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Abstract
Image-based morphometry is an important area of pattern recognition research, with numerous
applications in science and technology (including biology and medicine). Fisher Linear
Discriminant Analysis (FLDA) techniques are often employed to elucidate and visualize important
information that discriminates between two or more populations. We demonstrate that the direct
application of FLDA can lead to undesirable errors in characterizing such information and that the
reason for such errors is not necessarily the ill conditioning in the resulting generalized eigenvalue
problem, as usually assumed. We show that the regularized eigenvalue decomposition often used
is related to solving a modified FLDA criterion that includes a least-squares-type representation
penalty, and derive the relationship explicitly. We demonstrate the concepts by applying this
modified technique to several problems in image-based morphometry, and build discriminant
representative models for different data sets.
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1. Introduction
In biology and medicine, morphology refers to the study of the form, structure and
configuration of an organism and its component parts. Clinicians, biologists, and other
researchers have long used information about shape, form, and texture to make inferences
about the state of a particular cell, organ, or organism (normal vs. abnormal) or to gain
insights into important biological processes [1, 2, 3]. Earlier quantitative works often
focused on numerical feature-based approaches (e.g. measuring size, form factor, etc.) that
aim to quantify and measure differences between different forms in carefully constructed
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feature spaces [3, 4]. In recent times, many researchers working in applications in medicine
and biology have shifted to a more geometric approach, where the entire morphological
exemplar (as depicted in an image) is viewed as a point in a carefully constructed metric
space [5, 6, 7], often facilitating visualization. When a linear embedding for the data can be
assumed, standard geometric data processing techniques such as principal component
analysis can be used to extract and visualize major trends in the morphologies of organs and
cells [8, 9, 10, 11, 7, 12, 13, 14, 15]. While representation of summarizing trends is
important, so is the application of discrimination techniques for elucidating and visualizing
trends that differentiate between two or more populations [16, 17, 18, 19, 20, 21].

In part due to its simplicity and effectiveness, as well as its connection to the Student’s t-
test, Fisher Linear Discriminant Analysis (FLDA) is often employed to summarize
discriminating trends [21, 22, 23]. When employed in high dimensional spaces, the
technique is often adapted and a regularized version of the associated generalized eigenvalue
problem is used instead of the original eigenvalue problem, in order to avoid ill conditioning
problems [24, 25, 26, 27]. The geometric meaning of such adaptation, to the best of our
knowledge, is not fully understood [28]. Here we show that even in problems where ill
conditioning does not exist, the straightforward application of the FLDA technique can lead
to erroneous interpretation of the results. We show that a modified FLDA criterion that
includes a representation penalty error can be used in such cases to extract meaningful
discriminating information. We show the solution of the modified problem is related to the
commonly used regularized eigenvalue problem, and derive the relationship explicitly. In
contrast to the standard FLDA technique, the combination of a discrimination term with a
data representation term allows for a decomposition whereby, in a two class problem,
several discriminating trends can be computed and ranked according to their discrimination
power (together with a least squares-type representation penalty), and discriminant
representative models can be built accordingly. We also describe a kernalization of the
procedure, similar to the one described in [28]. Finally, we apply the modified FLDA
technique to several example problems in image-based morphometry, and contrast the
technique to the straightforward FLDA method, as well as a method that combines PCA and
FLDA serially [29, 24].

2. Methods
The method we describe can be applied whenever a linear embedding for the image data can
be assumed and obtained. That is, given an image Ii depicting one structure to be analyzed, a
function f can be used to map the image to a point in a linear subspace. This point may or
may not be unique, depending on the embedding method being used. Mathematically: f(Ii) =
xi, with xi ∈ ℛm, with m the dimension of the linear subspace. In addition, it is important for
the linear embedding to be able to represent well the morphological structure present in Ii.
Though other linear embeddings could also be utilized [12, 14, 15], in this work we utilize
the landmark-based approach as described by [30, 31]. Briefly each image Ii is reduced to a
set of landmarks, stored in a vector x ∈ ℛ2n (we use two dimensional images, and n is the
number of landmarks). Although an inverse function does not exist (one cannot recover the
image Ii from the set of landmarks xi), the set of landmarks is densely chosen, so that visual
interpretation of morphology is possible. Given two images I1 and I2, with landmarks x1, x2,
the landmarks are stored in corresponding order.

