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Abstract

The use of analogies to physical phenomena is an exciting paradigm in

computer vision that allows unorthodox approaches to feature extraction,

creating new techniques with unique properties. A technique known as

the “image ray transform” has been developed based upon an analogy to

the propagation of light as rays. The transform analogises an image to

a set of glass blocks with refractive index linked to pixel properties and

then casts a large number of rays through the image. The course of these

rays is accumulated into an output image. The technique can successfully

extract tubular and circular features and we show successful circle detection,

ear biometrics and retinal vessel extraction. The transform has also been

extended through the use of multiple rays arranged as a beam to increase

robustness to noise, and we show quantitative results for fully automatic

ear recognition, achieving 95.2% rank one recognition across 63 subjects.
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1. Introduction

The detection of structural features within images is a challenging but

vital problem in computer vision. Applications for its use are wide, ranging

from machine vision to biometrics and medical imaging. We present the

image ray transform (IRT), a technique based upon an analogy to light

rays which has successfully been used for the detection of different structures

within images.

There are a number of ways to approach the creation of techniques for

computer vision. One paradigm that produces unique methods, results and

advantages is the use of analogies to physical phenomena as a foundation

(Nixon et al., 2011). Few techniques exist based upon analogies to light,

but those that do often use the Eikonal equation. The Eikonal equation

describes the time a ray takes to travel from the boundary of an anisotropic

medium to a point within it. Examples of its use are for image half-toning

(Pnueli and Bruckstein, 1994) and in a watershed segmentation method

(Meyer and Maragos, 1999), although primarily as a distance measure rather

than taking fuller advantage of the light analogy. The image ray transform

is based upon an analogy to light rays, but is not a detailed simulation of

light propagation; aspects of the analogy that enhance our technique are

kept, but not those that weaken it.

This paper describes this novel technique employing the principles of

ray optics to emphasise image features, particularly of a structural nature

such as tubes and circles. In section 2 we describe the image ray transform,

including the laws of optics on which the transform is based, the mechanics

through which it works, as well as discussing properties and parameter

selection and detailing an extension involving using a beam of rays to make
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the transform robust to noise. Section 3 summarises how the transform can

detect structural features, looking at circles as well as tubular features found

in retinal images and ear biometrics, and also presenting new recognition

results. Finally conclusions are drawn and some possible future applications

for the transform are identified in section 4.

2. The Image Ray Transform

The image ray transform is a novel technique for the enhancement of

structural features within images. It employs the principles of ray optics

to highlight tubular and circular features within images. Although the

transform is based on an analogy to light, the method can be modified to

enhance feature detection or improve performance whilst still maintaining

the advantages of the analogical formulation.

2.1. Laws of Optics

The propagation of light can be simulated through the use of rays, a

model that takes specific regard for the direction of travel but ignores more

complex properties like diffraction. Light rays travel through a medium,

and at boundaries with other media may change in direction through either

refraction and reflection, or total internal reflection. In the physical world

light will often split, some part reflected and some refracted but in our model

we consider only the possibility of refraction or total internal reflection.

When light crosses a boundary between two media, it does so at an angle

of θI to the normal of the media boundary, as shown in figure 1. Reflec-

tion is when the light remains in the first media and continues travelling

on the other side of the normal, where θI = θL. Refraction is when the
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Figure 1: Refraction and reflection of light at a boundary of two media m1 and m2.

light continues past the boundary into the second media, but has its angle

modified so that it travels in direction θR to the normal instead. Which of

these occur, as well as the angle of refraction, depends upon the refractive

indices of the boundary media, n1 and n2. Refractive indices are the ratio

of the speed of light in a vacuum to the speed of light in a medium, and in

nature 1 ≤ n / 4.

The angle of refraction θR is calculated from Snell’s Law as:

sin θI
sin θR

=
n2

n1

(1)

The result of this is that if n1 > n2, then θR < θI , and light bends towards

the normal. If n2 > n1 then we must take into account whether θI is above

the critical angle, that is, the angle that would make θR = 90◦ and so

impossible:

θC = sin−1

(

n2

n1

)

(2)

If θI > θC light must reflect through total internal reflection, if not then
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θR > θI and light bends away from the normal. These rules form the basis

of the image ray transform.

