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Abstract

This article proposes a study of the recent quaternionic wavelet transform

(QWT) from a practical point of view through a digital image analysis appli-

cation. Based on a theoretic 2D generalization of the analytic signal leading

to a strong 2D signal modeling, this representation uses actual 2D analytic

wavelets and yields subbands having a shift-invariant magnitude and a 3-

angle phase, using the quaternion algebra.

Our experiment furthers the understanding of this quite sophisticated

tool, and shows its practical interest by a clear improvement of a famous

wavelet application : texture classification. Thanks to coherent multiscale

analysis brought by the QWT we obtain better classification results than

with standard wavelets in a similar process.
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1. Introduction1

Since the 90’s wavelets have been widely used for the analysis of textu-2

ral images [Tuceyran and Jain, 1993; Lasmar and Berthoumieu, 2010]. Ac-3

cordingly the human visual system sees textures through different channels4

related to particular frequency bands and directions; and wavelet representa-5

tions offer this kind of decomposition. So by extracting simple features from6

each subband, the image content can be characterized separately at different7

scales and orientations, making an efficient texture analysis.8

In 2001, the well known power of the analytic signal for signal modeling9

led to a new definition of wavelets : the Complex Wavelet Transform (CWT)10

[Selesnick et al., 2005], whose subbands are analytic signals giving access to a11

shift-invariant amplitude envelope (magnitude). The CWT codes signals in12

a more coherent way than standard wavelets (DWT); which overcomes their13

famous shift-variance problem. Its superiority over DWT for texture anal-14

ysis has been shown in [de Rivaz and Kingsbury, 1999; Celik and Tjahjadi,15

2009]. But CWT phase is ambiguous for 2D signals and is almost not used16

in applications excepted in a very recent work [Celik and Tjahjadi, 2011].17

In parallel, the work in [Bülow, 1999] provides a strong theoretic 2D gener-18

alization of the analytic signal defined in quaternion algebra. The 3-angle19

local 2D phase related to it contains 2D geometric information. The Quater-20

nionic Wavelet Transform (QWT) - first proposed in 2004 [Chan et al., 2008;21

Bayro-Corrochano, 2006] - uses wavelets that are 2D-analytic in the sense of22

Bülow, providing quaternion valued subbands with shift-invariant magnitude23

and this new 2D phase. This representation - specially defined for 2D signals24

- is a great theoretic improvement of CWT yielding a coherent description25
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of local 2D structures.26

Currently, many evolutions of wavelets focus on directionality (Contour-27

lets, Complex Wavelets, Directionlets, Adaptive lifting schemes); bringing28

some redundancy to fit numerous directions from a quite algorithmic point29

of view. QWT is a different approach to a coherent representation of local30

structures in images based on a strong 2D signal processing theory; and sets31

some redundancy in a local phase rather than in directionality.32

Given the promising theoretical properties of this new transform, we pro-33

pose here a global study of this sophisticated tool to further its understanding34

through a famous application of wavelets. We aim to show its potential and35

verify its practical superiority over standard DWT in a comparative texture36

analysis application.37

The main point is the understanding of the information carried by QWT38

coefficients. QWT magnitude can intuitively be used like DWT but interpre-39

tation of phase is far from straightforward. With a first QWT based feature40

extraction algorithm this work gives an application not did yet to our knowl-41

edge and furthers practical use of QWT coefficients. We expect QWT to42

provide better texture analysis than DWT - with simple feature extraction43

methods - thanks to better separation of information and shift-invariance.44

An additional experimental comparison is done with CWT because the topic45

is near.46

After a presentation of the transform, we propose several feature extrac-47

tion methods based on both DWT and QWT. To compare with literature,48

we also describe some CWT based feature descriptors recently published in49

[Celik and Tjahjadi, 2009, 2011]. The use of QWT phase is then discussed as50

3



Figure 1: Quaternionic wavelet transform of a textural image. From left to right : Original

image, magnitude |q| (intensity inverted for visual convenience), ϕ ∈ [−π;π], θ ∈ [−π
2 ; π

2 ],

ψ ∈ [−π
4 ; π

4 ]. The 3 terms of phase are represented in color - the hue corresponding to the

angle (cyan for 0, red for ±π). Darker zones in phase correspond to negligible magnitude

(making phase absurd).

well as the combination of QWT magnitude and phase based features. We51

finally give experimental classification results to compare DWT and QWT in52

terms of recognition rates. Note that the point is to observe changes in recog-53

nition and not to get a competitive texture recognition performance. The54

aim is to carry out a simple process to help us studying wavelet transforms,55

rather than achieving excellent recognition. Types of texture better described56

by one or another transform will be analyzed in terms of visual/geometric57

content.58

2. Quaternionic Wavelet Transform59

The Quaternionic Wavelet Transform (QWT) is a perfect reconstruction60

2D filterbank decomposition for grayscale images; addressing three common61

drawbacks of standard DWT :62

• Oscillations - Using oscillating wavelets complicates the representation63

of a simple structure, involving several coefficients in a neighborhood64
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to compensate each other their own oscillations, and so making local65