In some of the examples shown below we use contours to describe a given structure. In these
examples, the correspondence between two sets of points describing two contours is not
known a priori. We use a methodology similar to the one described in [9, 30], where the
points in the contour are first converted to a polar coordinate system, with respect to the
center of the contour. The contour is then sampled at n equidistant angles evenly distributed
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between angles 0 and 2π (n landmarks). This procedure maps each image Ii to a point xi in
the standard ℛ2n vector space. Finally, we note that in all examples shown below, the sets of
landmarks were first aligned by setting their center of mass to zero. Each set of landmarks
was also aligned such that its principal axis aligned with the vertical axis.

2.1. Fisher discriminant analysis
Given a set of data points xi, for i = 1,⋯, N, with each index i belonging to class c, the
problem proposed by Fisher [3, 32] relates to solving the following optimization problem

(1)

where SB = Σc Nc(μc − x̄)(μc − x̄)T represents the ’between class scatter matrix’, SW =

ΣcΣi∈c(xi − μc)(xi − μc)T represents the ’within classes scatter matrix’, 
represents center of the entire data set, Nc is the number of data in class c and μc is the center
of class c. As usually done, we subtract each data point by this mean  before
computing the scatter matrices SW, SB. The solution for the FLDA problem can be computed
by solving the generalized eigenvalue problem [32]

(2)

We note that for a two class problem, maximizing the Fisher criterion is related to finding
the linear one dimensional projection that maximizes the t-statistic for the two-sample t-test.

Let the mean and variance of the two classes be denoted by (m1,m2) and 
respectively. When the variances are unequal, usually Welch’s adaptation of the t-test [33] is
used:

(3)

Recall the objective function of FLDA defined in equation (1):

where μ1, μ2 represent the mean vectors of the two classes, and c1, c2 represent the different
class labels, N1,N2 represent the number of samples in classes c1, c2 respectively, and N =
N1 + N2. Let

be the sample means and standard deviations over the projection w. We rewrite the Fisher
criterion as:
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When the number of data points in the two classes are the same, the Fisher criterion is equal
to the scaled t2(w). We believe that in part due to its simplicity and its connections to the t-
test (which are widely used in image-based morphometry [21, 22, 23]), FLDA-related
techniques can play an important role in morphometry problems, especially in biology and
medicine. As we show next, however, the FLDA technique must be modified before it can
be used meaningfully in arbitrary morphometry problems.

2.2. A simulated data example
Here we show that the straightforward application of the FLDA method may not lead to a
direction that represents real differences present in the data. In this example, two classes of
two-dimensional vertical lines (each class with 100 lines) were generated. The lengths for
the lines in class 1 ranged from 0.42 to 0.62, while lengths in class 2 ranged from 0.28 to
0.48. We aligned the center of each line to a fixed coordinate. Because the horizontal
coordinates of each line do not change, for the purpose of visualizing the concepts we are
about to describe, we characterize each simulated line by taking the vertical coordinates of
upper and bottom-most points, where the Y 1 coordinate represents the y coordinate of the
upper sample point on the line, while the Y 2 represents the y coordinate bottom-most
sample point. Each line can then be uniquely mapped to a point in the two dimensional
space R2. The data (set of all lines), however, occupies a linear one-dimensional subspace of
R2, because only one parameter (length) varied in our simulation. From the coordinates xi =
(Y 1i, Y 2i)T any line can be reconstructed. In order to avoid the ill-conditioning of the data
covariance matrix, independent Gaussian noise was added to Y 1i, Y 2i (see Fig 1 (C)).

The solution w* of the FLDA problem discussed above can be visualized by plotting xγ = x̄
+ γw* for some range of γ. Fig 1(A)(B) contains the lines corresponding to xγ for −4σ ≤ γ
4σ, where σ is the standard deviation (square root of the largest eigenvalue from eq. (2)).
Visual inspection of the results in Fig 1(A) quickly reveals the problem. The method
indicates that line translation in combination with a change in length is the geometric
variation that best separates the two distributions according the Fisher criterion. While such
a direction may allow for high classification accuracy, by construction, the data contained no
variation in the position (translation) of the lines. We can therefore understand that such
results are misleading, since the translation effect is manufactured by the FLDA procedure
and does not exist in the data. The problem is further illustrated in part C of the figure,
where the two distributions are plotted. The short lines (red dots) will have relatively bigger
Y 1 and smaller Y 2 coordinates compared with the long lines (green dots). The solid blue
line corresponds to the solution computed by FLDA. While this direction may be good for
classifying the two populations (long vs short lines), it is not guaranteed to be well
populated by data. If a visual understanding is to be obtained, the FLDA solution can thus
provide misleading information (as shown in Fig 1 (A)).