2.2. Image Ray Transform Mechanics

The IRT operates by casting rays through an image. The transformed

image is generated by recording the course of each ray, which results in

enhanced structural features. We analogise the image as an array of two

dimensional glass blocks, each representing a pixel in the image. Each

block’s refractive index is derived from the intensity of its corresponding

pixel, through either a linear relationship, with a parameter controlling the

maximum refractive index (nmax). For a given intensity, i, the refractive

index, ni, is

ni = 1 +

(

i

255

)

· (nmax − 1). (3)

or exponential relationship, with a parameter k controlling the growth with

intensity:

ni = e
i

k . (4)

Within this array of blocks, a ray is created with a random (subpixel) po-

sition (x and y) and an initial direction (φ) from a uniform distribution(U).

A unit vector representing the ray’s direction ,V, is calculated from φ. The

ray is initialised at position vector p:

p<0> = (x, y)T (5)

and at iteration t:

p<t> = p<t−1> +V (6)

When a ray enters a block for the first time, the accumulator matrix (A)

entry for that block is incremented by 1. Each individual ray increments a
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pixel once in order to prevent small loops in the ray’s path causing small

clusters of pixels to be repeatedly incremented, which are more likely to be

caused by noise than a desired structural feature.

When the ray crosses a block boundary where media on either side

have different refractive indices, a vector formation of the laws described in

section 2.1 must be used to calculate a new direction. Through use of the

direction of the ray V, the normal N, and the refractive indices of the two

media n1 and n2 the new direction can be calculated. The equations for

calculating the direction for refraction Rr, direction for reflection Rl from

V and N and choosing between them can be found in Hill (2000). The ray

is followed in this manner until it has undergone d reflections or refractions,

travelled a distance l or the ray exits the image. This is repeated for N rays

and the transformed image is found from the accumulator A.

Whilst the method is strongly based upon an analogy to light rays, there

are two changes we make in order to improve the result of the transform

without compromising the analogy. The normals (N) that are used to cal-

culate the new direction of the ray are not set to horizontal or vertical block

boundaries as would be expected, but rather the normal of the edge direc-

tion found by the Sobel operator at that point as this is more representative

of the information within the image. Secondly, we only perform refraction

when moving from higher to lower refractive indices as this tends to improve

the quality of the transform result, and enhance structural features more

strongly.
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2.2.1. Parameter Selection

As with most techniques, parameter selection is an important step in

ensuring high quality results. Whilst the ray transform has a number of

parameters, it has been designed so that many of them are derived from

image information, or that static values suggested here are appropriate. Pa-

rameter selection is primarily concerned with balancing noise and the speed

of the transform. As the transform is non-deterministic due to the random

initialisation of rays, a sufficient distribution of rays to cover pertinent fea-

tures and limit noise is necessary. Conversely, every step of following a ray

has a computational cost, and that must be minimised at the same time.

The most important parameters are those which define the relationship

between refractive index and intensity, nmax or k, depending on whether

equation 3 or 4 is used. The difference between refractive indices changes

with this value, and hence the amount that rays conform to structural fea-

tures increases. Natural values of nmax (below 4) extract only the strongest

features, whilst larger, unnatural values extract more features and produce

a transformed image with less noise. In the exponential model a similar

mechanism works, although inversely, so that smaller values of k make rays

adhere very closely to features. Common values used for nmax were 4 or 40

whilst for k, values between 5 and 100 were common.

Two parameters, l and d have values related to the scale of the image

and the scale of the features required. The maximum depth parameter d

controls the number of refractions and reflections that a ray may undergo

before it is no longer followed. It is the primary means of ensuring a ray is

not too computationally expensive by stopping it after a number of changes

of directions. It is usually equivalent to the number of pixels that the
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ray has passed through, as in most natural images there is a change in

intensity and therefore refractive index between nearly every pixel. It should

be set at a value that is large enough to allow a ray to find a structural

feature and to follow it, but not so large as to lengthen the time of the

transform unnecessarily. Investigation has shown these two properties are

best balanced at d = 256, although a lower value may be appropriate if the

image dimensions are smaller than this value.

The maximum length, l, is a primarily present in order to deal with cases

in synthetic images where large parts of the image have the same intensity,

and hence refractive index. In these cases there may not be many changes in

direction and the ray must be terminated after a distance has been travelled.

An appropriate value is twice the length of the image diagonal so that it is

unlikely to be exceeded before d.