analysis difficult.66

• Shift-variance - The look of a wavelet transform may substantially67

change by a small shift of the image; causing incoherence while most68

recognition processes need invariant features.69

• No phase notion - Fourier phase and local phase from the analytic70

signal are powerful analysis tools so it is interesting to fit DWT up71

with a phase notion in a pattern recognition context.72

The key is to embed the analytic signal modeling into the wavelet frame-73

work. The Dual-Tree CWT [Selesnick et al., 2005] achieves 1D analytic74

wavelet analysis with a 2 times redundant perfect reconstruction filterbank75

overcoming the 3 drawbacks listed above. But its 2D version yields an am-76

biguous phase failing to efficiently describe local structures. More precisely,77

the phase angle encodes a local shift around pixel position - in the exact di-78

rection that is orthogonal to the intrinsic orientation of considered subband.79

Since the structure may be not well aligned with wavelet orientation, this80

shift information is not sufficient to accurately localize the structure.81

The point then is the 2D generalization of analytic signal and the geo-82

metric meaning of the 2D phase extracted from it.83

This is why the QWT uses the 2D analytic signal defined in [Bülow, 1999]84

within the quaternion algebra. According to Bülow, this generalization is85

superior to previous attempts in C - including the one implicitly related to86

2D CWT - and is well adapted for 2D signals whereas standard complex87

analytic signal is only adapted in 1D. The extracted quaternionic local phase88
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(3 angles) contains rich geometric information. Note that Bülow proposed89

quaternionic Gabor filters in 1999 [Bülow, 1999] and used the phase for image90

analysis applications.91

The QWT provides a quaternionic multiresolution analysis with 2D ana-92

lytic wavelets overcoming the above-cited drawbacks of DWT. Whereas DWT93

coefficients are real, QWT is quaternion valued i.e. 4-vectors made of one94

magnitude and a 3-angle phase. Information is better separated to describe95

more explicitly the image content. In 2004, the Rice University from Houston96

proposes to use their Dual-Tree algorithm to carry out a QWT with perfect97

reconstruction filterbanks [Chan et al., 2008] (that we use in this work). Note98

that at the same time, Bayro proposes a quaternionic Gabor pyramid [Bayro-99

Corrochano, 2006], windowing the quaternionic Fourier transform (QFT),100

but this approach has no perfect reconstruction so the use can be limited for101

example in image coding.102

In this section we present the quaternionic 2D analytic signal upon which103

the QWT is based, the definition of the transform, the algorithm we used104

and the use of this tool.105

2.1. The Quaternionic Analytic Signal106

In his thesis [Bülow, 1999], T. Bülow showed that complex algebra C is107

only adapted for handling 1D signals and that 2D signals are best described108

by embedding signal processing tools in the more general quaternion algebra109

H. He defined a ‘Quaternionic 2D Fourier Transform’ (QFT) and a ‘Quater-110

nionic 2D Analytic Signal’.111

A quaternion is a generalization of a complex number, related to 3 imag-

inary units i, j, k following the rules i2 = j2 = k2 =−1 and ij=−ji= k; and
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written q = a+ bi+ cj + dk. A polar form q = |q|eiϕejθekψ analogous to the

complex one is defined by one modulus |q| and three angles (ϕ, θ, ψ) called

phase. The phase corresponds here to Euler angles in a 4D Euclidean space :

ϕ = atan( 2(cd+ab) , a2−b2+c2−d2 )/2 + kπ ∈ [−π; π]

θ = atan( 2(bd+ac) , a2+b2−c2−d2 )/2 ∈ [−π
2
; π
2
]

ψ = arcsin( 2(ad−bc) )/2 ∈ [−π
4
; π
4
]

with |q| = 1. See [Bülow, 1999] pp 16-21 for a detailed definition.112

As a fundamental signal processing tool the analytic signal associated to

a real 1D signal f(t) is well known to be constructed by setting its Hilbert

transform Hf(t) in the imaginary part; being equivalent to a simple spectral

operation :

fA(t) = f(t) + iHf(t) ⇔ f̂A(ω) =


0 if ω < 0

f̂(ω) if ω = 0

2f̂(ω) if ω > 0

Note that the spectrum of fA is null for negative frequencies.113

Modulus and argument of fA can be interpreted as instantaneous magni-114

tude and phase. When the original signal is considered oscillating or narrow-115

band these two pieces of data become meaningful - making this tool useful116

for instance in amplitude and frequency modulation.117

Looking at one point of interest, we can interpret a high magnitude as a118

strong ‘presence of some oscillation’ around this point. Phase indicates the119

relative location of this point within the oscillation.120

Bülow pointed out that instantaneous phase equivalently describes the121

kind of structure at a point - among four fundamental structures : 0-‘positive122
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impulse’, π/2-‘falling step’, ±π-‘negative impulse’, −π/2-‘rising step’. This123

is an important point for pattern recognition and that is why the author124

wanted to generalize it for 2D signals.125

Several generalizations to 2D are possible and depend on properties we126

choose to keep. We consider 2D versions of the Hilbert transform (HT). The127

partial HT (Hθ) is equivalent to a 1D HT along direction θ. The total HT128

(HT = H0Hπ/2) is the combination of two partial HT’s along x and y axes.129

A 2D analytic signal of f can be constructed by adding Hθf as the imaginary130

part; what would cancel out a θ-oriented half-plane in the frequency domain.131

But this method depends on an arbitrary choice of the direction - not really132

adapted for our issue. We can use as well HT ; what cancels out 3 quadrants133

of the Fourier domain, but the original signal cannot be retrieved from the134

analytic signal (This is the classical approach in [Hahn, 1996]).135

So Bülow proposed to embed both partial and total HT’s into a quater-

nionic analytic signal :

fA(x, y) = f(x, y) + iH0f(x, y) + jHπ/2f(x, y) + kHTf(x, y)