2.3. A modified FLDA criterion
The FLDA criterion can be modified by adding a term that ’penalizes’ directions w that do
not pass close to the data. To that end, we combine the standard FLDA criterion with a
penalty term that measures, on average, how far the data is from a given direction w.
Mathematically, an arbitrary line in the shape space Rm can be represented as λw + b, with
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line direction and offset w, b ∈ Rm, λ ∈ R. The squared distance  from a data point xi in
the shape space Rm to the line can be represented as [32]:

For a data set of N points, the mean of squared distances from each point in that data set to
that line is:

(4)

We note that the term defined in equation (4) contains b that multiplies the terms containing
w. Since it should be minimum for all possible choices of w, b can be chosen independently

of w and can be shown to be (see section Appendix A for details):  (this is
equivalent to normalizing the data set by the mean, and, in that case, we could just assume b
= 0). This indicates that this line must go through the center of the data set. Equation (4) can
then be rewritten as:

(5)

where  represents the ’total scatter matrix’. The optimization
problem defined in equation (5) is equivalent to:

(6)

Recall that our goal is to maximize the Fisher criterion defined in equation (1) while
minimizing the mean of squared distances defined in equation (4) (or (6)) to guarantee the
discriminating direction found is well populated by the data. First we note that equation (1)
is equivalent to the following optimization problem [32]

(7)

where ST is the ’total scatter matrix’ as defined in equation (5), and ST = SB +SW. The
criterion is then optimized by solving the generalized eigenvalue problem [32] STw = λSWw,
and selecting the eigenvector associated with the largest eigenvalue.

We note that maximizing the Fisher criterion defined in equation (7) is equivalent to

maximizing  [3, 32]. Since our goal is to maximize the Fisher criterion and at the
same time minimize the penalty term defined in equation (6) (or maximize the reciprocal of
it), we combine both terms and define
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(8)

(9)

where α is a scalar weight term, as the criterion to optimize. Maximizing equation (9) is
equivalent to

(10)

where I is the identity matrix. The solution for the problem above is also given by the well-
known generalized eigenvalue decomposition STw = λ (SW + αI)w. This solution is similar
to the solution to the traditional FLDA problem, however, with the regularization provided
by αI. We note once again that although the regularized eigenvalue problem has been
utilized in the past, to our best knowledge, the geometric meaning of such regularization is
not well understood. According to the derivation above, the geometric meaning of the
regularization is the minimization of the least squares-type projection error, in combination
with the Fisher criterion. Moreover the rank of the generalized eigen decomposition problem
defined in eq. (2) [34] is one. This means that, for two-class problem, only one
discrimination direction is available. On the other hand, the minimization of the objective
function (9) allows for a PCA-like decomposition, yielding a decomposition with as many
directions as allowed by the rank of ST (assuming a large enough α). All directions are
orthogonal to each other, and each direction in this decomposition maximizes the objective
function (9), with the constraint of being norm one and orthogonal to other directions.

2.4. Relationship with FLDA and PCA
It is clear that if we set the parameter α = 0, the objective function defined in equation (9)
will be the same as optimizing the traditional FLDA criterion. On the other hand, when the
parameter α → ∞, the generalized eigenvalue decomposition problem for equation (10)

 can be rewritten as STw = λ′w (because  ), which is the
well-known PCA solution with the same eigenvectors (with eigenvalues multiplied by α).
By changing the penalty parameter α from 0 to ∞, the solution of the modified FLDA
problem described in (9) ranges from the traditional FLDA solution to the PCA one.

2.5. Parameter selection for α
The discriminant direction computed by equation (10) can be regarded as a function w(α) of
the parameter α. For a given problem or application, one must select an appropriate value for
α to ensure meaningful results. Too low a value for α and problems related to poor
representation (as well as ill-conditioning in the associated eigenvalue problem) can occur.
Too high a value and little or no discrimination information will be contained in the
solution. We propose to select α such that it is close to the value of zero and that also is
stable in the sense that a small variation in α does not yield a large change in the computed
direction w(α). To that end, in each problem demonstrated below we compute
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 (m is the dimensionality of w) numerically and compare it
to a fixed threshold (10−4 in this paper). Several values of α are scanned starting from zero
(or close to zero when the system is ill conditioned), and the first value of alpha for which
dw(α)/dα < 10−4 is true is chosen as the α for that dataset.

