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Abstract

Size Theory has proven to be a useful geometftimablogical approach to shape analysis and comparisogiraty
introduced by considering 1-dimensional properties ofpgsadescribed by means of real-valued functions, it has
been subsequently generalized to take into account mukiasional properties coded by functions valuedIn
In the context of Size Theory, this generalization has lethtiwduce a shape descriptor calledlimensional size
function and a distance to compare size functions, namelktienensional matching distance

This paper proposes a novel computational framework tow#hlthe 2-dimensional case of Size Theory. More
precisely, some new theoretical results about approximgdlie 2-dimensional matching distance are presented, lead
ing to the formulation of an algorithm for its computatiorp (o an arbitrary error threshold).

Keywords: multidimensional size function, Size Theory, shape coispar

1. Introduction

Shape Comparison and Retrieval are challenging issuesmpQter Vision, Computer Graphics, Image Analysis
and Pattern Recognition. Shape models, including 2D imagé$8D objects, possess a considerable amount of visual
and semantic information that, to be fully exploited, netrasdefinition of powerful description, classification and
retrieval techniques [22, 23]. Recently, Persistent Togpl including Size Theory and Persistent Homology — has
considerably grown in popularity and has been proven toigeolioth theoretical and computational tools for shape
comparison.

The main idea behind this research field is to take into adctmpology shape features with respect to some
geometric properties conveyed by real functions definedhershape itself [3, 9, 16]. In formal settings, that means
that a shape is represented by a (fAirp), whereX is a topological space ang: X — R is a continuous real-valued
function calledmeasuring (or filtering) functionSize Theory was introduced in the early 90’s to allow onetéoes

quantitatively some qualitative information abdd ¢). In particular, itssize function/(x,) is a shape descriptor
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encoding the evolution of the 0-th Betti number in the subleets ofX induced byyp. Size functions are complete
and stable descriptors, admitting a simple and compactseptation made up of a multiset of points in the Euclidean
plane, and are compared using a suitable matching dist8hce [

In their original formulation, size functions have been @hdstudied and applied to Pattern Recognition prob-
lems [4, 7, 13, 24, 25]. Over the years, similar ideas have begroposed by Persistent Homology according to a
homological approach and have found applications in shapeription and data simplification [14, 15].

Considering the general scenario of shape analysis, sgiegl-valued measuring function is not enough to cope
with the shape description problem. In fact, data are ofteracterized by two or more properties; this happens for
example with physical simulations, where several measeinésrare made about an observed phenomenon, or when
data have multidimensional features, such as colors in @B Rodel. These considerations have recently drawn the
attention to the study of a multidimensional setting [1, 214, 19]. The term multidimensional, or equivalerity
dimensional, is related to considering measuring funstiaking value irR, that is,@ : X — RX, and the subsequent
extension of shape descriptors to this case.

Despite the need of managing multi-dimensional data, hahgoh has been done from the point of view of
applications. This is due to the fact that@mplete, discrete and stablepresentation for the Persistent Topology
shape descriptors seems not to be available in the multidifoeal setting, dierently from what happens in the 1-
dimensional situation. The arising computationdfidulties have been faced followingftéirent strategies [1, 5, 10],
but not completely solved.

As a partial solution, in [1] the authors studied the cone#X-dimensional size functiorend proved that the
restrictions of ak-dimensional size function to suitable subsets of its dontain out to be 1-dimensional. This
allowed the definition of a stable matching distance betvedimensional size functions, namely tkelimensional
matching distancebuilding on existing results for the 1-dimensional casefddtunately, [1] does not explain how to
approximate the matching distance in a way to obtain a gootpoomise between computational cost and quality of
results. Indeed, the straightforward application of thehmeé could require a very huge number of calculations (see
also [2]).

This paper yields a theoretical and computational solutibthe problem wherk = 2. The theoretical results
proven in Lemma 3.1, Lemma 3.3 and Theorem 3.4 allow us to dd@ computational error in evaluating the
matching distance between 2-dimensional size functionsth®se bases we develop an algorithm to approximate
the 2-dimensional matching distance up to an arbitraryreémeshold, which represents the maximum admissible
error. Experimental results on 3D objects represented Hgseimeshes demonstrate thgogency of the algorithm
to reduce the number of calculations required to approxartted matching distance.

The remainder of the paper is organized as follows. In SeQiwve overview main definitions and properties
about size functions; the study of the 1-dimensional caseti@ 2.1) is necessary as it provides the basis for the
definition of a complete representation for size functianshie 2-dimensional case (Section 2.2). Our new results
are given in Section 3, along with the novel algorithm we g (Section 3.2). Then, experiments on 3D models
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Figure 1:(a) The topological spack and the measuring function (b) The associated size functidfx ). To compute the value dfx) at the
point(c, d), it is suficient to count how many of the three connected components sutblevelX({¢ < d) contain at least one point 6Ky < c): it
can be easily checked thgk ) (c,d) = 2.

(Section 4) are shown to validate our proposal. Some digmss Section 5 conclude the paper.

2. Preliminary results

In this section we review some basic concepts that have berdiced in Size Theory. For further details the

reader is referred to [3].

2.1. 1-dimensional size functions

Size functions are shape descriptors that code the topallogiolution of the sublevel sets of a spageaccording
to the increasing values of a real functipn X — R defined on it;p is called Xdimensional measuring function
Indeed, size functions count the number of connected coemiswhich remain disconnected passing from a lower
level set ofX, X, = {P € X : ¢(P) < u}, to another. Since the sequence of lower level sets is dhyethe real
function ¢, size functions encode the geometrical propertieX chptured byp in the topological evolution oK.

