Some New Indices of Cluster Validity”, IEEE Trans. On Systems, Man, and
Cybernetics, Part B, 28(3), pp. 301-315, 1998.

[4] F. Bimbot, J.-F. Bonastre, C. Fredouille, G. Gravier, I. Magrin-Chagnolleau, S. Meignier, T. Merlin, J.
Ortega-Garcia, D. Petrovska-Delacretaz, D.A. Reynolds, ”A Tutorial on Text-Independent Speaker
Verification”, EURASIP Journal on Applied Signal Processing, 4, pp. 430-451, 2004.

[5] C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

[6] A. Brew, P. Cunningham, “Vector Quantization Mappings for Speaker Verification”, Proc. 20th Int.
Conference on Pattern Recognition (ICPR 2010), pp. 560—564, 2010.

[7] L. Burget, P. Matejka, P. Schwarz, O. Glembek, J.H. Cernocky, “Analysis of Feature Extraction and
Channel Compensation in a GMM Speaker Recognition System”, IEEE Transactions on Audio, Speech,
and Language Processing 15(7), pp. 1979—1986, Sept. 2007.

[8] D. Burton, “Text-Dependent Speaker Verification Using Vector Quantization Source Coding”, IEEE
Trans. Acoustics, Speech, and Signal Processing 35(2), pp. 133-143, February 1987.

[9] J. Campbell, “Speaker Recognition: a Tutorial”, Proceedings of the IEEE, 85(9), pp. 1437-1462, 1997.

[10] W.M. Campbell, J.P. Campbell, D.A. Reynolds, E. Singer and P.A. Torres-Carrasquillo, “Support
vector machines for speaker and language recognition”, Computer Speech and Language 20(2-3), pp. 210-
229, April 2006.

[11] W.M. Campbell, D.E. Sturim and D.A. Reynolds, “Support vector machines using GMM supervectors
for speaker verification”, IEEE Signal Processing Letters 13(5), pp. 308-311, May 2006.

[12] D.L. Davies and D.W. Bouldin, “A Cluster Separation Measure”, IEEE Trans. on Pattern Analysis
and Machine Intelligence, 1(2), pp. 224-227, 1979.

[13] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, P. Ouellet: “Front-End Factor Analysis for Speaker
Verification”. IEEE Transactions on Audio, Speech & Language Processing 19 (4): 788-798 (2011).

[14] R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis, John Wiley and Sons, New York,
1973.

[15] J.C. Dunn, “A fuzzy relative of the ISODATA process and its use in detecting compact well-separated
clusters”, Journal of Cybernetics 3 (3), 32-57, 1974.

[16] W.H. Equitz, “A New Vector Quantization Clustering Algorithm”, IEEE Trans. on Acoustics, Speech,
and Signal Processing, 37(10), pp. 1568-1575, 1989.

[17] K.R. Farrell, R.J. Mammone and K.T. Assaleh, “Speaker Recognition Using Neural Networks and
Conventional Classifiers”, IEEE Trans. Speech and Audio Processing 2(1), pp. 194-205, January 1994.

[18] P. Fränti, J. Kivijärvi, T. Kaukoranta, O. Nevalainen, Genetic algorithms for large scale clustering
problem, The Computer Journal 40 (9), 547-554, 1997.

[19] P. Fränti, T. Kaukoranta and O. Nevalainen, “On the Splitting Method for Vector Quantization
Codebook Generation”, Optical Engineering, 36(11): 3043-3051, 1997.

[20] P. Fränti, ”On the Usefulness of Self-Organizing Maps for the Clustering Problem in Vector
Quantization”, Proc. 11th Scandinavian Conf. on Image Analysis (SCIA99), pp. 415-422, Kangerlussuaq,
Greenland, 1999.

[21] P. Fränti, Genetic algorithm with deterministic crossover for vector quantization, Pattern Recognition
Letters 21 (1), 61-68, 2000.