The number of rays that should be traced, N , is an important parameter

for ensuring that the image has been sufficiently explored by the rays. It

must be set to be large enough for rays to have fully covered the image and

reduced the amount of noise, but small enough so as to not generate more

rays than are necessary. A complete approach, covering every pixel and a

subset of directions is infeasible (requiring at least 100 times as many rays)

but it was found that N = 20000 was an acceptable heuristic on images

with dimensions of 512 × 512 and below. However, it is more appropriate

to use a stopping condition to decide when the transformation of an image

is complete, and this is described in section 2.3.2.

Computation time depends upon selected parameters to a certain extent,

but for an image of size 512× 512, with standard parameters, computation

was recorded to take 1.93s. Whilst this is longer than techniques such as
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Sobel, which took 0.022s on the same machine, it is still far from being

computationally expensive. In addition to this the technique is easy to

parallelise with each ray being independent of the other rays. It should

also be noted that the additional methods used in section 3, such as the

Hough transform, template matching and hysteresis thresholding all have a

computational cost significantly greater than the IRT.

2.3. Refinements

Whilst the image ray transform as described is a powerful technique, two

further additions can be made that expand its applications and increase its

ease of use.

2.3.1. Intensity and Refractive Index

The IRT, as described in section 2.2, will only emphasise features that

are of a higher intensity than their surrounding area. This occurs because

total internal reflection only works to stop rays moving from higher to lower

refractive indices (hence intensities) and not vice versa. Different measures

can be taken to deal with this, depending upon the desired result.

When the approximate intensity of the desired structures are known,

then a simple transformation can be applied to make that intensity (the

target intensity) the largest value. We do this by finding the difference

between the target intensity τ and the original intensity io for all pixels in

the image:

iτ = |io − τ | (7)

Further to this, if the intensity of the structures is not known, or varies,

the IRT can be performed multiple times, with different target intensities
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and the results combined by selecting the maximal value at each pixel. A

specific and useful case is the selection of values such that τ = {0, 255}

(or the original and inverted image) allowing structures that are both high

surrounded by low, and low surrounded by high intensity to be highlighted.

2.3.2. Automatic Stopping Condition

The issue of selecting the optimum number of rays that should be fol-

lowed to ensure the transformed image is of sufficient quality is an important

one. An automatic system for stopping the transform when this level has

been reached is therefore preferable to using fixed values of N . One method

to do this is to calculate the difference in the normalised accumulator be-

tween iterations and cease when there is no longer any significant change. A

simple and effective method of doing this is the root mean squared (RMS)

difference between the intensities of the normalised accumulator at different

iterations:

D<t>(I′
<t>

, T ) =

√

1

|I′|

∑

z∈I′

(

I′<t>(z)− I′<t−T>(z)
)2

(8)

where T is the number of iterations between each comparison and I′
<t> is

the normalised accumulator at iteration t. As the normalisation process is

significantly slower than an iteration of the transform, it is appropriate to

use large values of T , to balance the computational cost of normalisations

with that of performing too many iterations and obtaining a value that is

sufficiently robust to noise. The value, D, that is calculated can be employed

as a stopping condition by ceasing the transform when it drops below a set

limit, DS. A suitable value of DS is 1, when T = 1000, as this corresponds

to a mean intensity change per pixel of 1 per 1000 iterations.
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while D > DS do

accumulator ← CastRandomRay(image, accumulator);

if i%T = 0 then

previousNormImage ← currentNormImage;

currentNormImage ← NormaliseArray(accumulator);

D ← 0;

for z ← 0 to Size(image) do

D ← D+(currentNormImage[z]− previousNormImage[z])2

end

D ←SquareRoot(D/ Size(image))

end

i← i+ 1;

end

Figure 2: Pseudocode showing the application of the Root Mean Squared difference

stopping condition.
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Figure 2 shows a pseudocode implementation of the stopping condition.

The majority of the IRT occurs in the CastRandomRay function and is not

detailed, but the calculation of D every T iterations is shown.

2.4. Beams

The image ray transform can be extended to use beams, that is, multiple

rays arranged in a line orthogonal to their direction. The addition of this

mechanism produces a technique that is able to overcome noise successfully

and extract larger features from images. Assuming p0 andV are the starting

position and direction of a ray, assigned randomly as in the standard IRT,

and NV is the normal to V then the starting positions of the B rays pb

where 0 ≥ b < B that constitute the beam, also of width B, are

pb = p0 + b ·NV (9)

This alone does not add anything to the IRT. The rays must be followed in

parallel and they must be forced to maintain a single beam. This can be

done by introducing a tether, a step where the directions of all rays that

compose the beam are adjusted towards the beam’s mean.