More formally,

Definition 2.1. Given asize pair(X, ¢) with X a non-empty, compact and locally connected Hau$dpiace ang a
continuous function, and denotidg = {(u,v) € R x R : u < v}, thesize functiorof (X, ¢) is {;x,) : A* — N with
{(x) (U, V) equal to the number of connected components of the lowel $et, = {P € X : ¢ (P) < v}, containing

at least one point of the lower level s&t.

Figure 1 shows an example of a size gairy) together with the size functiofix,). Figure Xa) shows the size
pair (X, ¢), whereX is the curve drawn by a solid line, agds the ordinate function. Figurl) shows the associated
1-dimensional size functiofix). The domaim* = {(u,v) € R? : u < v} is divided into regions. Each one is labeled
by a number, coinciding with the constant value that, takes in the interior of that region.

Roughly speaking, each 1-dimensional size function careba 8s a linear combination (with natural numbers
as codicients) of characteristic functions associated to thegjbtysunbounded) triangles laying on the domaih
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[17]. The bounded triangles are of the foffo,v) € A* : @ < u < v < B}, while the unbounded ones are of the
form {(u,v) € A* : n < u < v}. Hence, a simple and compact representation is obtainedsnciating the set
{(u,v) € A* : @ < u< v < pB}tothe point(a, ), and the sef(u,v) € A* : n < u < v} to the point at infinity(n, o). The
points of a formal series having finite coordinates are dalleper cornerpointswhile the ones with a coordinate at
infinity are said to be&ornerpoints at infinityor cornerlines For example, the size functidgix,, shown in Figure (b)
admits the representation by formal series givem byp: + p2 + ps + pa, Wherer is the only cornerpoint at infinity,
with coordinateg0, co) [17].

The combinatorial representation of size functions usorgerpoints implies that size functions can be compared
via a suitable distance between formal series, namelynistehing distancesee details in [12]. Roughly speaking,
the matching distancgaich Can be seen as a measure of the cost of transporting the jgoimtsrof a 1-dimensional

size function into the cornerpoints of another one.

Vi, v r Vi
p > p
L r
ol g, 12 o J_ Iy
2 q p matching \4-—,
2 —_—
r+p+q r+p’
@) u (b) u (c u

Figure 2: @) The size function corresponding to the formal seriesp + g. (b) The size function corresponding to the formal serfes p’. (c)

The matching between the two formal series, realizing the nragaistance between the two size functions.

Formally, let us consider the 1-dimensional size functiéng, and their multiseC; (respectivelyC,) of cor-
nerpoints forfy (resp. ¢;), counted with their multiplicities and augmented by addihe points of the diagonal
{(u,v) € R? : u = v} counted with infinite multiplicity. If we denote bi* the setA* extended by the points at infinity

of the kind(a, «), i.e. A* = A* U {(a, ) : a € R}, the matching distana@aicn(f1, £2) is then defined as
o €l

whereo varies among all the bijections betwe€nandC, and

6 ((uv), (U, v)) = min {max{lu — Ul V-V, max{v;zu, v - u }}

for every(u,v), (U, V') € A*, with the convention aboub thatco — v = v — co = co whenv # oo, 0o — 0o = 0, 3 = o,
|oo| = o0, min{c, co} = ¢ and maxc, co} = 0.

The pseudometricy measures the pseudo-distance between two paingsand(u’, v') as the minimum between

1A pseudo-distancd is just a distance missing the conditidigX,Y) = 0 = X =Y, i.e. two distinct elements may have vanishing distance

with respect tal.



the cost of moving one point onto the other and the cost of ngpbioth points onto the diagonal, with respect to
the max-norm and under the assumption that any two pointeofltagonal have vanishing pseudo-distance. As
different 1-dimensional size functions may in general havéfardnt number of cornerpointgyaich allows a proper
cornerpoint to be matched to a point of the diagonal: Thischiag can be interpreted as the deletion of a proper
cornerpoint, see Figure &(

The matching distance is stable with respect to perturbatid the measuring functions. Indeed, the following

Matching Stability Theorem has been proven [11, 12] (se= [818:

Theorem 2.2(Matching Stability Theorem)If (X, ¢), (Y, ¢) are twol-dimensional size pairs with X, Y homeomor-
phic, then qqatch(f(m), ZW)) < infrhxoy Maxex le (X)—y (h(X)) |, where h varies among all possible homeomorphisms
from XtoY.

Remark2.3. The hypothesis that andY are homeomorphic is not so restrictive. Indeed, in [18] & haen proven
that, in most of applicative contexts of pattern recognitithe use of the multidimensional setting allows us to

substituteX andY with a unique compact s& c R™.

2.2. 2-dimensional size functions

Let X be a non-empty, compact and locally connected HauBdpace, as in the 1-dimensional case, @nd
(¢1,2) : X = R? be a continuous function, calleddmensional measuring functiorThe following relations<
and < are considered iR?: for 0 = (ug, Up) andV = (vq,V2), U < V (resp. d < V) if and only if u; < v; (resp.
u < V) fori = 1,2. Moreover, we seffd|| = max_i|ul. For everyd, v € R?, the lower level set is defined as
X(@=<0)={xeX:¢(X)<u, i=12}, whereas we denot&" = {(4,V) e RZ2 x R? : 4 < V.