[22] P. Fränti and J. Kivijärvi, “Randomized Local Search Algorithm for the Clustering Problem”, Pattern
Analysis and Applications, 3(4), pp. 358-369, 2000.

[23] P. Fränti, T. Kaukoranta, D.-F. Shen and K.-S. Chang, “Fast and Memory Efficient Implementation of
the Exact PNN”, IEEE Trans. on Image Processing, 9(5), pp. 773-777, 2000.

[24] P. Fränti and O. Virmajoki, “Iterative Shrinking Method for Clustering Problems”, Pattern
Recognition, 39(5), pp. 761-765, May 2006.

[25] P. Fränti, O. Virmajoki and V. Hautamäki, “Probabilistic clustering by random swap algorithm“, IAPR
Int. Conf. on Pattern Recognition (ICPR’08), Tampa, Florida, USA, December 2008.

[26] M.R. Garey, D.S. Johnson, and H. S. Witsenhausen, “The Complexity of the Generalized Lloyd-Max
Problem”, IEEE Transactions on Information Theory, 28(2), pp. 255-256, 1982.

[27] A.B. Geva, Y. Steinber, S. Bruckmair, and G. Nahum, “A Comparison of Cluster Validity Criteria for
a Mixture of Normal Distributed Data”, Pattern Recognition Letters, 21, pp. 511-529, 2000.

[28] J. He and L. Liu and G. Palm, “A Discriminative Training Algorithm for VQ-Based Speaker
Identification”, IEEE Trans. Speech and Audio Processing, 7(3), pp 353-356, 1999.

[29] C. Hanilci and F. Ertas, “Comparison of the impact of some Minkowski metrics on VQ/GMM based
speaker recognition”, Computers and Electrical Engineering 37, pp. 41—56, 2011.

[30] T. Hasan, J.H.L. Hansen, ”A Study on Universal Background Model Training in Speaker
Verification”, IEEE Transactions on Speech, Audio and Language Processing (in press), 2011.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kenny:Patrick.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Dehak:R=eacute=da.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Dumouchel:Pierre.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/o/Ouellet:Pierre.html�
http://www.informatik.uni-trier.de/~ley/db/journals/taslp/taslp19.html#DehakKDDO11�

[31] V. Hautamäki, M. Tuononen, T. Niemi-Laitinen, P. Fränti, ”Improving Speaker Verification by
Periodicity Based Voice Activity Detection”, Proc. 12th International Conference on Speech and
Computer (SPECOM 2007), Vol. 2, pp. 645-650, Moscow, October 2007

[32] V. Hautamäki, T. Kinnunen, I. Kärkkäinen, M. Tuononen, J. Saastamoinen and P. Fränti, “Maximum
a Posteriori Estimation of Centroid Model Parameters for Speaker Verification”, IEEE Signal Processing
Letters, 15, pp. 162-165, 2008.

[33] H. Hermansky, N. Morgan, “RASTA Processing of speech,” IEEE Trans. on Speech and Audio
Processing, 2(4), pp. 578—589, October 1994.

[34] X. Huang, A. Acero, and H.-W. Hon, Spoken Language Processing: a Guide to Theory, Algorithm,
and System Development, Prentice-Hall, New Jersey, 2001.

[35] P.K. Ito, “Robustness of ANOVA and MANOVA Test Procedures”, in: P.R. Krishnaiah (ed),
Handbook of Statistics 1: Analysis of Variance, North-Holland Publishing Company, pp. 199-236, 1980.

[36] A.K. Jain and M.N. Murty and P.J. Flynn, “Data Clustering: a Review,” ACM Computing Surveys,
31(3), pp. 264—323, Sept. 1999.

[37] A.K. Jain, “Data Clustering: 50 Years Beyond K-Means”, Pattern Recognition Letters, 31(8), pp.
651—666, June 2010,

[38] Y.-T. Juang, K.-C. Huang, I.-J. Ding, “Speaker adaptation based on MAP estimation using fuzzy
controller”, Pattern Recognition Letters, 24, pp. 2807—2813, 2003.