2.6. ”Kernelizing” the modified FLDA
Morphometry problems, in particular in biology and medicine, can often involve high-
dimensional data analysis (e.g. three dimensional deformation fields [20, 21]). Computation
of the full covariance matrices involved in such problems is often infeasible. To address this
problem, the technique we propose above can be ”kernelized,” in an approach similar to the
one described in [28]. Assume Φ be a mapping function to higher that Φ : Rn → Rm. The
modified FLDA defined in equation (9) can be transformed to:

(11)

where  . If we assume  , equation (12) can be
transformed to:

(12)

where G = (G)i,j := Φ(xi)TΦ(xj) is a N × N matrix,  is a N × Nc
matrix with (Kc)i,j := Φ(xi)TΦ(xj∈c), T = G(I − 1N)GT is a N × N matrix, and 1N is a matrix
with all entries 1/N. Although the computational examples we show below are of low
enough dimension and do not require such an approach, we anticipate that the kernel version
of our method will be useful in higher dimensional morphometry problems.

3. Results
3.1. Simulated experiments

We tested the modified FLDA method above on the simulated dataset depicted in Figure 1.
We compared the result of applying the FLDA method Fig 1 (A) with our modified FLDA
method (α = 500) in Fig 1 (B). As mentioned above, the value of α was chosen automatically
as the one that satisfied dw(α)/dα < 10−4. The same criterion was used for all the
experiments described in this section. We can see the method we propose does indeed
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recover the correct information that discriminates between the two populations (in this case,
the length of each line). While this is not necessarily the most discriminating information in
the FLDA sense, it is the most discriminating information that is well populated by the data,
in the sense made explicit by equation (9). In this specific simulation the modified FLDA
method yields the same result as the standard PCA method would. However, as shown in
other examples below, that is not a general rule.

We also tested the modified FLDA method on another simulated data set, where two classes
of shapes were analyzed. One class was composed of circles (as shown in Fig 2(A)), and the
other class was composed of circles with square protrusions emanating from opposite sides
(as shown in Fig 2(B)). We used 100 samples for each class, and in each class the radii of
circles ranged uniformly from 0.2 to 0.8. We generated these images in the way that we
expect the discriminating information for this simulated data to be the rectangular
protrusion. We used the contour-based metric to extract 90 sample points along the contour
of each image, and used both [X,Y] coordinates of the sample points. Each image was thus
mapped to a point in a 180 dimensional vector space. In Fig 2(C), the first three PCA modes
(computed using both classes) are shown. The first mode of variation is related to circle size
and the second seems to show the difference in shape. In Fig 2(D), we demonstrate the
discriminating mode computed by the modified FLDA (α = 800) method. We can see that
the method successfully recovers the discriminating information in the data set, without
being confused by the misleading information such as size and the shape of the ovals. To
verify that indeed the projection recovered by the modified FLDA is more discriminant than
the size (radii) of the circles, we project the data onto the directions found by PCA (the first
mode) and the modified FLDA (Fig 3(A) and (B)). As can be seen from this figure, by
construction, the differences in shape (rectangular protrusions) are more discriminating than
differences in size. We also applied the traditional FLDA (without regularization) on this
simulated data. Results are shown in part (E) of Fig. 2. As can be seen, although the
generalized eigenvalue problem can be solved and some discriminant information can be
detect, the data cannot be easily visualized. The contours start to break and sample points
along the contour start to move irregularly. In addition, we compare the methods mentioned
in [29, 24], where PCA and FLDA are used sequentially. In the PCA step, we discard all the
eigen-vectors whose corresponding eigen-value is smaller than a threshold (set at 0.1% of
the biggest eigen-value). The result, shown in Fig 2(F), indicates that although some
interpretable discriminant information can be detected, the direction provided also suffers
from similar artifacts as the traditional FLDA method. We also compared the classification
accuracy obtained by the three difference methods (traditional FLDA, sequential PCA and
FLDA, and our penalized FLDA method). We used a K-fold (K = 10) cross-validation
strategy [32] to separate the whole data set into 10 parts. In each fold, one part was left out
and the remaining parts were used for training to compute the discriminant directions by the
three methods, and these directions were used to classify the testing set. We repeated the
procedure until each part has been selected once, and computed the final classification
accuracy. The classification accuracies obtained were: 90% (traditional FLDA), 98% (PCA
plus FLDA) and 100% (penalized FLDA).