This method cancels out 3 quadrants of the (quaternionic) Fourier domain136

and allows retrieval of the original signal. Its polar representation provides137

2D local magnitude and phase that can be used to analyze 2D signals - in a138

similar way as with 1D analytic signal.139

The QWT uses this generalization to carry out an ‘actual’ 2D analytic140

wavelet transform.141
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2.2. Quaternionic Wavelets : Definition142

A standard wavelet transform (DWT) provides a scale-space analysis of143

an image; yielding a matrix in which each coefficient is related to a ‘subband’144

(localization in the 2D Fourier domain) and to a position in the image. A145

‘subband’ means both an oscillation scale (i.e. a 1D frequency band) and a146

spatial orientation (i.e. rather vertical, horizontal or diagonal).147

For 2D signals, the QWT provides a richer scale-space analysis than148

DWT. Its coefficients are analytic according to Bülow’s theory and con-149

trary to DWT the magnitude is near shift-invariant. Thus it inherits the150

magnitude-phase local analysis from the very useful 1D analytic signal. In151

the one hand the QWT can be viewed like a local ‘2D Quaternionic Fourier152

Transform’ (QFT); in the other hand its subbands are ‘2D Quaternionic153

Analytic Signals’ associated with bandpass filtered versions of the original154

signal.155

Note that usual interpretation of magnitude remains analogous to 1D as156

it indicates the relative ‘presence’ of a local geometric element ; whereas the157

local phase is now represented by 3 angles carrying a complete description of158

this 2D structure.159

We start with real separable scaling function φ and mother wavelets ψD,

ψV , ψH , and we construct their analytic extensions in H :

Real function : Analytic extension :

ψD = ψh(x)ψh(y) → ψD + iH0ψ
D + jHπ/2ψ

D + kHTψ
D

ψV = φh(x)ψh(y) → ψV + iH0ψ
V + jHπ/2ψ

V + kHTψ
V

ψH = ψh(x)φh(y) → ψH + iH0ψ
H + jHπ/2ψ

H + kHTψ
H

φ = φh(x)φh(y) → φ+ iH0φ+ jHπ/2φ+ kHTφ

9



Mathematically, 2D HT’s of separable functions are equivalent to 1D HT’s

along rows and/or columns. So we consider the 1D Hilbert pair of wavelets

and scaling functions :

( ψh , ψg=Hψh ) ( φh , φg=Hφh )

and we have for instance : H0ψ
V = Hφh(x)ψh(y) = φg(x)ψh(y). The analytic

2D wavelets can then be written in terms of separable products :

ψD = ψh(x)ψh(y)+iψg(x)ψh(y)+jψh(x)ψg(y)+kψg(x)ψg(y)

ψV = φh(x)ψh(y)+iφg(x)ψh(y)+jφh(x)ψg(y)+kφg(x)ψg(y)

ψH = ψh(x)φh(y)+iψg(x)φh(y)+jψh(x)φg(y)+kψg(x)φg(y)

φ = φh(x)φh(y)+iφg(x)φh(y)+jφh(x)φg(y)+kφg(x)φg(y)

From a practical point of view, the mother wavelet is related to a quaternionic160

2D analytic filter - computable with separable 2D filterbanks. This means161

the decomposition is heavily dependent on the position of the image with162

respect to x and y axes (rotation-variance) and the wavelet is not isotropic163

but the advantage is the easy computation.164

Each subband from QWT can be seen as the analytic signal associated165

with a narrowband part of the image. Shift-invariant magnitude |q| repre-166

sents elements at any space position in each frequency subband; and phase167

(ϕ, θ, ψ) describes the ‘structure’ of these elements. We discuss below the168

interpretation of the phase.169

2.3. Dual-Tree Implementation170

The QWT is implemented by the Dual-Tree algorithm [Selesnick et al.,171

2005] - a filterbank using a Hilbert pair as a complex 1D wavelet - originally172
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Figure 2: 1D analytic wavelet transform with the Dual-Tree algorithm.

performing a CWT as shown Fig. 2 for the 1D case. It is approximately173

analytic and achieves near shift-invariance with a redundancy of 2:1. These174

two filterbanks lead to four separable 2D filterbanks that can be combined175

to fit the QWT definition. Fig. 1 shows an example of such decomposition.176

2.4. Interpretation and Use177

For now, literature is quite poor about QWT and the major difficulty178

with the use of this transform is the interpretation of the phase.179

In [Bülow, 1999] 2D quaternionic analytic Gabor filters are defined and180

used in a Gabor based texture segmentation. Filtered images are 2D ana-181

lytic and form a scale-space analysis of the image; from which are extracted182

magnitudes and local phases at each point to characterize the texture.183

A shift theorem similar to this of the well known Fourier transform also184

stands for the quaternionic Fourier transform defined in [Bülow, 1999] : a185

shift of the image is equivalent to an offset of the two first terms of phase186

ϕ and θ. As a result, in a Gabor decomposition ϕ and θ describe small187

2D spatial shifts of the coded structure - around the quaternionic coefficient188

position. Note that in 1D that shift is equivalent to structural information;189
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but 2D structures may be more complex than lines or edges (e.g. corners,190