V′

b = (1− γv)Vb + γv

(

1

B

B−1
∑

q=0

Vq

)

(10)

The parameter γv controls the rate at which the direction moves towards

the mean, and so controls the extent to which individual rays can diverge

from the beam. When γv = 0 no directional adjustment occurs whilst when

γv = 1 all directions are set to the mean direction after every iteration.

With an intermediate value such as γv = 0.5 the beam is able to change

direction if the majority of the rays comprising the beam are changing in
12



the same direction. An example of the use of beams to transform noisy

images is shown in section 3.2.1.

3. Structural Feature Detection

Figure 3 shows the result of the standard ray transform on a variety

of images from the Caltech101 dataset (Fei-Fei et al., 2007). Throughout

these images we vary the value of target intensity parameter τ in order to

highlight the most prominent structural feature clearly. We also employ the

stopping condition extension to automatically cast more rays for images of

greater size or containing weaker structure.

In figure 3(a) the transform’s propensity for emphasising tubular fea-

tures is shown clearly. It performs strongly at this task because tubular

features act like optical fibres, where a high refractive index glass cylinder

surrounded by low refractive index air ensures that rays collect inside them

and reflect along their length. In sections 3.2 and 3.3 two applications of

tubular structure detection will be discussed. Figure 3(b) show the trans-

form reacting to circular features within images. A ray exiting a circular

structure will reflect off the edge at an angle that is shallow enough to en-

sure that it continues to reflect off the edges around the entire circle. A

discussion of further tests on this application is presented in section 3.1.

Some of the limitations of the IRT’s application to structural feature

detection are shown in figure 3(c). The difficulty of directing the IRT to

emphasise only tubular or circular structures is shown in the image of a

car. The IRT might be expected to highlight the car wheels most strongly

as they are a strong circular feature, but the shadow of the car produces a

stronger tubular structure, directing rays away from the wheels. The results
13



(a) Tubular Features

(b) Circular Features

(c) Examples of Limitations of the IRT

Figure 3: The result of the transform in highlighting structural features in a range of

images. DS = 1, nmax = 40, d = 256

.
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of the transform can also be affected by the other, undesired structures in

the image. In the second image of the ceiling fans we aim to highlight

the fan blades equally, but the occlusion of two of the blades reduces the

response across the whole of those blades, rather than just the occluded

area.

3.1. Circle Detection

The standard method for circle detection is the Hough transform for

circles, and the image ray transform can be employed to improve results

(Cummings et al., 2010a). The Hough transform (HT) (Hough, 1962) was

originally used for detecting lines, but can be applied to the detection of

arbitrary shapes, especially circles. Yuen et al. (1990) review a number of

varieties of the HT for circles, but the faster, decomposed version that was

selected for use here was described by Davies (1984).

A standard procedure for performing the HT is to use an edge detec-

tion technique, followed by thresholding and then application of the HT on

the binary image. Through use of the IRT as a preprocessor before edge

detection, we can enhance circular features so that they produce stronger

edges and lead to circles being detected with greater accuracy. In order to

test this, a number of synthetic images were generated by placing circles

of random size and intensity on a variety of natural and synthetic back-

grounds (figure 4). The methods described previously (edge detection both

with and without the IRT) were then applied to the images and the distance

from the ground truth position and radius was found. Two edge detection

techniques were used: Sobel and Canny. Through use of the two pass aggre-

gation method described in section 2.3.1 (where t = 0, 255) circles of both
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(a) Tree (b) Sea (c) Noisy

Figure 4: Examples of images generated on different backgrounds.

high and low intensity could be found equally well.

Across all three image types, error was reduced with both types of tested

edge detector. The method was also more capable of dealing with situations

where the background was of similar average intensity to the circle than the

edge detector alone, although performance was weakest in such cases.

3.2. Enrolment for Ear Biometrics

Ears are an encouraging area of biometrics and research suggests that

they may have similar identification strength to faces (Chang et al., 2003).