3.2. Real data experiments
We applied the modified FLDA method on a real biomedical image data set to quantify the
difference in nuclear morphology between normal versus cancerous cell nuclei. The raw
data consisted of histopathology images originating from five cases of liver hepatoblastoma
(HB), each containing adjacent normal liver tissue (NL). The data was taken for the archives
at the Children’s Hospital of Pittsburgh, and is described in more detail in [18, 35]. The data
set is available online at [36]. Briefly, the images were segmented by a semi automatic
method involving a level set contour extraction. They were normalized for translation,
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rotations, and coordinate inversions (flips) as described in our earlier work [11, 18, 35]. The
dataset we used consisted of a total of 500 nuclear contours: 250 for (NL), and 250 for (HB).
Some sample images are shown in Fig 4(A)(B) for HB and NL classes. The contours of each
image were mapped to a 180 dimensional vector xi as described earlier.

Fig 4(C) contains the first three discriminating modes computed by the modified FLDA
method (with α = 600). For this specific cancer, we can see that a combination of size
differences and protrusions is the most discriminating directional information. The
elongation of nuclei is the second most discriminant morphological information (that is
orthogonal to the first). The third direction contains a protrusion effect. The p values of the
t-test for each direction are 0.0021, 0.071, 0.27, respectively. As in the previous experiment,
we also applied the traditional FLDA method on the contours of data set, as shown in Fig
4(D). Some sample points on contours seem to move perpendicularly to the contour with
relatively big variation, while some remain unchanged. The direction computed by FLDA
does not seem to capture visually interpretable information. In addition, as in section 3.1, we
also applied the method described in [29]. The result is shown in Fig 4(E). Finally,
classification accuracies for the three methods were computed as described above. The
classification accuracies obtained were: 76% (traditional FLDA), 79% (PCA plus FLDA)
and 81% (penalized FLDA).

We also applied the penalized FLDA method on a leaf shape data set [37] to quantify the
difference in morphology between two types of leaves. The raw data consisted of gray-level
images of different classes of leaves, with roughly the same size, and each class having 10
images. Some sample images for the two types of leaves are provided in Fig 5(A)(B)
respectively. The contours of the leaves are provided. We followed the same procedures as
described earlier to preprocess the contours. In Fig 5(C), we plot the first two discriminating
modes of variations computed by the modified FLDA (with α = 200). We can see that the
first discriminating mode successfully detects elongation differences as the discriminant
information for this data set. The second discriminating mode is the size differences
combined with the shape differences. The p-values for the t-tests on these directions were
3.09 × 10−5, 0.056 respectively. In Fig 5(D), we demonstrate the discriminating mode
computed by the traditional FLDA method. In Fig 5(E), we show the discriminant variation
computed by sequentially applying PCA then FLDA (as before the eigenvalues of the
reconstructed vectors in the PCA portion were thresholded at 0.1% of the largest eigenvalue,
to avoid ill conditioning). Because the dataset only contained 10 images in each class, we do
not report classification accuracies in this case.

Finally, we also applied the penalized FLDA method to a facial image data set to quantify
the difference between two groups. The data is described in [31], and available online [38].
The manually annotated landmarks (obtained from the eyebrows, eyes, nose, mouth and
jaw) were used in our analysis. Generalised Procrustes Analysis (GPA) was used to
eliminate the translations, orientations, and scalings. Therefore, each human face Ii was
decoded by a 116 dimensional vector xi. The dataset we chose contained two classes: faces
with normal expression, and faces smiling. As in the previous experiments, we compared the
results from the first two modes of variations computed by the penalized FLDA method
(with α = 500), traditional FLDA method, and sequentially applying PCA then FLDA
(where again the threshold of 0.1% of the largest eigenvalue was used for a threshold).
Figure 6 shows the corresponding results. The p-values computed from the penalized FLDA
procedure were 5.88 × 10−5, 2.91 × 10−3. Classification accuracies were 92% (traditional
FLDA), 88% (PCA plus FLDA) and 91% (penalized FLDA).