T-junctions) and cannot be described by this kind of shift coding. The third191

term ψ completes the structure analysis and is seen as a texture feature.192

Bülow observed that where ψ is around ±π/4 the coded structure is a line193

or an edge oriented along a diagonal.194

We found three recent references [Chan et al., 2008; Bayro-Corrochano,195

2006; Zhou et al., 2007] where ϕ and θ are used in disparity estimation. As196

the QWT performs local QFT’s; the shift theorem approximately stands for197

QWT so ϕ and θ code quite simply spatial shifts of structures.198

In another application of [Chan et al., 2008] (‘wedgelet’ representation)199

ϕ and θ are used for wedges position and ψ is used for their orientation.200

We propose a new application of this transform : the next section deals201

with texture classification. The difference with the work by Bülow is that202

while segmentation involves detecting where two textures are different, clas-203

sification aims to indicate what kind of texture is observed. In addition, the204

tool we use (QWT) is slightly different than Gabor filters in that it is related205

to perfect reconstruction filterbanks.206

3. Texture Classification207

Texture classification is the process which - given any textural image208

- find the class this image most probably belongs to. Texture has still no209

universal definition, but may be presented by classical cases like ‘tar’, ‘water’,210

‘sand’, as macroscopic examples, or ‘town’,‘ocean’, ‘forest’, as satellite view211

examples; and characterized by a sort of uniformity and periodicity. We call212

a kind of texture a class ; according to an arbitrary classification we humans213
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make instinctively.214

In this paper, we only discuss wavelet based methods for this applica-215

tion in order to compare QWT with DWT. Feature extraction via standard216

wavelet representation of images (DWT) has been widely used in texture217

analysis [Tuceyran and Jain, 1993; Arivazhagan and Ganesan, 2003; Lasmar218

and Berthoumieu, 2010] for the two last decades. Accordingly, the multiscale219

analysis provided by the DWT is well adapted to textural images. From each220

subband one may calculate a mean, standard deviation, energy, mean power,221

or more sophisticated statistical modeling. Those features - well combined -222

can form a powerful texture descriptor.223

The Dual-Tree Complex Wavelet Transform (CWT) - a complex exten-224

sion of the DWT - is motivating by the near shift-invariance of its magni-225

tude and the oriented aspect of its wavelets. It was used in [de Rivaz and226

Kingsbury, 1999; Celik and Tjahjadi, 2009, 2011] revealing its efficiency with227

respect to DWT in texture analysis. The invariance of magnitude to shifts228

makes the extracted feature independent of the precise location of textural229

patterns; and so allows a better characterization. We will include CWT230

based feature vectors of [Celik and Tjahjadi, 2009, 2011] in our experiments231

to compare with literature.232

We here propose to further texture analysis using QWT because we keep233

the advantages due to shift-invariance while adding new information with234

the ψ phase. The QWT can be regarded as the proper 2D generalization of235

analytic wavelets since the quaternionic analytic signal is the proper gener-236

alization according to Bülow. We use the Dual-Tree based QWT algorithm237

[Chan et al., 2008] and for comparison a DWT with the well known CDF 9/7238
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wavelets. The latter are widely used and offer a good separation of frequency239

components; what is well adapted to texture analysis.240

QWT needs special “Q-Shift” filters designed in [Kingsbury, 2001] to form241

Hilbert pairs. Three different filter sets are possible : the 9-tap, 14-tap and242

18-tap Q-Shift filters. In wavelet based texture analysis long filters usually243

achieve better performance. In this paper we mainly use the 9-tap filters244

to ensure fairer comparison with 9/7 classical filters; nevertheless the other245

Q-Shift filters will be treated in the experimental part of the paper.246

A L-level decomposition provides 3L subbands for analysis and a low-247

frequency subband. We do not use the latter; as low frequency structures -248

almost constant - are usually not considered to be a feature of texture.249

3.1. Texture Databases250

In order to provide relevant performance with respect to the huge variety251

of textures we can find, we use several known texture databases :252

• Brodatz database [Brodatz, 1966] contains 111 photos called textures253

by the author. We use those [640×640] images to create texture classes,254

by cutting each one into 25 [128×128] sub-images considered to belong255

to the same class.256

• Outex databases (http://www.outex.oulu.fi/) were specially made257

for texture classifiers benchmarking. We use the TC12 database that258

contains 24 classes of 380 [128 × 128] samples. In each TC12 class we259

have different images of a same kind of texture at different orientations260

and under different lightings.261
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• We also use Outex TC14 database, which has 68 classes of 60 samples262

with different lightings but only one orientation.263

3.2. Experimental Protocol264

Recall that our point is the understanding of the QWT. The recognition265

scheme must be elementary so we can identify the influence of the choice266

of transform/features on the recognition rate. This is why we propose to267

use a simple k Nearest Neighbors classifier (k-NN) without any automatic268

feature selection or normalization that would drown the contribution of the269

transform and confuse the interpretation. Note that we use DWT-based and270

QWT-based feature vectors that will be presented in the next section.271

Here is the k-NN algorithm. From each image of a training base a fea-272

ture vector describing the texture is extracted and labelled by its actual class273

number. When a test image is given, its feature vector is processed and com-274

pared in the feature space to the feature vectors of the training base in terms275

of Euclidean distance. According to a parameter k, the k nearest vectors are276

kept to find the most representative class; that is the most represented class277

within the k neighbors.278

In order to evaluate performance we split our available classes into two279

groups :280

• A test base : NT examples the program does not know;281

• A training base : NA labelled examples the program knows.282

Then recognition rates obtained by using a certain feature extraction method283

will inform about the quality of this method i.e. the power of description284
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brought by this feature vector for texture classes. Some classes are better285

