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Abstract

A central issue in dimension reduction is choosing a sensible number of di-
mensions to be retained. This work demonstrates the surprising result of
the asymptotic consistency of the maximum likelihood criterion for deter-
mining the intrinsic dimension of a dataset in an isotropic version of Prob-
abilistic Principal Component Analysis (PPCA). Numerical experiments on
simulated and real datasets show that the maximum likelihood criterion
can actually be used in practice and outperforms existing intrinsic dimen-
sion selection criteria in various situations. This paper exhibits and outlines
the limits of the maximum likelihood criterion. It leads to recommend the
use of the AIC criterion in specific situations. A useful application of this
work would be the automatic selection of intrinsic dimensions in mixtures of
isotropic PPCA for classification.

Keywords: Probabilistic PCA, isotropic model, dimension reduction,
intrinsic dimension, maximum likelihood, asymptotic consistency.

1. Introduction

The analysis of high-dimensional data has become an important prob-
lem in statistical learning and dimension reduction has a central place in
such settings. Among all existing methods, Principal Component Analysis
(PCA) [18] and its probabilistic version (PPCA) [32, 33] are two popular
techniques. A central issue in dimension reduction is choosing a sensible
number of dimensions to be retained. We refer to [10] for a review on this
topic. Two kind of approaches have been proposed in the last decades for
intrinsic dimension estimation.

Local methods. The local approach estimates the topological dimension (de-
fined as the basis dimension of the tangent space of the data manifold) from
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the information contained in sample neighborhoods. Fukanaga-Olsen’s algo-
rithm [17] consists of estimating the rank of the variance matrix computed
locally on a Voronoi tessellation. In [9], the Voronoi tessellation is com-
puted thanks to a topology representing network. The algorithms proposed
by Pettis et al. [25] and Verver-Duin [35] are based on the analysis of the
distances from one point to its nearest neighbors. The main limitation of
local approaches is their sensitivity to outliers.

Global methods. The global approach consists of unfolding the whole dataset
into a linear subspace. The estimated intrinsic dimension is then the dimen-
sion of the resulting subspace. Such methods can be divided into three
subfamilies.

• Projection methods: The lower dimensional subspace can be estimated
by minimizing some projection errors. Examples of such approaches
include PCA [18] sometimes associated with Cattell’s scree test [12] and
its non linear extensions based either on auto-associative models [19,
13] or Mercer kernels [29]. Multidimensional scaling type algorithms
aim at finding the projection which (locally) preserve the distances
among data. Recent methods include LLE [28] and ISOMAP [31].

• Fractal-based methods: These techniques rely on the assumption that
the dataset is generated by a dynamic system. Their goal is to estimate
the dimension of the attractor associated to this dynamic system. For
instance, [20] addresses this problem through the estimation of the box-
counting dimension and some heuristic methods are introduced in [11].
Most of these methods are designed for low-dimensional datasets since
their complexity grows exponentially with the dimension.

• Model-based methods: The use of a parametric model permits to derive
a maximum likelihood (ML) estimator of the intrinsic dimension. For
instance, in [21], the number of points in a small sphere is modeled
by a Poisson process. We also refer to [22] for a bias correction of the
previous ML estimator. In a similar spirit, [15] uses a polynomial re-
gression based on a uniformity assumption. Several methods are based
on a Bayesian approach: Minka [23] proposes a direct calculation of the
Laplace approximation of the marginal likelihood while the Bayesian
Information Criterion (BIC) [30] is an asymptotic approximation of
it. In [16], a regularized BIC is introduced where the likelihood is
evaluated at the maximum a posteriori estimator instead of the max-
imum likelihood estimator. This criterion is used in [24] to select the
dimensionality in PPCA with covariates. We also refer to [5, 14, 26]
for alternative approximations of the evidence. The underlying idea
is that the likelihood is an increasing function of the complexity and
thus of the dimensionality as well. This remark motivated the authors
to use penalized likelihood criteria.
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In this paper, a constrained version of PPCA, called isotropic PPCA, is
considered. This model could appear as a restrictive model but it can be
useful in specific situations. In particular, it has been proved to be efficient
for classification problems in high dimension [7] where parsimonious mod-
els are desirable. This paper demonstrates the surprising result that the
maximum likelihood criterion is asymptotically optimal in the case of the
isotropic PPCA model, the complexity of the model being not an increasing
function of the dimensionality. The ML criterion is compared in different
situations on simulated and real data to two classical model selection crite-
ria, AIC [1] and BIC [30], to the empirical scree-test of Cattell [12], and to
the model-based methods [15], [21], and [23].