Wang et al. Page 9

Pattern Recognit Lett. Author manuscript; available in PMC 2012 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4. Summary and discussion
Quantifying the information that is different between two groups of objects is an important
problem in biology, medicine as well as general morphological analysis. We have shown
that the application of the standard FLDA criterion (other discrimination methods can also
suffer from similar shortfalls, see for example [17]) can lead to erroneous results in
interpretation not necessarily related to ill conditioning in the data covariance matrix. We
showed that the regularized version of the associated generalized eigenvalue problem is
related to minimizing a modified cost function that combines both the standard FLDA term
together with a least squares-type criterion. The method yields a family of solutions that
varies according to the weighting (α) applied the least squares-type penalty term. At one
extreme (α = 0) the solution is equal to that of the traditional FLDA method, while a the
other extreme (α → ∞) the solution approaches that of the standard PCA method. We also
described a method for choosing an appropriate value for weighting the penalty term. We
note again that while others have also used the same regularized version of the associated
generalized eigenvalue problem (see [28] for an example), geometrical explanations for this
regularization are not known, to our best knowledge. We also note that the method we
propose tends to select regularization values α much larger than the ones often used.

We applied the method to several discrimination tasks using both real and simulated data.
We also compared the results to results generated by other methods. In most cases the
traditional FLDA can be computed (ill conditioning is not an issue). Its results however, are
not always visually interpretable (e.g. are far from being closed contours, etc.). Likewise, the
application of PCA and FLDA serially (as in the method described in [29]) can also yield
uninterpretable results, since the FLDA procedure is ultimately applied independently of the
PCA method. Moreover, as shown in Fig 1(C), even if we apply PCA to discard the eigen-
vectors corresponding to small eigen-values, the direction computed by the traditional
FLDA is not guaranteed to be well populated by data. Results show that the penalized
FLDA method we describe can help overcome these limitations.

Finally, we emphasize that although we have used contours and landmarks extracted from
image data as our linear embeddings, it is possible to use the same method on other linear
embeddings (for example [12]). For some such linear embeddings, however, distance
measurements, projections over directions, etc., over large distances (large deformations)
may not be appropriate. In such cases we believe the same modified FLDA method could be
used locally, in an idea similar to that presented in [39].

> We modify the Fisher Discriminant Analysis method to include an average
distance penalty.

> We apply the modified FDA method to problems in image-based
morphometry and compare its results to other methods.

> We build discriminant representative models to interpret differences in
morphometry in two populations.
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Appendix A
We note that the term defined in equation (4) contains b that multiplies the terms containing
w. Since it should be minimum for all possible choices of w, b can be chosen independently

of w. Therefore, we can first focus on  . It is
equivalent to

(A.1)

Differentiating with respect to b in equation (A.1) and setting it to 0 we have that

 . The optimal b* satisfiesn

 .
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Figure 1.
Discriminant information computed for a simulated data set. A: Visualization of computed
most discriminant direction by applying the standard FLDA method. B: Visualization of
computed most discriminant direction by applying the penalized FLDA method. C: Plot of
two sample points on the contour for the whole data set. See text for more details.
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Figure 2.
Principle variations and discriminant information computed for a simulated data set. A:
Sample images from the first class. B: Sample images from the second class. C: First 3
principle variations computed by Principle Component Analysis (PCA). D: Discriminant
variation computed by the penalysed FLDA method. E: Discriminant variation computed by
directly applying the traditional FLDA on this simulated data. F: Discriminant variation
computed by sequentially applying PCA then FLDA on this simulated data.
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Figure 3.
Histograms of data projected onto different directions. A: projection histogram on direction
computed by the PCA method. B: projection histogram onto the direction computed by the
modified FLDA method.
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Figure 4.
Discriminant information computed for real liver nuclei data. A: Sample nuclear contours
from the cancerous tissue (HB). B: Sample nuclear contours from normal tissue (NL). C:
First three discriminating modes computed by the modified FLDA method. D: Discriminant
variation computed by directly applying the traditional FLDA method on this data. E:
Discriminant variation computed by sequentially applying PCA then FLDA on this data. See
text for more details.
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Figure 5.
Discriminant information computed for leaf dataset. A: Sample images for one class of
leaves. B: Sample images for another class of leaves. C: First two discriminant variations
computed by our modified FLDA method. D: Discriminant variation computed by directly
applying the traditional FLDA method on this data. E: Discriminant variation computed by
sequentially applying PCA then FLDA on this data. See text for more details.
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Figure 6.
Discriminant information computed for face data. A: Sample image for neutral expression.
B: Sample image for smiling face. C: First two principle variations computed by the
modified FLDA method. We can see that the modified FLDA method can correctly detect
the different facial expression information. D: Discriminant variation computed by directly
applying the traditional FLDA method on this data. E: discriminant variation computed by
sequentially applying PCA then FLDA on this data.
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