recognized than others so we can study what kinds of texture make DWT or286

QWT more suitable.287

Cross validation288

Since experimental rates will depend on the chosen training base, we pro-289

pose to iterate the process 100 times with different selections of the training290

base (but fixed NA). We obtain 100 recognition rates for each feature ex-291

traction method and each texture class. So our recognition rates will be292

displayed as average rates with a certain deviation, following the so-called293

cross validation protocol (see Fig. 3 for example). Thanks to cross validation294

recognition rates are very stables from an experiment to another (rates vary295

less than 1% experimentally).296

Sample selection297

Let us precise how the sample selection is done. We need to separate sam-298

ples of each class 100 times differently. If we näıvely pick up NA consecutive299

samples as they are stored in the database, we introduce a bias due to the300

existing correlation between consecutive samples (e.g. in TC12 basis, consec-301

utive samples have same orientation). So NA samples are randomly selected302

from each class while the test base is formed by all remaining samples. This303

process is repeated at each of the 100 iterations.304

In the sequel, we first present different feature extraction methods from305

DWT/QWT magnitude and QWT phase, as well as complex wavelet features306

from [Celik and Tjahjadi, 2009, 2011] for comparison. Then the experimental307

classification results related to these descriptors are given and analyzed.308
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4. Feature extraction309

Feature extraction is the automatic processing of several numbers de-310

scribing texture characteristics. The output is a so-called feature vector that311

will be considered in a feature space to compare with other texture samples.312

Many wavelet based texture classifications use a global measure of energy313

or statistics from the magnitude; which corresponds to characterize partic-314

ular bands of the Fourier domain. This type of feature extraction is well315

adapted to textures that can be viewed as superimposed signals located in316

the Fourier domain. We will study several methods. First we use magni-317

tude based features that are analogous for both DWT and QWT. Then we318

propose QWT phase based features that will improve texture description;319

and a combination of QWT magnitude and phase. Finally the CWT-based320

features of [Celik and Tjahjadi, 2009, 2011] - also made of global subband321

measures - are described.322

4.1. Magnitude based features323

After having processed the norm Mij = |qij| of wavelet coefficients of a324

given image (where i and j are discrete coordinate of a pixel); two measures325

in each subband are considered.326

Energy :

m =
1

E

∑
i,j

M2
ij

where E is the total energy of the image minus the low-frequency energy.327

This normalization makes m the relative amount of energy in a subband.328
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Standard deviation (St. dev.) :

m =

√
1

N

∑
i,j

(Mij − µ)2

where N is the number of pixels in the subband and µ is the mean.329

4.2. QWT phase based features330

We dealt with QWT phase in section 2.4. We will first use some phase331

features only and then we combine magnitude and phase information. Now,332

how can we use QWT phase to describe textures?333

First, ϕ and θ are irrelevant because they inform about position of el-334

ements whereas we are interested in their structure. We may think of a335

matching between the 2D shift coding and some 2D kinds of structure - anal-336

ogously to the 1D phase - but this interpretation is not clear. In addition,337

our experiments on ϕ and θ gave very bad results (less than 3% recognition).338

So we focus on the third term ψ used by Bülow in a Gabor based texture339

segmentation process [Bülow, 1999].340

In this application we assume that textures are stationary so we do not341

want to describe spatially precise texture patterns but rather extract global342

measures. However, we want to describe a part of the behavior of the phase343

within each subband so a measure such as a mean would not be suitable344

because it is too global. Experimentally, phase means1 by subband give very345

bad results (less than 1% recognition).346

1The angle is ‘unwrapped’ in the calculus of a mean. But note that ψ does not show

phase wrapping as it lies in [−π/4;π/4].
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As we aim to do a fair comparison we won’t carry out a high level pro-347

cess such as spatial measures (extrema search, connexity . . . ) that would348

need to be differently adapted to either DWT or QWT. To make the results349

as comparable as possible our application must keep simple and we would350

rather extract a single value from a whole subband as a global feature of the351

phase spatial behavior. To our knowledge, literature is quite poor about the352

measure of phase. The Global Phase Coherence [Blanchet et al., 2008] gives a353

measure of image sharpness but relies on a too much restricted mathematical354

model with respect to the topic of the paper that is a first approach toward355

QWT. A relative phase distribution measure was used with some complex356

wavelets in [Vo et al., 2007] but is specially defined for this type of trans-357

form. The quaternionic phase is a totally different concept than the complex358

one; so it would be irrelevant to use such a sophisticated measure.359

It seems that the simple calculus of the standard deviation (st. dev.)360

within a subband would be adapted because it describes a part of the behavior361

of ψ. Since ψ ∈ [−π
4
, π
4
] (see Euler angles) we avoid the usual problems about362

circular data (±π discontinuity, phase wrapping) so there is no ambiguity to363

calculate angle differences and means.364

To improve robustness the ψ-deviation can be weighted by the QWT365

magnitude. A high magnitude means an important presence of an element366

while a low value means ‘no element’ and also provides a numerically unstable367

phase. So the measure should be more representative by not considering the368

structure of low magnitude features. The weight function W is the magnitude369

of the QWT coefficients normalized so the sum within the subband is 1; and370

is integrated in the standard deviation formula as defined below. Here are371
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the two phase measures we use for feature extraction :372