This paper is organized as follows. Section 2 introduces an isotropic
version of probabilistic PCA and considers the estimation of its parameters.
Section 3 focuses on the intrinsic dimension estimation and demonstrates
that the maximum likelihood method can be used for this task in the context
of the isotropic PPCA model. Section 4 illustrates on simulations and real
datasets the behavior of the proposed approach in different situations and
Section 5 gives some concluding remarks.

2. Isotropic Probabilistic PCA

In this section, after having recalled the Probabilistic PCA (PPCA)
model, it is reformulated using an eigenvalue decomposition. An isotropic
version of PPCA is then introduced and inference aspects are addressed.

2.1. Factor Analysis, Probabilistic PCA and Extreme Component Analysis

The Factor Analysis model [3, 4] links linearly a p-dimensional random
vector y to a d-dimensional Gaussian vector x of latent variables:

y = Hx+ µ+ ε.

The p × d factor matrix H relates the two random vectors and µ ∈ R
p is

a fixed location parameter. When d < p, the latent vector x provides a
parsimonious representation of y. In this context, d is interpreted as the
intrinsic dimension of y and is thus the parameter of interest in this study.
Without loss of generality, it can be assumed that x ∼ N (0, Id). If, moreover,
the noise ε is supposed to be Gaussian ε ∼ N (0,Ψ), where Ψ is a p × p
variance matrix, and independent from x, then we end up with a Gaussian
distribution for the observations y, i.e. y ∼ N (µ,Σ) where:

Σ = HHt +Ψ. (1)

In such a case, the model parameters can be estimated by maximum like-
lihood even though an iterative procedure is involved. To overcome this
practical difficulty, one can assume an isotropic noise Ψ = bIp with b > 0.
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Figure 1: Graphical representation of the isotropic PPCA model.

This model is referred to as the Probabilistic PCA model [33] or to as the
Sensible PCA model [27]. The variance matrix of y can be also simplified
as:

Σ = HHt + bIp.

In contrast to the general Factor Analysis model, all parameters µ, b and
H benefit from closed form estimators. It is assume, without loss of gen-
erality, that the columns h1, ..., hd of H are orthogonal, i.e. HtH is di-
agonal and h1, . . . , hd are eigenvectors of Σ associated to the eigenvalues
‖h1‖2 + b, . . . , ‖hd‖2 + b. Consequently, the d eigenvalues associated to the
latent subspace are always larger than the eigenvalue b (with multiplicity
p − d) associated to the noise subspace. In contrast, in the Probabilistic
Minor Component Analysis (PMCA) [37] method, the converse assumption
is made. Finally, the two approaches are unified in the Extreme Component
Analysis (XCA) method [36] where the noise ε is supposed to be orthogonal
to the columns of H. This assumption yields Ψ = b(I −H(HtH)−1Ht) in
(1) and thus the eigenvalues of Σ are ‖h1‖2, . . . , ‖hd‖2 and b. Since no as-
sumption is made on their relative magnitudes, PPCA and PMCA may be
interpreted as particular cases of XCA.

2.2. Isotropic Probabilistic PCA

Similarly, it may be of interest in specific contexts, such as high-dimensional
classification, to consider an isotropic factor matrix. In this case, the matrix
H can be rewritten as H =

√
a− bV with a > b and where V is a p × d

matrix such that V tV = Id. Thus, the variance matrix of the observation y
is given by:

Σ = (a− b)V V t + bIp.

Let U be a p × (p − d) matrix such that Q := [V,U ] is an orthogonal p × p
matrix containing p eigenvectors of Σ. Introducing ∆ = Qt∆Q the diagonal
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matrix of eigenvalues, an alternative, and more intuitive, parametrization of
Σ is

Σ = Q∆Qt.