Extending the definition of size functions to the 2-dimensiacase is straightforward:

Definition 2.4. The (2-dimensional) size functioof the size paiX, ) is the functionf(w) : A* — N, defined by
settingf(w) (4, V) equal to the number of connected components in th&X&e V) containing at least one point of
X(@ =< 0).

To combinatorially represent 2-dimensional size fundionterms of cornerpoints as in the 1-dimensional case is
not straightforward, and consequently to define a stableamgutable distance between 2-dimensional size functions
is not trivial.

The rest of this Section shows how the framework of 2-din@rdi size functions can be reduced to the case
k = 1, by a change of variable and the use of a suitable foliatisimg a strategy similar to the one in [1]. The main
idea is to provide a parameterized family of half-planeR#nx R?, and prove that the restriction of a 2-dimensional
size functioné’(x,sz) to each of these half-planes turns out to be a particulanfedsional size function. This implies

that we can build on the results proved in the 1-dimensioasé ¢o develop the theory in the 2-dimensional case.



First of all, let us define the collection of half-planes &ihng A*. The foliation we introduce here slightlyftérs
from the one given in [1, Def. 7] and corresponds to a re-patarization of the half-planes that does nfieet the

stability results (see [8] for details).

Definition 2.5. A pair (/Tﬁ) with 1 = (11, 1) € R2 andg = (B1,8,) € R?, is linearly admissibléf: (a) 11,1, > 0;
(b) A1 + 12 = 1; (c) 81 + B2 = 0. Denoting byLadm the set of all linearly admissible pairs & x R?, for every
(1.8) € Ladm, let us define the haif-plang; ; of R2 x R2 by the parametric equatiois= o1 + 3, V = 7.1 + 3, with

o,Te Rando < 1.

The next proposition shows the main properties of the Ctixﬂec{n(j »)}(ﬂ P
P))(1)eLadm

Proposition 2.6. For every(ti,V) € A* there exists one and only one linearly admissible p&jf3) such that(d, v) €

n(14) Moreover, for ever(/l,ﬁ) € Ladm, the half—planer(w is contained ilA™.

Proof. If (d,v) € A* and(1,§) € Ladny, it can be easily verified that= o1+, V = 71+ if and only if, fori = 1,2,

Vi — Uj U2 Vi—Vi 5, U
/lizzl—l’ Bi = ' le' : ’11, o=U+U, T=Vi+Vo
Zj:l(vj _Uj) Zj:l(vi —u,—)
On the other hand, it s trivial to check that each half-plane, : 0 = od+8,V=11+F witho,r € Rando < 1, is
contained inA* provided tha(,§)  Ladmy. O

On the basis of Proposition 2.6 it is possible to reduce thar#nsional setting to the cake- 1.

Theorem 2.7(Reduction Theorem)Let (/T[;’) € Ladm, and let F(%) : X = R be the function defined by setting
e1(X) =B1 p2(X) - B2
A1 ’ A2 '

F7. . (X) = max

B)

S

Then, for everyt,v) = (o1 + 4,71+ f) € (1) it holds thatf(y ;) (0.9) = f(x »
)
The proof of Theorem 2.7 can be straightforwardly deriveafithe proof of [1, Thm. 3].

) (o, 7).

Roughly speaking, the Reduction Theorem 2.7 states thataoh half-plane of the collectio{m(m)}(jﬁ)eLadmz,
the restriction of a given 2-dimensional size function cailes with a particular size function in two scalar variahle
i.e. a 1-dimensional one. A firstimportant consequencesiptssibility of representing a 2-dimensional size functio
f(xﬁ) by a collection of formal series of points and lines, follagithe machinery described in Subsection 2.1 for the
casek = 1. Therefore, the matching distance between 1-dimensigmralfunctions can be applied to every half-
plane of the foliatior{n(m)}(zﬁ)emm, showing that it is stable with respect to perturbationshefmultidimensional
measuring functions and to the choice of the leaves of thatifmh (cf. [1, Propositions 2 and 3]). These stability

properties lead to the following definition of a distancevsstn 2-dimensional size functicn@ee also [1, Def. 8)).

2[8] has proven that the distance in Definition 2.8 coincidéh the restriction to the 2-dimensional case of the one ginéh, Def. 8], which
is stable.



Definition 2.8. Let (X, ) and(Y, J) be two size pairs, witkg, ¢ valued inR2. The 2dimensional matching distance

Dmatch(f(xﬁ), K(Y J)) is the (extended) distance defined by setting
Dmatch(f x&2) L v ) = sup d;z (f X&) L v ),

where

d(iﬁ) (f(x,nﬁ)’ f(Y,lﬁ)) - |I111|r2l i dmatCh[f(x’Fizﬁ))7 K(Y’Ffiﬁ))] .

Taking a non-empty and finite subs&ic Ladm and replacing SURg)eLadm, by MaX; glea in Definition 2.8, we

obtain a stable and computable pseudo-distance betwernehsional size functions.

3. Efficient computation of the 2-dimensional matching distance

This Section describes a method able to automatically appede the 2-dimensional matching distari2gatch
between two 2-dimensional size functidf@ﬁ) andt’(w) up to an error thresholel Using the notation introduced in
Section 2.2, this means to opportunely define the subset.adm so as to reach a compromise between computa-

tional cost and quality of approximation.