St. dev. :

m =

√
1

N

∑
i,j

(ψij − µ)2

where µ = 1
N

∑
i,j ψij, N is the number of pixels in the subband, and (i, j)373

spans a subband.374

Weighted st. dev. :

m =

√∑
i,j

Wij(ψij − µW )2

where µW =
∑

i,jWijψij is the weighted mean of the subband.375

4.3. Combination of QWT magnitude and phase376

Let us now combine the st. dev. QWT magnitude features with the377

weighted st. dev. QWT phase features (Given experimental results that will378

be presented in the next section; st. dev. measures are retained for both379

magnitude and phase).380

First we experimentally observed that a simple concatenation of both381

vectors gives very good performance - better than DWT. Here is a classical382

point in classification : our two features are not of the same kind. One is383

an amplitude (∈ R+) and the other is an angle (∈ [0, π
2
]). It produces a384

lack of coherence in the final feature vector as all that terms are seen the385

same way by the Euclidean distance of the k-NN algorithm. A metric often386

solves this heterogeneity problem but the different metrics we tried did not387

improve the process. Even considering the optimal metric with respect to our388

database; performance is not significantly higher since in practice magnitude389
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and phase features are of the same order of magnitude. So for this paper we390

finally consider simple concatenation of QWT magnitude and phase features.391

To compare with literature we propose to also use CWT. Even though the392

concept is totally different from QWT the underlying algorithm is quite sim-393

ilar and was used in texture analysis for example in [de Rivaz and Kingsbury,394

1999; Celik and Tjahjadi, 2009, 2011].395

4.4. Complex wavelets based features396

These feature vectors are processed from the 6 subbands of the Dual-397

Tree Complex Wavelet Transform (CWT). In most cases, classical features398

such as entropy or energy measures as well as statistics are extracted from399

the magnitude of each subband. In this experiment we choose to use CWT400

magnitude based feature vector from [Celik and Tjahjadi, 2009] that uses401

variance and entropy. The very recent work in [Celik and Tjahjadi, 2011]402

involves standard deviations and energy measures from both magnitude and403

phase. Note that in the original paper the vector is further reduced and404

weighted based on statistics (PCA) - which we did not reproduce because405

our scheme needs to be elementary so we can identify the contribution of406

DWT/CWT/QWT (see discussion section 3.2).407

It is important to stress that the aim of cited papers is to carry out a408

good recognition whereas the point of the present paper is the analysis of the409

QWT. This is why we do not use the whole recognition process described410

in [Celik and Tjahjadi, 2009, 2011] but just the feature extraction bloc. We411

refer the reader to original publications for detailed expressions.412

Now the feature extraction part is done, let us give our experimental413

results of texture recognition with every feature vectors described above.414
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Figure 3: Magnitude based classification performance : cross validation results for some

classes of the 3 databases.

The next section also brings analysis of interesting types of textures.415

5. Experimental results416

We obtained many results, depending on L (depth of wavelet decompo-417

sition), chosen feature extraction, value of k, size of training base NA and418

used database.419

Experimentally for most feature vectors best results are obtained with420

L = 3 and k = 3. The larger the training base the better the recognition, so421

in this comparative study we consider rather small training bases to put the422

simulation into a rather hard context. The st. dev. measure globally gives423

slightly better performance than energy, so we will only consider the st. dev.424
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feature in the sequel.425

The choice of Q-Shift filters in Dual-Tree algorithm has almost no influ-426

ence on recognition rates (gain is less than 1% recognition). A reason is that427

this modification does not affect the first scale (see [Kingsbury, 2001]) so 1
3

428

of features remain the same. So we keep 9-tap filters.429

For every result presented in the paper, we keep :430

• Depth is L=3 (9 subbands) so feature vectors are of size 9 for DWT/QWT431

magnitude and phase features, size 18 for QWT combined magnitude432

and phase, size 36 for CWT magnitude from [Celik and Tjahjadi, 2009]433

and size 72 for CWT magnitude and phase from [Celik and Tjahjadi,434

2011].435

• Number of considered neighbors is k = 3;436

• Size of the training base per class is NA = 10 (resp. NA = 30 and437

NA=10) for Brodatz (resp. TC12 and TC14) database;438

• Magnitude measure is a standard deviation;439

• 9-tap Q-Shift filters are used in the Dual-Tree algorithm.440

We now present experimental results in terms of recognition rates for DWT/QWT441

magnitude based features, QWT phase features, combination of QWT mag-442

nitude and phase and CWT based features.443

5.1. Magnitude based descriptor : comparing DWT and QWT444

Some cross validation results for magnitude based feature extraction are445

illustrated Fig. 3. Recognition rates are expressed in terms of mean, standard446
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deviation and extrema of the rates obtained for each class with the various447