In addition to this, they exhibit advantages over other biometrics; in par-

ticular the ear is relatively immune to the effects of ageing. Whilst identifi-

cation by ears is obviously an important part of ear biometrics research, of

similar importance is the process of extracting and normalising the original

image so that accurate identification can occur. This process is known as

enrolment and for most identification experiments is currently done manu-

ally. There has not been as much research into the automation of detection
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(a) Original (b) IRT (c) Smoothed

(d) Threshold (e) Detection (f) Extraction

Figure 5: Example of the steps taken to achieve successful ear enrolment.

and enrolment as identification, but attempts have been made using ac-

tive contours and an ovoid model (Alvarez et al., 2005), an elliptical Hough

transform (Arbab-Zavar and Nixon, 2007), SIFT feature points to transform

an image to a model (Bustard and Nixon, 2008) as well as Haar wavelets

combined with AdaBoost (Islam et al., 2008). The image ray transform can

emphasise tubular structures within an image and due to the shape of the

ear, this can be exploited to enable enrolment (Cummings et al., 2010b).

The outer rim of the ear, known as the helix, is an example of a tubular

structure that the IRT is adept at emphasising. The ear is also bounded by

the helix, so that by finding it the position of the ear is also found.

The method used to extract the ear image is shown in figure 5. The

original image from the XM2VTS database (Messer et al., 1999) undergoes
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(a) Noisy Image (b) IRT (c) Beam-IRT

Figure 6: Noisy ear image transformed with the versions of the IRT.

the image ray transform (figure 5(b)). Gaussian smoothing is then applied

across the image (figure 5(c)) in order to reduce noise and remove gaps in

the helix. The image is then thresholded (figure 5(d)) to remove as much

of the image as possible whilst leaving the helix intact before an elliptical

template is matched to the image (figure 5(e)). Finally the position, scale

and rotation of the ear, found from template matching, are used to extract

and normalise the ear (figure 5(f)).

Across 252 images, 99.6% detection was achieved. Of these, 98.4% were

correctly normalised for position, scale and rotation. The extension of the

transform to beams described in section 2.4 can be used to improve the ro-

bustness of the ear enrolment technique to noise. Gaussian noise (σ = 20)

was added to the 252 ear images and the tests repeated as previously de-

scribed, but using the beam IRT with parameters B = 8andγv = 0.5 (shown

in figure 6). The use of the beam transform on noisy images increased the

rate of detection of ears from 93.3% to 96.8%, and rate of correct normali-

sation of detected ears from 64.7% to 93.9%.

The image ray transform and the beam variant both caused the enrol-

ment technique to fail in similar cases. In some cases the transform response
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(a) IRT Failure

(b) Beam IRT failure

Figure 7: Examples of failure of the ear enrolment technique.

to other areas of the image was large enough to cause the template to be

matched to an incorrect region. Figure 7(a) shows the only example of this

detection failure on the original ear images. Whilst the IRT emphasises the

ear strongly, it has similarly done so with the forehead, to the extent that

it matches more strongly with the template. With the addition of noise

both the IRT and its beam variant failed in detection more frequently. In

figure 7(b) an example of combination of other structures creating one that

responds strongly to both the IRT and the template matching is shown.

The spectacle frames and white areas of hair are both highlighted strongly

by the transform and the template matching step, to a much greater degree

than the ear. There a number improvements to the enrolment technique

that could be made to deal with these issues, including removal of straight

lines prior to thresholding and the use of a superior matching technique,

such as the Hough transform.
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3.2.1. Recognition on enroled images

We quantitatively test the ear enrolment technique by using principal

components analysis (Chang et al., 2003) (PCA or “eigen-ears”) for recog-

nition on enrolment by the IRT. PCA recognition is a powerful technique

but is reliant on accurate ear registration, making it well suited to test the

IRT-based enrolment technique. We use a standard PCA implementation

(Beveridge et al., 2005) as used previously for ear recognition (Chang et al.,

2003; Yan and Bowyer, 2005). Images are normalised for position, scaled to

be the same as that of the template (80×150) and are rotated to be vertical

using the parameters found during template matchings. During PCA we

retain 60% of the eigenvectors.