3.1. New approximation results
Given the threshold valug our algorithm automatically provides as output the diswﬁ“atch(f(m), é’(w)) such

<e.

that Dmatch(f(x,sz)a f(y&)) - Smatch(f(x,g), Z(YJ))
Let us consider the 2-dimensional size pékKsg) and(Y, 117) and assume that andY are homeomorphic, so that

Dmatch(f(xﬁ),f(m d;)) < oo (this is a not so restrictive requirement as discussed indRle3). The first step toward

the formulation of our algorithm is to estimate the changithgl(m) (5(x,¢)7f(y,¢7)), the pair(Z,ﬁ’) varying inLadny,
i.e. when moving from one leaf to another in the half-plar&@&fmn of A*.

We start by observing thatadm = {(Zﬁ) = (1,12, 51,B2) ERZXRZ: A1+ o =1,81+B2=0,0< A4 < 1} =
{(a1-ab,—b) e R2xR2: 0 < a< 1}. In what follows, for everyl = (a, 1 — a) with a € (0, 1), we shall denote the
value mifa, 1 — a} by u (/T)

The next Lemma 3.1 claims that the evaluatiord@fﬁ) (K(W), f(w)) can be avoided in a large partlofdnmy. Fix

C = max{max.x [|¢ (V)]|., - maxey [[# )]}, and consider the set

Ladm, = {(a,1—a,b,—b) € Ladm : |b| < C}.

3The term “extended” refers to the fact that, if the spakesndY are not assumed to be homeomorphic, the multidimensional matching

distanceDmatch Still verifies all the properties of a distance, except fa ftct that it may take the value



Lemma 3.1. Let(lﬁ) € Ladm \ Ladn, with(ﬁ, ) =(a,1-a b, —b). Then it follows that

u(X

Nl

dmatch(f(x ¢1),5(Y¢1)) ifb < -C;
-a dmatCh(g()Qtpz)’ f(Ylﬁz)) , ifb>C.

diis) (Qw)’ "(w?)) =

=

‘S:

Proof. It is suficient to observe thdi < —C implies F(‘{ 1) (x) = M for everyx € X, and Ff, i)

everyy € Y, while b > C implies F( )(x) = “’2(x)+b for everyx e X and F( )(y) = ‘”Z(y)+b for everyy € Y. From the

(v) = 242 for

definition of the 1-dimensional matching distartg:cn (See also [8, Proposition 2.2]) the claim easily follows.[]

Remark3.2 From Lemma 3.1 the maximum df; (f(m) (v )) over{(1,b) = (a,1-a,b,—b) € Ladm, : b < —C}

is assumed whea < 3 1 andit equalsjmatch(f(xw),f(y,h)) Analogously, the maximum value fd(lg) (K(ng) (¥ ))

over{(/l, E) € Ladm : b > C} is assumed whea > 1, and it equalsimatch(f(x,w), f(wz)).

According to Lemma 3.1 and Remark 3.2, in order to know thaeﬁ;d( )(5(x¢) (¥ )) When(/l ,B) € Ladmp \
Ladni, it is suficient to consider just two suitable points of that regiom.ethe points whose coordinates are
(3.3.C+1,-(C+1)and(3,3,-(C+1).,C+1).

It only remains to study the changing dtfﬁﬁ) (K(XW) (¥ )) When(/l ﬁ) € Ladni. To this aim, we need the next

result.

Lemma 3.3. Assumd 1, §) € Ladng and(1',7') € Ladmy, with H(/Tﬁ) - (1.7)

< 6. Then it follows that

Uig) (oo ) = o) (o G| < 0 (80 +2).

Since the proof of Lemma 3.3 is rather technical, we prefeotdine it in Appendix A.

The previous Lemmas 3.1 and 3.3 can be merged together to thxéefollowing more general result.

Theorem 3.4(Error Bound Theorem)If (1.4). (1.7) € Ladm, and“(i,ﬁ) - (1.7)

< ¢, then it follows that

<6-(16C+2).

Yag) (o) ) ~ e ) (C0xa)- €
Proof. Set(1,4) = (& 1-a.b,-b), (1.7') = (@.1-a.b’, -b¥). By Lemma 3.3, we only need to prove our statement

when(iﬁ),(i’,ﬁ’) e Ladm \ Ladn,.
Let us first assume thatb’ < —C. By Lemma 3.1, we have that

1) _n(¥) (1) _u(?)
i) {Ccar ) = e (- )| = mmenlloo ) |57 = | s 20| =2 = ) @
where the last inequality follows from Theorem 2.2.
If M( ) = aandu (/1’) = &, then it holds thafﬂ (/1) = 1. Therefore, in (1) we ha\)ég - ‘@ = 0, thus

implying that =0.

i) (oo €y) ~ i) (o )



If () = aandyu (1) = 1- &, thena < 4, & > § and we can write (observe that(1) — u ()| < la- &)

() _w(@)

a a

au(1)-au(?)

n() @ -2 +a(u(d) - (1))

(1) - 3 (1) + au(d) - au (7)) _

a—-a aa-a a-a
add-a aa-al_la-al_
aa aa a

49, )

thus implying tha{d(iﬁ) (Z(X,@)’ K(Y,:Z)) - d(Z,’B»,) (f(x,@)’ f(w)) < 85C, satisfying the claim sinces® < ¢ (16C + 2).

Similarly, we can show that,jf(i) =1-aandu (/T’) =&, then < 86C.

i) (o G~ ) e G
If u(1) = 1-aandu(¥) = 1- &, then it holds thag, & > 3. Moreover,”(% = L2 '@
u 1 u b i . . .