training bases. Class labels are on the x-axis and recognition rate on the448

y-axis. For each class the vertical line spans all 100 obtained rates between449

the minimum and the maximum, the bar is centered on the average rate and450

is high two times the standard deviation.451

Note that globally, both transforms have equivalent performance. We452

do not present results for all classes because they are too numerous but we453

selected the cases where difference of performance is maximum between DWT454

and QWT. These extreme cases could give clues about what type of texture455

is better recognized by either the DWT or the QWT.456

We propose to analyze the results through particular cases to highlight457

QWT characteristics. Observing Fig. 3, we see that texture Brod. 67 con-458

tains numerous very similar and randomly placed small black disks. Shift-459

invariance of QWT magnitude is essential to code those structures with vari-460

ous positions; whereas each disk is surely quite differently coded in the DWT461

because of small space shifts. In this case QWT gives a more robust descrip-462

tion of texture - keeping everywhere a coherent representation of the disks -463

what explains the superiority of QWT for Brod. 67.464

Let us call ‘common’ orientations multiples of 45◦ i.e. horizontal, vertical465

and diagonal. We can globally see that textures better recognized by QWT466

have many structures right aligned with ‘common’ orientations. Those for467

which QWT is less efficient rather contain structures oriented between them.468

According to us, this is because QWT phase contains some information469

about these intermediate orientations. So by using only magnitude, superior-470

ity of QWT is not visible at those cases where many ‘intermediate’ structures471
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are present. But for other cases, this superiority is experimentally confirmed472

as the structures are better encoded by QWT magnitude than by DWT -473

giving higher recognition rates.474

To conclude about magnitude based feature extraction, global recognition475

performance is quite similar between DWT and QWT. But if we look closer at476

particular textures we see that shift-invariance of QWT improves recognition477

of textures made of ‘randomly located similar structures’; and that structures478

aligned with a multiple of 45◦ are better represented in QWT magnitude479

while other orientations must have their related information in the phase.480

And works in [Bülow, 1999] and [Chan et al., 2008] show that QWT phase481

can provide a powerful image analysis; making clear that the QWT is not482

fully exploited here. Now let us use QWT phase to improve recognition and483

outperform DWT.484

5.2. Contribution of QWT-phase485

Quite surprisingly phase based features give performance comparable to486

magnitude as shown Fig. 4 - that also contains next results. This is a very487

good result. Weighted st. dev. gives much better description than simple488

st. dev. what confirms the relevance of less considering phase data of low489

magnitude coefficients. In the sequel we only consider weighted st. dev. as490

phase measure.491

All cases occur : for a same texture both magnitude and phase analysis492

may be efficient or not - the results are very heterogeneous. It is interesting493

to note that many textures are very well analyzed either by QWT magnitude494

or by QWT phase - what suggests that the two feature vectors are comple-495

mentary. The former gives frequency information like DWT and the latter496
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Figure 4: Cross validation results for some classes of the 3 databases. See also Fig. 3.

Performance of each class is shown for the measures : DWT magnitude st. dev. (white),

QWT magnitude st. dev. (light-gray), QWT phase weighted st. dev. (dark-gray) and QWT

combination of magnitude and phase (black).
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Figure 5: Final classifier performance for the DWT feature vector and the final QWT

feature vector using both magnitude and phase.

provides additional geometric information.497

We can hardly identify some kind of textures better recognized by either498

magnitude or phase but the recognition rates really show that magnitude499

and phase are completing one another; so it seems natural to combine both500

feature vectors.501

27



Brodatz TC12 TC14

Mean Dev Mean Dev Mean Dev

DWT Mag. 64% 9 83% 4 56% 8

QWT Mag. 64% 9 82% 4 51% 8

QWT Phase 65% 8 79% 4 58% 6

QWT Comb. 76% 7 91% 4 63% 6

CWT Mag. 65% 8 87% 4 62% 7

Table 1: Final recognition rates.

5.3. Combined QWT magnitude and phase502

The final feature vector based on QWT magnitude and phase provides503

very good classification performance with an improvement of about 10%504

recognition with respect to DWT. We present global recognition rates (mean505

rate and standard deviation of obtained rates according to cross validation) in506

table 1. As we cannot present every texture class we selected interesting cases507

- illustrated Fig. 4 - with recognition rates for respectively DWT magnitude508

based feature extraction, QWT magnitude, QWT phase, and final QWT509

feature vector. A sample is displayed under each class of the x-axis. We hope510

such an illustration will give some insight about visual texture characteristics511

that we could link with QWT properties. Fig. 5 shows more global results512

between DWT and QWT to conclude about the general improvement of513

classification thanks to the QWT. We have about a dozen ‘bad’ cases but514

the overwhelming majority of classes are better recognized by QWT and515

figure 5 is very convincing about its superiority.516

Now we discuss some particular cases to analyze why the QWT is better517
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or worse than DWT.518

A first remark is about texture Brod. 52 that is strikingly better analyzed519

by the QWT phase feature vector with 100% recognition. The reason is this520

texture contains only horizontal, vertical and - mostly - diagonal structures521

that makes ψ very significant.522

Most of TC14 classes for which DWT is better are visually similar (see523

Fig. 5 TC14 55 and 56), almost uniform and hard to distinguish. These524

images have a pure stochastic behavior so the orthogonality of the DWT is525

better adapted than the structural analysis brought by QWT - yet this issue526

is open.527

The same remark as in section 5.1 about shift-invariance still holds for528

textures Brod. 52, TC14 14 and TC14 5.529

Note that most textures for which the single QWT magnitude is very530

worse than DWT (see Fig. 3) are better represented with the final feature531

vector which outperforms the DWT. This result shows that QWT magnitude532

and phase are strikingly complementary because both give separately bad533

results whereas very efficient when combined. Class TC12 20 (Fig. 4) makes534

a good example.535

Finally, this use of quaternionic representation of textures greatly im-536

proves an analogous standard wavelet based texture analysis. We proposed537

a wavelet based feature vector that yields an average recognition rate about538

10% better than standard wavelets; by using both QWT magnitude - con-539

taining similar information than DWT but with shift-invariance - and QWT540

phase that provides structural information. Standard DWT does not allow541

using such a phase - making it a less coherent representation. With this542
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texture classification we validate the recent QWT from an application point543