[39] T. Kaukoranta, P. Fränti and O. Nevalainen, “Iterative Split-and-Merge Algorithm for VQ Codebook
Generation”, Optical Engineering, 37(10), pp. 2726-2732, 1998.

[40] T. Kaukoranta, P. Fränti and O. Nevalainen, “A Fast Exact GLA Based on Code Vector Activity
Detection”, IEEE Trans. on Image Processing, 9(8), pp. 1337-1342, 2000.

[41] P. Kenny, P. Ouellet, N. Dehak, V. Gupta, P. Dumouchel, “A Study of Inter-Speaker Variability in
Speaker Verification”, IEEE Transactions on Audio, Speech, and Language Processing 16(5), pp. 980—
988, July 2008.

[42] T. Kinnunen and H. Li, “An Overview of Text-Independent Speaker Recognition: from Features to
Supervectors”, Speech Communication 52(1): 12--40, January 2010.

[43] T. Kinnunen, T. Kilpeläinen, and P. Fränti, “Comparison of Clustering Algorithms in Speaker
Identification”, Proc. 28 Int. Conf. Signal Processing and Communications (SPC 2000), pp. 222-227,
Marbella, Spain, 2000.

[44] T. Kinnunen, I. Kärkkäinen and P. Fränti, ”Is Speech Data Clustered? - Statistical Analysis of Cepstral
Features“, Proc. 7th European Conf. on Speech Communication and Technology, (Eurospeech 2001), vol. 4,
pp. 2627-2630, Aalborg, Denmark, 2001.

[45] T. Kinnunen, E. Karpov, and P. Fränti, ”Real-Time Speaker Identification and Verification”, IEEE
Transactions on Audio, Speech and Language Processing, 14(1), pp. 277-288, 2006.

[46] T. Kinnunen, J. Saastamoinen, V. Hautamäki, M. Vinni and P. Fränti, “Comparative evaluation of
maximum a posteriori vector quantization and Gaussian mixture models in speaker verification”, Pattern
Recognition Letters, 30(4), 341-347, March 2009.

[47] G. Kolano and P. Regel-Brietzmann, “Combination of Vector Quantization and Gaussian Mixture
Models for Speaker Verification”, Proc. 6th European Conference on Speech Communication and
Technology (Eurospeech 1999), pp. 1203-1206, Budapest, Hungary, September 1999.

[48] I. Kärkkäinen and P. Fränti, “Stepwise Algorithm for Finding Unknown Number of Clusters”, Proc.
Advanced Concepts for Intelligent Vision Systems (ACIVS’2002), pp. 136-143, Gent, Belgium, 2002.

[49] K.A. Lee, C. You, H. Li, T. Kinnunen and D. Zhu, “Characterizing Speech Utterances for Speaker
Verification with Sequence Kernel SVM”, Proc. Interspeech 2008, pp. 1397-1400, Brisbane, Australia,
2008

[50] Z. Lei, Y. Yang, Z. Wu, ”Mixture of Support Vector Machines for Text-Independent Speaker
Recognition”, Proc. 9th European Conf. on Speech Communication and Technology (Interspeech’2005), pp.
2041-2044.

[51] D.A. v. Leeuwen, A.F. Martin, M.A. Przybocki, J.S. Bouten, “NIST and NFI-TNO Evaluations of
Automatic Speaker Recognition”, Computer Speech and Language 20, pp.128—158, 2006.

[52] Y. Linde, A. Buzo and R.M. Gray, “An Algorithm for Vector Quantizer Design”, IEEE Trans. on
Communications, 28 (1), pp. 84-95, 1980.

[53] Linguistic Data Consortium, http://www.ldc.upenn.edu/.

[54] J. Louradour and K. Daoudi, “SVM Speaker Verification Using a New Sequence Kernel”, Proc. 13th
European Conf. on Signal Processing (EUSIPCO’2005), Antalya, Turkey, September 2005.