W) )] B4 < 45, leading to the mequahtﬁm (f(x,sz)af(w)) - d(Z’,E’) (f(x,ﬁ)’f(v,,,/?))

a a

the claim since 8C < 6§ (16C + 2). Thus, wherb, b’ < —C our statement remains proved.

= £Z and hence

< 8C, which satisfies

Similar arguments can be used to prove our stateménbif> C.
To conclude the proof we need to consider the d¢hisgy’| > C with bb' < 0. SinceH(/T,ﬁ) - (/T’,ﬁ’)
follows thatC < g Moreover, the Matching Stability Theorem 2.2 implies tda;tch(é’(x,‘p,),f(w)) <2Cfori=1,2.

<4, it

In the light of these considerations, we can then write

IA

max{dyig (Ccxa) ) ) () )} < ®)
max{cmatch(£0¢en)» Cou)) - Omatcn(Eoxga)s Covu))| < 2C <6, (4)

% (Z(W)’ {’)(Y,«Z)) ~s) (ZW)’ K(Yﬁ))

IA

where the first inequality in (4) is a consequence of LemmaQldarly, (3)-(4) imply the claim, thus concluding the

proof. O

Remarl3.5. Itis possible to prove that(iﬁ) (Z(w), K(Y, J)) < 2Cfor every(i, ﬁ) € Ladm, (this is a trivial consequence

< 2C. Now, let us observe that & > % then L <

of [1, Thm4]), thus| d(Z,E) (f(X,J)’ Z(Y,LZ)) - d(j/ﬁ') (f(X,j)’ Z(Y,LZ))
6 - (16C + 2). Consequently, the inequality claimed by the Error Bounddrem 3.4 is trivial whe@ > %
The results proved in Lemma 3.1, Lemma 3.3 and Theorem 3.4e&a&xploited to develop an algorithm able to

effectively approximate the 2-dimensional matching distah,ggch(é)(w), K(Y’ J)).
By Definition 2.8 it follows that, in general, a direct comatidn of Dyatch f(x,@),f(w) is not possible, since we

should calculate the valu; 5 (é’(x‘@), t’(w)) for an infinite number of pairgi, 5). On the other hand, as stressed at the

end of Section 2, if we choose a non-empty and finite sulset_adm, and substitute Sl('Pﬁ)eLam with maﬁiﬁ)e A

in Definition 2.8, we get a computable pseudo—distance&@ych(ﬁ(w), f(Y,J))' to be used in concrete applications.
If we think of ﬁmatch(f(w),f(m J)) as an approximation dDmatch f(x,@)f(y, J)) it is reasonable to guess that the
larger the seA C Ladny, the smaller the dierence between the two values can be. On the other hand, #ikeism
the setA, the faster the computation @ matcn iS. Following these considerations, we implement an allgoriin
order to find a sefA representing a compromise between these two situationditidwailly, given an arbitrary
9



real valuees > 0 as error threshold, we wart depending ore in a way that the outpuﬁmatch(f(w),Z(W)) =

MaX g)ea d(jﬁ) (Z(X@:)’ b, J)) satisfies the inequalit}Dmatch(t’(xj), U, J)) - Dmatch(é’(w), b, J))
The next section describes the algorithm in detail.

<e.

3.2. Algorithm

First of all, let us observe that the deaidmy = {(a,1 - a,b,—b) € R?> x R? : 0 < a < 1} can be identified with
the subset oR? given by{(a,b) € R? : 0 < a < 1} = (0,1) x R. More precisely, a bijective correspondence exists
betweerLadni, = {(a, 1 - a,b,-b) € Ladny, : |b| < C} and the sef0, 1) x (-C, C), as well as betweebadn \ Ladnj,
and the se(0, 1) x (R \ (—C, C)). Therefore, the finite sek we are looking for can be associated with a finite subset

of (0, 1) x R. The setA can be computed as follows.

1. Start by fixing the error threshok] and setting = 1—16 (cf. Remark 3.5);

2. Initialize® = {P,}, where the point®, define a finite and regular (square) grid®1) x R. Choose the se®
in a way that, taking the square centeredPjywith side equal to & i.e. Qs (P,) = (P € R? : ||P, — Pl < 6},
the collectionQ = {Q; (Pn)} covers the sef0, 1) x (-C,C) (see Figure 3 and the following pseudo-code for
details about the set® and@). Under these assumptions, and due to the bijective camnelgmce existing
between(0, 1) x R andLadny, by Remark 3.5 and Theorem 3.4 we can control the variatidhefalues of
d(Zﬁ) (f(xﬁ), f(v, J)) associated to the points in each &#(P,), and hence inadni;

3. Take the two point®_ = (3, (C +1)),P, = (3.C+1) € (0. 1) x (R \ (~C.C)). Lemma 3.1 allows us to com-
pute the maximum (Ill(m) (f(x,ﬁ)’ Z(Y,J)) overLadnyp\ Ladn just by considering the valuei(;j_ﬁ_) (f(x,ﬁ)’ Z(Y,J))
andd; ) (f(w),fw)), with (1.4.) = (5 4.-(C+1),C+1) and(1.4,) = (1.5,C+1-(C+1D). By
Remark 3.2, this is equivalent to computﬁ-amh(f(xw), é’(w,l)) anddmatch(f(xw), {’(W,Z));