We compare our recognition results on the 63 subjects of the XM2VTS

database (selected by Hurley et al. (2005)) with those of the automated el-

liptical Hough transform based enrolment system of Arbab-Zavar and Nixon

(2007) as well as the results on manually enroled images. Table 1 shows

the rank one recognition rate on PCA with the Manhattan distance (except

where stated otherwise), using one of the subjects images as a probe and

the rest as the gallery. Our method is clearly superior to that of the Hough

transform technique and is approaching the quality of manually enroled im-

ages. Further improvement can be made through use of the Yambor Angle

metric (Yambor et al., 2002).

Recognition was also tested on noisy images using both the IRT and

the beam variant. The averaging effect of the beams caused the rank one

recognition rate to be increased from 44.4% to 74.6%.
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Enrolment Method Recognition Rate

Manual (Hurley et al., 2005) 98.4%

IRT (Yambor Angle) 95.2%

IRT 93.7%

Hough Transform (Arbab-Zavar et al., 2007) 75.1%

Table 1: Rank one recognition rates of different enrolment techniques using PCA.

3.3. Retinal Vasculature Detection

The automation of the detection of retinal vasculature is a task that

can aid diagnosis of a number of diseases, including diabetic retinopa-

thy. Chaudhuri et al. (1989) were the first to approach the problem, using

matched filters. Zana and Klein (2001) used a morphological approach to

the problem and Jiang and Mojon (2003) examined different ways of thresh-

olding. The DRIVE database was assembled by Staal et al. (2004) whilst

they also developed a supervised learning method of pixel-wise classification

based upon ridges in the image. Soares et al. (2006) created another su-

pervised technique based upon Morlet wavelets and Niemeijer et al. (2004)

tested previous unsupervised techniques upon the DRIVE database. Blood

vessels are another example of a tubular structure that the image ray trans-

form can successfully highlight, and with simple techniques vessels can be

segmented successfully (Cummings and Nixon, 2010).

The method through which this occurs is shown in figure 8. An image

from the DRIVE database is taken (figure 8(a)), and the green channel

extracted (figure 8(b)), a standard step in order to use the channel with

greatest contrast. The IRT is then applied (figure 8(c)) to this image, and

some simple automated processing removes some undesired features from
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(a) Original (b) Green Channel (c) IRT

(d) Processed (e) Histogram Equalization (f) Hysteresis Thresholding

Figure 8: Steps taken to extract retinal blood vessels.
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Figure 9: Results of the IRT based technique compared with a selection of other results.

the result (figure 8(d)). This is followed by a simple method of segmenting

the image; histogram equalisation (figure 8(e)) and Hysteresis Threshold-

ing (figure 8(f)). This thresholded image is then compared in a pixel-wise

fashion with the ground truth from the database.

A number of versions of the transform were tested, but the best results

were found from combining the results of the transform with linear refrac-

tive indices and the transform with exponential refractive indices, as they

complemented each others strengths and weaknesses well. One problem

found was that the transform would regularly highlight the fovea (the light

central patch in figure 8(c)), and the border of the retina which had to be

automatically removed in order to prevent incorrect segmentation. Figure
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9 compares the maximum average accuracy (mean percentage of correct

pixels across 20 test images) of the IRT technique with others. We com-

pare with the some of the other techniques described previously, as well as

those achieved when all pixels are set to the most populous class (all back-

ground) and performing histogram equalisation and hysteresis thresholding

on the green channel intensity image (original image). Results are better

than näıve techniques,comparable with other unsupervised techniques, but

not as good as supervised learning techniques, as would be expected.

4. Conclusions and Future Work

The image ray transform is a unique approach to feature extraction that

can aid the detection of structural features. It can enhance the performance

of circle detection techniques through its natural propensity to emphasis

circles. Tubular structures such as the helix of the ear and the blood vessels

within the retina can be enhanced so that they can be extracted by even

simple techniques. We have shown that through the use of beams as local

averaging the IRT can be improved so that it is more robust to noise.

Looking forward, there are many areas in which the image ray transform

could be applied and extended. The detection of structural features is an

integral part of a wide and varied range of applications. The ear biometric

enrolment technique could be enhanced through a better matching algo-

rithm (such as an elliptical Hough transform) or through the development

of an identification method based upon the IRT. Another biometric that

might be appropriate for application of the transform is that of gait as legs

are well emphasised tubular structures. Through application of the IRT as

a preprocessor for more advanced segmentation techniques for retinal vessel
24



extraction, results that are not merely comparable, but superior to other

techniques should be possible. In addition, there are numerous other areas

of biomedical imaging in which the IRT can aid detection.
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