of view as superior to standard DWT.544

We will now present experimental results with CWT. Recall that CWT545

coefficients are fundamentally different from QWT coefficients in terms of546

analysis and interpretation of their geometric meaning. Even if both are547

computed by a separable Dual-Tree algorithm the combination of the 4 re-548

lated filterbank outputs is different. In the QWT case the 4 outputs are549

seen like Cartesian components of 3 quaternion valued subbands while for550

CWT some sums and differences of outputs are considered to be real and551

imaginary parts of 6 complex subbands - see [Selesnick et al., 2005].552

This is why analysis provided by CWT has not much to do with QWT;553

and we will see in the next section that kinds of texture better recognized by554

QWT or CWT - as well as global performance - are not the same.555

5.4. Results with complex wavelets556

Results obtained with features from [Celik and Tjahjadi, 2009, 2011] have557

to be studied carefully. Recall that we present it to compare with literature558

and that we considered only the feature extraction part from cited references.559

So result we get are not comparable with the very high performance of orig-560

inal papers partly due to a clever choice of classification algorithm together561

with proper normalization and feature selection/normalization. In addition562

size of training bases may differ.563

Globally, the first feature descriptor based on CWT magnitude provides564

better recognition than DWT but worse than final QWT based features;565

which is an expectable result. Second feature vector based on both CWT566

magnitude and phase gave very bad recognition (about 5%). We observe that567
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Figure 6: Complex wavelets based classification performance with feature vector described

in [Celik and Tjahjadi, 2009]. We selected cases of biggest difference of performance

between DWT/QWT and CWT.

CWT phase measures are numerically unstable because no special weighting568

is used. In practice many absurd angles - related to the numerous zero569

coefficients - discredit variance end energy features processed on phase data.570

In [Celik and Tjahjadi, 2011] a PCA based feature selection is done before571

classification - what we did not do - so phase based features may be discarded572

by this stage. Thus we will only study magnitude based analysis from [Celik573

and Tjahjadi, 2009].574

We show Fig. 6 classification results with the first feature vector [Celik575

and Tjahjadi, 2009] in comparison with DWT based st. dev. and QWT based576

final feature vector. Like previous figures, we present only cases of biggest577

difference between different methods.578

As global rates lie between DWT and QWT (see table 1) we can conclude579

that - by restricting ourselves to simple global features - the oriented behavior580
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of CWT together with shift-invariance of its magnitude can improve a DWT581

based analysis but the proposed QWT-phase analysis performs better.582

An example of the advantage of CWT directionality is texture TC14 25583

(Fig. 6). This texture class exhibits straight lines with an orientation around584

75 ◦. This is precisely the orientation on which one of the 6 CWT subbands is585

aligned. The CWT is well suited in this very particular case so the recognition586

performance is much better than DWT/QWT.587

However directional analysis brought by CWT is globally not as powerful588

as the 2D quaternionic phase concept of QWT. The 6 subbands of CWT589

offer better frequency selectivity than DWT but it still carry some similar590

“energy” information. On the other hand the fundamental relation between591

QWT ψ-phase and geometry provides a new kind of additional information592

that complements “energy” data. Finally our results completely confirm that593

quaternionic wavelets provide better geometric information than DWT and594

CWT for a texture analysis purpose.595

6. Conclusion596

The Quaternionic Wavelet Transform is a recent improvement of standard597

wavelets that aims to yield coefficients with a shift-invariant magnitude and598

a phase containing geometric information. This transform makes use of a599

2D generalization of the analytic signal : a classical powerful tool for signal600

analysis. This generalization due to Bülow gives a coherent local analysis of601

2D signals and was naturally embedded into a wavelet framework to overcome602

common drawbacks of standard wavelets. Redundancy brought by QWT603

phase adds complete structural information about local features of images.604
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The QWT is not straightforward to interpret and requires a quite sophisti-605

cated theoretical framework. But here we gave an application study crossing606

the gap between that framework and the way to use this tool; by showing607

its superiority over standard wavelets in a texture analysis context. With a608

large texture database our QWT based feature extraction gives globally 10%609

better recognition than DWT. This improvement is due to shift-invariance of610

QWT magnitude together with the use of QWT phase that contains useful611

structural information for texture analysis.612

A comparison is also made with complex wavelets that have been used613

in literature in similar works. Advantage of complex wavelets is good di-614

rectionality; which is confirmed in practice by better recognition for some615

highly oriented textures. But its complex phase fails to provide such geo-616

metric information as this of QWT. As a result QWT outperforms complex617

wavelets.618

Our classification algorithm is a first approach as we focus on studying619

QWT so there are many ways of improvements in terms of pattern recog-620

nition. In particular, spatial analysis of subbands is not used and the clas-621

sification proposed in [Arivazhagan and Ganesan, 2003] for example could622

be improved by using a comprehensive use of QWT phase to provide an623

excellent classification that could compete with state of the art algorithms.624

Our future work implies the monogenic wavelet transform - an improve-625

ment of the QWT based on another generalization of the analytic signal :626

the monogenic signal. This transform is harder to implement but can lead to627

a more coherent signal analysis thanks to better properties. Monogenic mag-628

nitude is rotation invariant and the phase is easier to interpret than QWT629
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phase.630
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