4. For everyP, = (an, by) € P, consider the associated p@fh,ﬁn) = (an, 1 — an, bp, —by) € Ladm, and compute
the valued(znﬁn) (f(w), K(Y) J));

5. Compute the maximum between raax {d(in,ﬁn) (f(xﬁ),f(m gﬁ))}’ dmatch(f(xm),fwl)) anddmatch(f(x,¢2),f(mwz))
to obtain a first approximation (Dmatch(é’(w), K(Y, J)), sayl5. Now,

(a) If the inequalitys - (16C + 2) < & holds, by Definition 2.8 and by applying Theorem 3.4 it folkthat

Dmatch(f(w),f(\( J)) - 5‘ < &. Therefore the algorithm ends, giving as outﬁ*tatch(f(x@),f(x J)) =D.
Clearly, the sefA considered for the computation ﬁfmatch(f(w),é’(w)) is given by the finite set of the
linearly admissible pairs associated wittu {P_, P, };

(b) Otherwise, the algorithm deletes each p&int ® such thaD — d(in,ﬁ*n) (5(><,¢’)’ é’(w)) > ¢§-(16C + 2), and
the associated s€; (P,) € Q. Indeed, Theorem 3.4 ensures tBatvill not be achieved (or exceeded)
by computing the valued(m) (f(xﬁ),f(w)) over these sets. Moreover, ea@h(P,) still in Q is split into

four sets, and each poiR}, is substituted with the four poin®,, ., Pn.—, Pn_+, Pn—— @s shown in Figure

10



4 (see the pseudo-code in Listing 1 for details about thisgutare). Finallyg is replaced by2, and the

algorithm restarts from step 4.

b .P,
: .

o R
: .

of ol oa

: .

_C __"__.__L__
P

Figure 3: The starting covering for the £811) x (-C, C) described in the algorithm at step 2.

Q6/2 (Pn++)

° Pnit

Qs/2 (Pn--) + Q72 (Pns-)
WPo

o Pre_

Figure 4: An application of the procedure described at st The seQ; (Py) is split into the four set€s/2 (Pn-+), Qs/2 (Pns++), Qs/2 (Pns-),
Qs/2 (Pn--), while the pointPy is substituted wittPn_, Pnyt, Pni—, Pn—.

3.3. Computational complexity

As it can be seen in Listing 1, the operations involved in thi@pgutation of the 2-dimensional matching distance
between two modelX andY are the computation of the 1-dimensional size functionX ahdY for each point in

the setP, and their corresponding 1-dimensional matching disteindéne cost of computing a 1-dimensional size

11



function on a mesh witm vertices take®© (mlogm). Computing the 1-dimensional matching distance between tw
1-dimensional size functions tak@s( p2-5), beingp the total number of cornerpoints of the two descriptorsif&ince,

the overall computational complexity depends on the corilpds above, multiplied by the number of points#h
The worst case cardinality of the Rt that is without any point cancellation,@s(z%> that corresponds to cover the
set(-C, C) x (0, 1) with squares of side Sinces = ¢ (16C + 2) we obtainO (%) = O(%ﬂ)z). Denoting byC

the constant@ (8C + 1), the number of point it is O(g) Moreover, we can estimate that the number of iterations
of the algorithm is log &2;1 At any rate, in our experiments this number is considerkdver (up to 4% of the worst

case estimate) thanks to our cancellation strategy, sé®&dc

4. Experiments

We present some experiments on 3D surface mesh models takerife SHREC 2007 database [20]. In these
experiments, the 2-dimensional measuring functigh is(¢1, ¢2), with ¢4 the integral geodesic distance [21] and
the distance from the principal vector defined in [1, Secd&]. The values of are normalized so that they range in
the interval [01]. This implies that the constagtis equal to 1.

We fix the error threshold equal to 5% of the constaft, that is,e = 0.05. Settings = % six iterations are
required to the value= ¢ - (16C + 2) to become smaller than

Figures 5, 6, 7, 8, 9 show some results, obtained by comptlismgpproximation of the 2-dimensional matching
distance on five pairs of 3D models. Each plot shows the vaine@ﬁ) (f(xj), {)(Y,J)) outside and insideadni. In the
color coding, red corresponds to higher values, whereasdatresponds to lower values. Outsldedn, following
step 3 of our algorithm, it is ghicient to comput@lmamh(f(x#,l), f(xwl)) anddmatch(f(xw), f(x,wz))- corresponding to the

values ofd(lﬁ) (K(X,J), K(Y’ J)) at the two point$_ andP,.. respectively. Insidéadny, we use the procedure described

at step 5 of the algorithm to reduce computational costs ataiman evaluation of M) Ladm; d(lﬁ) (f(x,¢)’ Z(Y, J))
up to the chosen error thresheldThe approximated value of the 2-dimensional matchingdist is then the greatest
of the considered values.

If the computation were done using a single tiling stratefyadni, without the point cancellation procedure
introduced above, a total amount of 240284 computationd(g% ({’(X,@),é’(y’ J)) would be required. We show in the
examples that the number of computations actually needaddh lower, up to 4% of the original number. The drop
in the number of computations is more evident when comparjgcts belonging to fierent categories (Figures 5,

6, 7) than when same-class objects are compared (Figurgs 8, 9

5. Discussion and Future work

In this paper we presented a new framework to compute an sippation of the matching distance between 2-
dimensional size functions. More precisely, some new &t@al results have been introduced, in order to bound the
computational error in evaluating the 2-dimensional matgllistance. These results lead to the definition of a new

12



Figure 5: Comparison of an airplane model and an octopus one.vdlues ofd(j E) (t’(xﬁ),t’(\(’ J)) at pointsP, andP_ are equal to 0.178103

and 0.244962, respectively. After 6 iterations we get 034@0as the maximum value taken NM 9 (f(w),é’(y J)) in Ladng,. The approximated

2-dimensional matching distance is given by the greatesteopthvious three values and is obtained by considering 1808fputations, about

the 5% of those needed without the cancellation strategy.