[55] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki, “The DET Curve in
Assessment of Detection Task Performance”, Proc. 5th European Conf. on Speech Communication and
Technology, (Eurospeech 1997), pp. 1895-1898, Rhodes, Greece, 1997.

[56] A. Martin and M. Przybocki, “The NIST 1999 Speaker Recognition Evaluation - An Overview”,
Digital Signal Processing, 10, pp. 1-18, 2000.

[57] G. McLachlan and D. Peel, Finite Mixture Models, John Wiley & Sons, Brisbane, 2001.

[58] J.B. McQueen, “Some Methods for Classification and Analysis of Multivariate Observations”, 5th
Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281-297, 1967.

[59] M. Meilǎ and D. Heckerman, ”An Experimental Comparison of Model-Based Clustering Methods”,
Machine Learning, 42, pp. 9-29, 2001.

[60] G.W. Milligan, “A Monte Carlo Study of Thirty Internal Criterion Measures for Cluster Analysis”,
Psychometrika, 46(2), pp. 187-199, 1981.

[61] N.M. Nasrabadi and Y. Feng, “Vector Quantization of Images Based upon the Kohonen Self-
Organization Feature Maps”, Neural Networks, 1, p. 518, 1988.

[62] NIST 2006 speaker recognition evaluation webpage,
http://www.itl.nist.gov/iad/mig/tests/sre/2006/index.html (URL valid June 2009).

[63] J. Pelecanos, S. Myers, S. Sridharan and V. Chandran, “Vector Quantization based Gaussian Modeling
for Speaker Verification”, Proc. 15th Int. Conf. on Pattern Recognition (ICPR’2000), vol. 3, pp. 294-297,
September 2000.

[64] S.G. Pillay, A. Ariyaeeinia, M. Pawlewski and P. Sivakumaran, “Speaker verification under
mismatched data conditions”, IET Signal Processing, 3(4): 236—246, 2009.

[65] L.R. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition,” Proc. IEEE, 77(2), pp. 257—286, Feb. 1989.

[66] R.P. Ramachandran, K.R. Farrell, R. Ramachandran and R.J. Mammone, “Speaker Recognition -
General Classifier Approaches and Data Fusion Methods”, Pattern Recognition 35(12), pp. 2801-2821,
December 2002.

[67] D.A. Reynolds and R.C. Rose, “Robust Text-Independent Speaker Identification Using Gaussian
Mixture Speaker Models”, IEEE Trans. Speech and Audio Processing, 3(1), pp. 72-83, 1995.

[68] D.A. Reynolds, T.F. Quatieri and R.B. Dunn, “Speaker Verification Using Adapted Gaussian Mixture
Models”, Digital Signal Processing, 10(1), pp. 19-41, 2000.

[69] D.A. Reynolds, W. Campbell, T. Gleason, C. Quillen, D. Sturim, P. Torres-Carrasquillo, and A.
Adami, “The 2004 MIT Lincoln Laboratory Speaker Recognition System”, Proc. Int. Conf. Acoustics,
Speech, and Signal Processing (ICASSP 2005), Vol. 1, pp. 177-180, 2005.

[70] M. Roch, “Gaussian-Selection-Based Non-Optimal Search for Speaker Identification”, Speech
Communication, 48: 85-95, 2006.

[71] J. Saastamoinen, E. Karpov, V. Hautamäki and P. Fränti, ”Accuracy of MFCC Based Speaker
Recognition in Series 60 Device”, EURASIP Journal of Applied Signal Processing, 17, pp. 2816-2827,
2005.

[72] M. Sarkar, B. Yegnanarayana, and D. Khemani, “A Clustering Algorithm Using an Evolutionary
Programming-Based Approach”, Pattern Recognition Letters, 18(10), pp. 975-986, 1997.

[73] G. Singh, A. Panda, S. Bhattacharyya and T. Srikanthan, “Vector Quantization Techiques for GMM
Based Speaker Verification”, Proc. Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP’2003),
Vol. 2, pp. 65-68, April 2003.