Moreover, the matrix ∆ associated with the isotropic PPCA model has the
following form:

∆ =

























a 0
.

.

.

0 a

0

0

b 0
.

.

.

.

.

.

0 b































d















(p− d)

with a > b. Let us emphasize that, since H is supposed to have only two
different eigenvalues, the assumption a > b is made without loss of generality
and thus this model can also be interpreted as an isotropic XCA model.

The isotropic PPCA model is parametrized by µ, Q, a, b and d. A graph-
ical representation of the isotropic PPCA model is given by Figure 1. As it
can be observed on Figure 2 which illustrates the model in a 3-dimensional
space, such a model assumes that the distribution is spherical and modelled
by a within the d-dimensional latent subspace where the data actually live.
The d-dimensional latent subspace is spanned by the d first columns of Q
which control the orientation of the subspace whereas µ locates the subspace
in the original space. The isotropic PPCA model supposes as well that the
variance of noise can be modelled outside the latent subspace with a unique
parameter b. Finally, it should also be noted that the mixture model intro-
duced in [8] is a mixture of isotropic PPCA applied to discriminant analysis,
i.e. each class is modelled by a specific isotropic PPCA model.

2.3. Inference for isotropic PPCA

Before focusing on the estimation of the intrinsic dimension d, the in-
ference on model parameters for the isotropic PPCA model is considered.
In the case of the isotropic PPCA model, the parameters to be estimated
are µ, a, b, U and V . As in the classical Gaussian framework, the maxi-
mum likelihood strategy is retained for parameter estimation. Denoting by
n the number of observations, the log-likelihood associated with the isotropic
PPCA model is:

− 2

n
log(L) = d log(a) + (p− d) log(b) +

1

a

d
∑

j=1

vtjWvj +
1

b

p−d
∑

j=1

utjWuj, (2)
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Figure 2: The isotropic PPCA model: a controls the variance in the latent subspace E

spanned by the d first columns of Q, µ locates the subspace in the original space and b
controls the variance outside E.

where W is the empirical variance matrix:

W =
1

n

n
∑

ℓ=1

(xℓ − µ̂)(xℓ − µ̂)t, µ̂ =
1

n

n
∑

ℓ=1

xℓ.

The estimation of the matrices U and V is similar to the estimation of H
in the context of the actual PPCA model (see [32] for further details). For
a given value of d, the ML estimator of the transformation matrix V is the
matrix containing the eigenvectors associated with the d largest eigenvalues
of the empirical variance matrix W . Similarly, the ML estimator of U is
the matrix containing the eigenvectors associated with the p − d smallest
eigenvalues of W . Using this eigenvalue decomposition of W in (2), we
obtain

− 2

n
log(L) = d log(a) + (p− d) log(b) +

1

a

d
∑

j=1

λj +
1

b

p
∑

j=d+1

λj, (3)

where λj is the jth eigenvalue of W . It follows that

â =
1

d

d
∑

j=1

λj and b̂ =
1

(p − d)

p
∑

j=d+1

λj .

As one can observe, ML estimates of parameters a and b are respectively
the means of the largest and smallest eigenvalues of the empirical variance
matrix. From a numerical point of view, such estimates should be more stable
than eigenvalue estimates when the number of observations is small compared
to the data dimension p. Furthermore, it is not necessary in practice to
compute the (p − d) smallest eigenvalues of W since b̂ can be computed as
b̂ = (tr(W )− da) /(p− d).
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3. Estimation of the intrinsic dimension by maximum likelihood

In this section, we focus on the estimation of the intrinsic dimension d∗.
First the following proposition is proved.

Proposition: The maximum likelihood of the actual intrinsic dimension d∗

is asymptotically unique and consistent in the case of the isotropic PPCA
model.

Proof: Since d is an integer parameter, it is possible to compute the likelihood
for each value of d = 1, ..., p − 1 and to select the value associated to the
largest likelihood. From Equation (3), the maximized log-likelihood of the
isotropic PPCA model can be written at the optimum θ̂ = (µ̂, â, b̂, Û , V̂ ) as

− 2

n
log(L(θ̂, d)) = d log(â) + (p− d) log(b̂) +

tr(W )

b̂
+

(

1

â
− 1

b̂

) d
∑

j=1

λj .