Figure 6: Comparison of a human model and an octopusdw%. (t’(x,@), t’(m)) at pointsP, andP- is equal to 0.118791 and 0.257325 Liadn,

after 6 iterations we get 0.416100 as the maximum value takei(wjgy(f(x’@, f(Y J)). This value is obtained by considering 13588 computations,

thus reducing of the 94% the number of operations.
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Figure 7: Comparison of a human model and a table d&eﬁ) (t’(w), [(Y,.;)) at pointsP, andP- is equal to 0.187161 and 0.159492. Insigeint,

after 6 iterations we get 0.459919 as the maximum value takdcj_kgy(t’(xﬁ), f(w?))- This value is obtained by considering 9480 computations,

thus reducing of the 96% the evaluations done.
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-3
0 02 04 0.6 0.8 1

Figure 8: Comparison of two human modehi(.m) (K(X@),Z(w)) at pointsP,. andP- is equal to 0.176755 and 0.019991. Uadn1, after 6

iterations we get 0.200139 as the maximum value takexﬂtp[)j (t’(xﬁ), (’(Y J)). This value is obtained by considering 88456 computatioastle

37% of the those needed without cancellation strategy.
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Figure 9: Comparison of two human modettw) ([(X»¢)’€(YJ)) at pointsP,. andP- is equal to 0.176755 and 0.060072. Insideint, after 6

iterations we get 0.186972 as the maximum value taked(pﬁ) ([(X,J)’K(Y.Z))' This value is obtained by considering 109536 computatioes,

the 45% of those without cancellations.

algorithm to compute an approximation of the matching distsbetween 2-dimensional size functions in the discrete
case. Our algorithm takes as input an arbitrary error tlmldshepresenting the maximum error we are disposed to
accept, giving as output an approximation of the 2-dimeraionatching distance up to the chosen error threshold.
The algorithm can be used in Computer Vision and Computepl@ca to compare digital shapes, as shown by some
examples on 3D surface models represented by triangle melsias to be noted that the definitionkeflimensional

size functions and their matching distance holds forlafiy]. Whereas in this paper we have found a computational

solution for the cask = 2, we are currently studying how to extend the algorithm thbi dimensions.
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Appendix A: Proof of Lemma 3.3
This appendix is devoted to the proof of Lemma 3.3. To this, aimnfirst need to introduce the following

Lemma A.1. For every y, Uy, V1, Vo € R it holds that
[max(ug, Uz) — max(vy, v2) | < max(jug — vil, [uz — Vzl) . (1)

Proof. Without loss of generality, we can assume that ifutaxu,) = up. If max(vy,v2) = v; the claim trivially

follows. It only remains to check the case n{ax v») = v,. We have that

max(ug, Up) — max(vy, Vo) = Uy — V2 < U = Vq < |up — V| < max(jug — v, [Uz — Val) .
15



In the same way, we obtain méx, v,) — max(uy, Uz) = Vo — up < max(juy — va|, |uz — V|), thus proving that

[ max(ug, Up) — max(vy, Vo) | < max(|uy — val, Uz — Val). O

We are now ready to prove Lemma 3.3.

2, 2

Proof of Lemma 3.3Let (1,5) = (a1 - a b, -b) and(1'.§) = (&, 1 - &, b/, ~b). From the definition 0finatcn (see

also [8, Proposition 2.2]), we can wridm) (f(xﬁ),f(w)) = dmatCh[f(Xp(/T)F‘z ),i’(YH(i)ng )] for every considered
) YT (9)

(1.B). Therefore it holds that

A (Cxo Gn) = e (f(w)’%)‘ - @
dmmd{f(xvﬂ(Z )'Ffm))’ K(Y’”(j )'Ffm))] . dmamh[f(x’“ & )'Ffi/ﬁ')), f(y’” o )'Ffﬂ"ﬁ’))]‘ =9

) dmamh[g(‘”@)'Ffm))’ ot )'Fiw))] ) dmamh[f(w o) ot )'Ffw))]’ “

where the last inequality comes from a trivial extensionhef triangular inequality to the case of four elements. In

this way we can apply the Matching Stability Theorem 2.2 toagleound for each term if@). Indeed, we obtain

o ot o) = B P00 01 ®
() )
dmatch{g(\(#(z)":d(;m)), 5(\(#@ )-F'Ez,ﬁ,))] < ryegxu (/_l)) : Fl(”/f[f) V) - (/T, ) ) F(wj,ﬁ,) (Y)‘ . (6)

>

By Lemma A.1, and from the definition &’ . andF” . (cf. the Reduction Theorem 2.7), (B) and(6) we can

(14) (14)
write respectively
rQ&x;;(Z) F(}ﬁ) ) - () FZ‘; 3)()() <
< mgma{fu(7) 252 () SEEEL ) 222 -u)- 222 o
rygw(i)-Féﬁ)(y)—u(i’)-Féﬁ)(y) <

i) -b

2\ Yaly) -0
L (7). e

al

IA

-\ Ya2()+b o\ U2 (y)+ b
Ju(t) 22 () 22

} . 8)