[74] F.K. Soong, A.E. Rosenberg, B.-H. Juang, and L.R. Rabiner, “A Vector Quantization Approach to
Speaker Recognition”, AT & T Technical Journal, 66, pp. 14-26, 1987.

[75] R. Stapert and J.S. Mason, “Speaker Recognition and the Acoustic Speech Space”, Proc. 2001: A
Speaker Odyssey – The Speaker Recognition Workshop, pp. 195-199, 2001.

[76] M. Steinbach, G Karypis, V Kumar, ”A Comparison of Document Clustering Techniques”, Proc.
KDD Workshop on Text Mining, 2000.

[77] S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th Edition, Elsevier Inc, 2009.

[78] D. T. Tran, “Fuzzy Approaches to Speech and Speaker Recognition”, PhD thesis, 154 pages,
University of Canberra, Australia, May 2000.

[79] D. Tran, T.V. Le and M. Wagner, “Fuzzy Gaussian mixture models for speaker recognition”, Proc.
Int. Conf. Spoken Language Processing (ICSLP 1998), paper 0798, Sydney, Australia, Nov. 1998.

[80] D. Tran and M. Wagner, “Fuzzy C-Means Clustering-Based Speaker Verification”, Proc. Advances in
Soft Computing (AFSS 2002), pp. 318-324, Calcutta, India, 2002.

[81] I.-T. Um, J.-H. Ra and M.-H. Kim, “Comparison of Clustering Methods for MLP-based Speaker
Verification”, Proc. 15th Int. Conf. on Pattern Recognition (ICPR’2000), vol. 2, pp. 475-478, September
2000.

[82] D. Wu, J. Li and H. Wu, “α-Gaussian mixture modelling for speaker recognition,” Pattern Recognition
Letters 30, pp. 589—594, 2009.

[83] B. Yegnanarayana and S.P. Kishore, “AANN: An alternative to GMM for Pattern Recognition”,
Neural Networks 15, pp. 459-469, April 2002.

	Comparison of Clustering Methods: a Case Study of Text-Independent Speaker Modeling
	1 INTRODUCTION
	1.1 Relevance of Clustering in a Large-Scale Pattern Recognition Problem
	1.2 Review of Clustering Methods in Speaker Recognition
	1.3 Research Objectives and Hypotheses

	2 CLUSTERING MODELS AS SPEAKER MODELS
	2.1 Problem formulation
	2.2 Clustering Algorithms
	2.3 Number of Clusters

	3 EXPERIMENTAL SETUP
	3.1 Corpora and Features
	For the NIST 1999 and NIST 2006 corpora, we need universal background models. For the NIST 1999 data, we use a subset of the 1-speaker detection task training files of the NIST 2000 speaker recognition corpus [53] and for the NIST 2006 data, we use a ...
	3.2 Performance Criteria
	3.3 Parameter Setting of the Clustering Algorithms

	4 RESULTS AND DISCUSSION
	4.1 Speaker Recognition Accuracy
	4.3 Processing Time

	5 IMPLEMENTATION CONSIDERATIONS
	Binary code size (bytes)
	Lines in source code
	Number of functions
	Number of control parameters
	64,448
	26
	2
	0
	Random
	71,821
	162
	5
	1
	Repeated K-means
	70,690
	226
	7
	1
	RS
	95,448
	252
	7
	3
	SOM
	107,530
	317
	12
	0
	PNN
	101,778
	947
	22
	0
	SPLIT
	131,834
	1381
	38
	1
	SM
	105,956
	573
	21
	2
	GA
	128,735
	295
	11
	2
	FCM*
	87,535
	1111
	44
	2
	GMM*
	5 CONCLUSIONS
	Acknowledgements
	The works of T. Kinnunen and P. Fränti were supported by the Institute for Infocomm Research (I2R) and Nanyang Technological University (NTU) in Singapore, and by the Academy of Finland. The works of I. Sidoroff and M. Tuononen were supported by TEKES...
	REFERENCES