Since â = 1
d

∑d
j=1 λj , b̂ = 1

(p−d)

∑p
j=d+1 λj and tr(W ) =

∑p
j=1 λj , the log-

likelihood reduces to:

− 2

n
log(L(θ̂, d)) = d log(â) + (p− d) log(b̂) + p.

Consequently, the maximization of the likelihood is equivalent to the mini-
mization of φn(d) = d log(â)+ (p− d) log(b̂). Asymptotically, as the number
of (independent) observations n tends to infinity, W converges almost surely
(a.s.) to Σ. As a consequence of Lemma 2.1 [34], which holds for all sym-
metric matrix, λ̂j converges a.s. to a if j ≤ d∗ and λ̂j converges a.s. to b if
j > d∗. Two cases can arise.

Situation d ≤ d∗. In this case, â → a and b̂ → 1
p−d

[(d∗ − d)a+ (p− d∗)b]
a.s. when n→ ∞. Consequently, φn(d) → φ(d) a.s. where

φ(d) = d log(a) + (p − d) log

(

(d∗ − d)

(p − d)
a+

(p− d∗)

(p− d)
b

)

,

or equivalently

φ(d)− p log(a)

p− d∗
=

(p− d)

(p − d∗)
log

(

1 +
(p− d∗)

(p− d)

(

b

a
− 1

))

= δ log
(

1 +
γ

δ

)

,

with δ = (p−d)
(p−d∗) and γ = b

a
− 1. Thus, the study of φ(d) reduces to the

study of ψ(δ) = δ log
(

1 + γ
δ

)

where δ ≥ 1 and γ ≤ 0. Since ψ is a strictly
increasing function on [1,+∞) for all γ ≤ 0, its minimum is reached for
δ = 1 and therefore the minimum of φ on [1, d∗] is reached for d = d∗.
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Situation d ≥ d∗. Here, â → 1
d
(d∗a+ (d− d∗)b) and b̂ → b a.s. when

n→ ∞. It leads to φn(d) → φ(d) a.s. where

φ(d) = d log

(

d∗

d
a+

d− d∗

d
b

)

+ (p− d) log(b).

Similarly to the first situation, we can write

φ(d)− p log(b)

d∗
=

d

d∗
log

(

1 +
d∗

d

(a

b
− 1

)

)

= δ log
(

1 +
γ

δ

)

,

with δ = d
d∗

and γ = a
b
− 1. Again, the study of φ(d) reduces to the study

of ψ(δ) = δ log
(

1 + γ
δ

)

where δ ≥ 1 and γ ≥ 0. Remarking that ψ is a
strictly increasing function on [1,+∞) for all γ ≥ 0, its minimum is reached
for δ = 1 and therefore the minimum of φ on [d∗, p] is reached for d = d∗. As
a conclusion, we have proved that the likelihood associated with the model
has asymptotically a unique maximum for the actual intrinsic dimension d∗

of the data. �

From this proposition, it is deduced that the maximum likelihood crite-
rion can be used to estimate d∗ in the context of the isotropic PPCA model.
Usually, as for instance for the general PPCA model, model selection crite-
ria using the maximum likelihood need an additional penalty term because
the maximum likelihood of a model is asymptotically a non decreasing func-
tion of the number of model parameters. However, for isotropic PPCA, the
proposition states that the likelihood is asymptotically maximum for the
intrinsic dimension d∗ of the data. Therefore ML criterion is a good candi-
date to estimate the intrinsic dimension of a dataset in the isotropic PPCA
framework. The reason why ML can be used to estimate d∗ for the isotropic
PPCA model is the perfect duality between the subspace spanned by the
eigenvectors associated with the d largest eigenvalues of W and the supple-
mentary noise subspace with dimension (p − d). Because of the symmetry
between a and b occurring in the isotropic PPCA model, the number of pa-
rameters to be estimated is the number of model parameters, for fixed d, is
ν(d) = p+2+min{d(p−(d+1)/2), (p−d)(p−(p−d+1)/2)}. Consequently,
the complexity of the isotropic PPCA model does not increase strictly with
d: it increases between 1 and the actual intrinsic dimension d∗ and decreases
between d∗ and (p − 1). Other criteria of the form ML + pen(n) where
pen(n) is a penalty such that pen(n)/n tends to 0 as n tends to infinity are
other consistent criteria to estimate this intrinsic dimension. In the following
such criteria as AIC and BIC are compared with ML criterion in a numerical
experiment.