Let us now distinguish three case) (1) = aandu(¥) = a, (i) u (1) = 1-aandu (1) = 1- & and(ii)

r%\(xmax{‘u (1)

otherwise.
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(i). If (1) = aandu (1) = &, then in(7) we have

5 e10-b o e (B |y e (D (04
maxxmax{'#(ﬂ).%_#(ﬁ).%‘,‘y(ﬂ).%—y(a).wzﬁ;

}= ©)

B , () +b ()b _
_r)r(gxmax{kol(x) b-¢:1(X)+b ,‘a i = (10)
— max |b_b/ ,maXa~¢2(X)+b—a/’902(X)+b+a,'¢2(X)+b—a,"p2(X)+b — (ll)
xeX l1-a 1-& 1-& l1-&
a a
= b'-b b - b-b 12
max{[e’ - b maxlea 09+ - (125 - 1oy )+ 1o g OB} < (12)
;o . la—a'| a W
<m {b b| . maxie, (X) + bl et 1w P b|}s (13)
< max{5,2C -6 -4+ 6} = max{s,6 - (8C + 1)} =6 - (8C + 1), (14)
where the inequality i§14) holds since +a > 3 and 1-4a %

Analogously, in(8) we obtain

maxmax{'ﬂ (1) yaly) —b —u (1) Yi(y) - b’ ’

yeY a a

-\ Y2 (y)+b 5 Yo (y)+ b
(1) 22022 (1) 222

}Sé-(8C+l), (15)
and hence, whep (1) = aandu (') = a, it follows that

<§-(16C+2). (16)

Uig) (o) ) ~ i) (o) )

(ii). Working similarly to the previous case, whell) = 1—aandu (1') = 1 - & we are led to the inequality

<6-(1l6C+2). a7)

gy (oo ) ~ i) (o )

(iii). We can confine ourselves to the case whh) = aandu (1) = 1-a'. Indeed, the case wher(1) = 1-a
andu (/T’) = & works similarly.

Let us consider the linear path imdm, whose end points afd., 5) and(1',#'), that is,y : [0,1] — Ladnp, with
y(®) = @-1-(LF)+t-(1.8). Sinceu (1) = aandu (1') = 1-a, there exists at least one (exactly one whien 1)
t e [O 1] such thaty (t*) = (1 - t*) - (/TE) +tr (/T’,ﬁ’) = (/T*ﬁ*) with 1* = (% %) Moreover, from the assumption
” (7.7) _<dwe haveH(/T,ﬁ) - (1.4) _sts andH(/T’,ﬁ’) - (1.4)

< (1-1t*)-6. Thus we can write

i) ey i) ~ ) (Cocon "w)\ : (18)

< ) (0o fn) = A ooy )| + \%ﬁ*) (oo Cp) - ey (e G| = 29
<t.5-(16C+2)+(1-t)-6-(16C+2)=65-(16C +2), (20)

where the inequality i20) comes from(16) and(17).
By considering the bounds for the three ca@ggii), (iii ), we obtain the claim. O
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Listing 1: Approximation of the 2-dimensional matching distan

D = ApproximateMatchingDistance (shape X, shape Y, fmis @=(p1,¢2), fmis ¥ = (1,¥2), double &)

% initialize
1

1. 6 = i6s
2. C := maxmﬂLy ﬁ“ﬁ%
3. thresh := §-(16C +2);
% computate D in Ladmp\Ladny
4. {_X_¢1 = ComputeOneDimensionalSizefunction\left (X,p1\right);
5. repeat the same for \left (X,p2\right), \left(Y,yi\right), \left(Y,yo2\right);
6. d; = ComputeOneDimensionalMatchingDistance\left ({_X_¢1,(_Y_y¢1\right);
7. d- = ComputeOneDimensionalMatchingDistance\left ({_X_¢p,l_Y_yo\right);
8. 5ext = max{d,,d_};
% start computing D in Ladny,
9. P = CreateGrid\left (Ladnj,25\right);
10. for each Py = (an,by) in P {
% define Ff as in Theorem 2.6
11. Ff = ComputeReductionMeasuringFunction\left (X, &, (an,1—an), (bn,—bn)\right);
12. Ff = ComputeReductionMeasuringFunction\left (Y, J, (an,1-ay), (bn,—bp)\right);
13. €_X_Ff = ComputeOneDimensionalSizefunction\left(X,Fﬁ\right);
14. [_Y_Ff = ComputeUneDimensionalSizefunction\left(Y,Ff\right);
15. Dn = ComputeDneDimensionalMatchingDistance\left(f_X_Fg,[_Y_Ff\right);
16. Dn = min{as,1—an} Dn;
17. }
18. Dint = max{Dn};
19. D = max{Dexs Dint};
% refine the approximation until the threshold is met
20. while thresh>e {
21. for each P, = (an,by) in P {
22. if D- Dy, > thresh
23. P = P\Pn;
24. else {
25. set Ppyr=(@n+0,bp+0), P =(@n+6,bn=06), Py =(@n-6bn+6), Pr_=(an-6by-9);
26. P = {P\Pn}U{Pnit,Pni—, Pny,Pn—};
27. }
28. }
29. repeat from line 10. to limne 17.
30. D = max{IS,Dim};
31. thresh = thresh\2;
32. }
% return the approximated distance
33. D = D;
34. return 5;
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