4. Numerical Experiments

This section presents numerical experiments on simulated and real datasets
in order to highlight the main features of different intrinsic dimension esti-
mation methods in the context of the isotropic PPCA model. The maximum
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Figure 3: Dimension selection on data simulated according to the isotropic PPCA model
with ML, AIC and BIC. The data were simulated with p = 50, b = 1 and the actual
intrinsic dimension is d∗ = 20.

likelihood criterion, for which we have demonstrated the asymptotic consis-
tency, is compared in the following to two penalized likelihood criteria (AIC
and BIC), an empirical criterion (Cattell’s scree-test), the MleDim method
of [21], the Laplace approach of [23] and the cross-validated likelihood. For
the sake of simplicity, the following experiments will be set up according to
two parameters: α = n/p and β = d∗a/[(p−d∗)b]. The parameter α controls
the estimation conditions through the ratio between the number of obser-
vations and the dimension of the observation space. The second parameter,
β, controls the signal to noise ratio through the condition number a/b of
the variance matrix. We recall that AIC and BIC respectively penalize the
log-likelihood by the quantities ν(M) and ν(M) log(n)/2 where ν(M) is the
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number of independent parameters (complexity) of the used model M. The
scree-test of Cattell is an empirical method which compares the differences
between consecutive eigenvalues with a fixed threshold for finding a break-
down point in the eigenvalue scree. We refer respectively to [21] and [23] for
details on the MleDim and Laplace approaches. Finally, for all the follow-
ing experiments, the parameters p, b and d∗ will remain fixed to the values
p = 50, b = 1 and d∗ = 20.

4.1. An introductory example

The first experiment aims to show the behavior of the three likelihood-
based criteria (ML, AIC and BIC) according to the signal to noise ratio β for
a fixed value of α. The simulated model for this experiment is the isotropic
PPCA model. The parameter α has been set to 5 which means that the es-
timation conditions are favorable. Figure 3 shows the eigenvalue scree (left
panels) and the behavior of the three likelihood-based criteria (from left to
right, ML, AIC and BIC) for different values of β. The first row of Figure 3
considers an easy situation where the eigenvalue scree has a clear breakdown
point between relevant and irrelevant dimensions and all criteria succeed in
finding the correct intrinsic dimension d∗ = 20. The second row presents
a slightly more difficult situation for which ML and AIC still succeed in
determining d∗ whereas BIC penalizes too much the likelihood and fails in
determining d∗. Finally, the last row focuses on a difficult situation where
there is no elbow in the eigenvalue scree. In this case, AIC and BIC fail in
estimating d∗ by proposing d̂ = 1. Conversely, ML slightly overestimates the
actual value of d∗ by proposing d̂ = 28. It should be noticed that, in the
dimension reduction framework, slightly overestimating the intrinsic dimen-
sion is preferable to underestimating it because the probability of discarding
relevant dimensions is lower.

4.2. Influence of the signal to noise ratio

The second experiment focuses on the influence of the signal to noise ratio
(parameter β) on the intrinsic dimension estimation with the seven studied
dimension selection methods and this for different values of α = n/p. In
order not to favour the likelihood-based methods, ML, AIC and BIC, the
simulated model used in this numerical experiment will not be the isotropic
PPCA model but a uniform model with d∗ dimensions of variance a/12 and
(p−d∗) dimensions of variance b/12 is used. The results have been averaged
from 50 independent simulated datasets. Figure 4 (a)–(c) aims to compare
the behavior of criteria based on the isotropic PPCA model with state of the
art criteria according to β for three values of α = 1, 2, 3. Among the criteria
based on the isotropic PPCA, ML, AIC, BIC and the 10 fold cross-validated
likelihood (CV Lik.) are studied. The scree-test of Cattell, the MleDim
criteria [21] and the Laplace approximation of the integrated likelihood [23]
stand for the state of the art criteria. From this figure, it appears that, for
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Figure 4: Average selected dimension according to the signal to noise ratio β for fixed
values of α. The data were simulated according to a uniform distribution (see text for
details) with p = 50 and the actual intrinsic dimension is d∗ = 20.
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large values of α and β, all the methods perform rather well except MleDim.
When α decreases to 1, AIC, CV Lik., Laplace and ML are clearly more
efficient than the other criteria. ML could be recommended since it slightly
overestimate d∗ while the other ones underestimate it. We also experimented
the adaption of the Laplace criterion to the isotropic PPCA model. As
expected, it behaves slightly better than BIC but remains outperformed by
AIC and ML.

4.3. Influence of the n/p ratio

We now focus on the influence of the n/p ratio (parameter α) on the
intrinsic dimension estimation with the seven studied criteria for different
values of the signal to noise parameter β. Again, the results have been aver-
aged from 50 independent simulated datasets. Figure 5 shows the behavior
of the criteria ML, AIC, BIC, Cattell, MleDim, Laplace and CV Lik. ac-
cording to α for three values of β = 1, 2, 3. When there is a clear breakdown
point in the eigenvalue scree (Figure 5 (a)–(b)), all criteria are efficient for a
large range of α values except, as previously, MleDim. It should be however
noticed that the scree-test of Cattell and BIC appear again to be less efficient
than the other criteria. When there is no clear breakdown point in the eigen-
value scree (Figure 5 (c)), BIC and MleDim fail in estimating d∗ whatever
the α value is. Cattell, AIC, Laplace and CV Lik. tend to underestimate d∗

whereas ML only slightly overestimates it. This study demonstrates as well
that the task of estimating the intrinsic dimension of a dataset is extremely
difficult when α and β are both close to 1.

4.4. Application to supervised classification

Supervised classification offers the ability to numerically evaluate the per-
formance of the studied methods on real data (for which the actual intrinsic
dimension is unknown) through the correct classification rate. We selected
six datasets on the UCI Machine Learning Repository (http://archive.ics.uci-
.edu/ml/ ): Abalone, Glass, Satellite, Sonar, USPS and Wine datasets. We
also considered the Maldi dataset [2], coming from mass-spectrometry, which
has less observations than measured variables. Indeed, this kind of situations
has become a recurrent and challenging scenario in several scientific fields
such as, for instance, Biology or Medecine. The USPS dataset has been
modified to focus on discriminating the three most difficult classes to be
classify, namely the classes of the digits 3, 5 and 8. This dataset has been
called USPS 358. The second and the third columns of Table 1 give re-
spectively the number of observations and the number of dimensions of the
six datasets. Each dataset was randomly split into a learning set of 90% of
the observations and a validation set made of the remaining observations for
simulating a difficult classification situation. The intrinsic dimension d was
then selected with each dimension selection method before designing the clas-
sifier using quadratic discriminant analysis (QDA) on the d first principal
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Figure 5: Average selected dimension according to the n/p ratio α for fixed values of β.
The data were simulated according to a uniform distribution (see text for details) with
p = 50 and the actual intrinsic dimension is d∗ = 20.
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Dataset obs. dim. ML BIC AIC IsoLaplace Laplace

Abalone 4177 8 54.1±1.9 (2) 54.1±1.9 (2) 54.1±1.9 (2) 54.1±1.9 (2) 53.0±2.0 (7)

Glass 214 9 53.2±10.8 (6) 53.2±10.8 (6) 53.2±10.8 (6) 53.2±10.8 (6) 54.1±11.1 (8)

Wine 178 13 98.1±3.1 (5) 96.5±4.0 (3) 96.8±3.9 (4) 96.5±3.9 (3) 98.6±2.6 (9)

Satellite 6435 36 85.1±1.3 (8) 85.1±1.4 (8) 85.1±1.4 (8) 85.1±1.4 (8) 85.7±1.2 (33)

Sonar 208 60 79.0±8.0 (25) 78.6±8.2 (20) 78.9±8.1 (21) 78.5±8.2 (20) 77.8±9.0 (56)

USPS 358 2248 256 98.1±1.0 (81) 98.2±1.0 (57) 98.1±1.0 (73) 98.1± 1.0 (63) 95.6±1.6 (255)

Maldi 112 3268 95.1±6.1 (32) 90.9±10.0 (2) 93.6±8.8 (8) 90.1±10.1 (1) 90.1±10.1 (1)

Table 1: Classification results on real-world datasets: reported values are average correct classification rates computed on validation sets. Standard
deviations are also provided as well as average selected dimensions which are given into parentheses.
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Figure 6: Recommended criteria for intrinsic dimension selection according to the n/p
and signal to noise ratios in the context of the isotropic PPCA model.

components (classical PCA). The correct classification rate was computed
afterward on the validation set. The results have been averaged from 50 rep-
etitions of the experimental setup. This experimental setup has been applied
to the criteria based on the isotropic PPCA model (ML, AIC, BIC and Iso-
Laplace) and to the Laplace criterion based on the standard PPCA model.
Table 1 reports the average correct classification rate in percentage of each
dimension selection method for the seven datasets. The standard deviations
are also provided and the average selected dimensions are given into paren-
theses. The main point is that isotropic criteria always select dramatically
less dimensions than the non isotropic model while providing similar or bet-
ter classification results. Among the criteria based on the isotropic PPCA
model, ML is always similarly or more efficient than the others and provides,
in addition, more stable results since its variance is usually less than the one
of the other criteria. In particular, ML performs better than other criteria
on the Maldi dataset for which the N/p ratio is lower than 1.

5. Discussion

The present work focused on the estimation of the intrinsic dimension d
which controls in PPCA the number of parameters to be estimated. This
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problem can be regarded as a model selection problem. From this point of
view, it can be thought of as surprising to propose the maximum likelihood
(ML) as a model selection criterion since in most situations this criterion
could be expected to increase with the model complexity. Because of the
duality between the two subspaces considered with our model, it is not sur-
prising that the ML criterion is able to find the actual intrinsic dimension of
the data without requiring an additional complexity penalty.

The theoretical result of Section 3 ensures that the ML criterion is consis-
tent to estimate the actual intrinsic dimension of the isotropic PPCA model.
In practice, the sample size n is finite and can be small in regard to p. Thus,
it could happen that the sample variability leads to a ML criterion whose
maximum is attained for a larger dimension than the actual intrinsic dimen-
sion d∗. In such cases and especially for small n, a slight penalty term, as the
AIC penalty term, could be desirable to select a proper intrinsic dimension.
Figure 6 displays a summary of the recommendations that could be given
from our experience. As it can be seen on this figure, it appear that AIC
can outperform ML criterion when n/p < 5 for a moderate signal to noise
ratio. Finally, when n/p < 2, no method performs well in selecting d and,
in this case, it could be recommended to compare the dimensions selected
by AIC and ML and to choose d on an empirical ground when the AIC and
ML selected dimensions differ. And, in that purpose, the recommendations
provided by Figure 6 could be helpful.

The theoretical result exhibited in this work should have interesting ap-
plications in methods related to or based on the isotropic probabilistic PCA
model. On the one hand, the intrinsic dimension selection approach proposed
in this work could be used to approximately determine the intrinsic dimen-
sion in PPCA, PMCA and XCA. Indeed, although the maximum likelihood
estimate is not asymptotically consistent for the PPCA, PMCA and XCA
models, it could provide a first approximation of the intrinsic dimension for
those models. On the other hand, the isotropic PPCA model has been used
in [8], in a supervised classification framework, for modelling and classifying
the data of K classes in different subspaces with specific intrinsic dimensions
d∗k, k = 1, ...,K, estimated through an empirical strategy. In such a context,
the BEC criterion [6] could be also used since it is a penalized-likelihood crite-
rion taking into account the classification goal. Alternatively, the asymptotic
optimality of the ML criterion for the isotropic PPCA model should allow
this classification method to efficiently determine the intrinsic dimension d∗k
of each class using the ML criterion avoiding numerical problems when α
or/and β go close to 1. Furthermore, the low and insensitive computational
cost of the likelihood-based methods is a great advantage over the other di-
mension selection methods while incorporated in iterative processes such as
the EM algorithm.
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