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Abstract  
A new approach is introduced to identify natural clusters of acoustic emission signals. 
The presented technique is based on an exhaustive screening taking into account all 
combinations of signal features extracted from the recorded acoustic emission signals. 
For each possible combination of signal features an investigation of the classification 
performance of the k-means algorithm is evaluated ranging from two to ten classes. The 
numerical degree of cluster separation of each partition is calculated utilizing the Davies-
Bouldin and Tou indices, Rousseeuw’s silhouette validation method and Hubert’s 
Gamma statistics. The individual rating of each cluster validation technique is cumulated 
based on a voting scheme and is evaluated for the number of clusters with best 
performance. This is defined as the best partitioning for the given signal feature 
combination. As a second step the numerical ranking of all these partitions is evaluated 
for the globally optimal partition in a second voting scheme using the cluster validation 
methods results. This methodology can be used as an automated evaluation of the 
number of natural clusters and their partitions without previous knowledge about the 
cluster structure of acoustic emission signals. The suitability of the current approach was 
evaluated using artificial datasets with defined degree of separation. In addition the 
application of the approach to clustering of acoustic emission signals is demonstrated for 
signals obtained from failure during loading of carbon fiber reinforced plastic specimens. 

 

1. Introduction 
 
All sorts of rapid microscopic displacements inside solids are associated with the 
excitation of small elastic waves. This phenomenon is known as acoustic emission 
and is of particular interest for material science if the microscopic displacement 
originates from crack formation or crack propagation.  
 
Acoustic emission analysis is a very powerful tool to detect failure events as a 
function of mechanical loading, especially for monitoring of fiber reinforced 
composites. Here the typical microscopic failure mechanisms are matrix cracking, 
fiber-matrix debonding, fiber pull-out, fiber bridging, inter-ply failure and fiber 
breakage (Schürmann, 2007). Typically the acoustic emission signals recorded 
during failure of composite materials originate from more than one of these types of 
failure mechanism. Without additional information about the origin of acoustic 
emission signals, the interpretation of the recorded signals is often difficult. In 
addition, the acoustic emission signals are influenced by attenuation, dispersion and 
the source position within the specimen (Sause and Horn, 2010a). Therefore source 
identification based on single signal parameters is not feasible and multivariate 
analysis techniques are required instead. 
 
One suitable approach to distinguish between different acoustic emission signal 
types is the application of parameter based pattern recognition techniques. To this 



end, discrimination between noise and non-noise acoustic emission signals is often 
achieved by unsupervised pattern recognition techniques (Anastassopoulos and 
Philippidis, 1995; Philllipidis et al., 1998). Acoustic emission signals originating from 
friction and electromagnetic inductions can easily be identified in this respect, due to 
their inherent characteristic difference to transient acoustic emission signals.  
Various approaches focus on detection of characteristic similarities of the recorded 
signals (Anastassopoulos and Philippidis, 1995; Philllipidis et al., 1998; Richardson, 
1984; Vi-Tong and Gaillard, 1986; Huguet et al., 2002; Ramirez-Jimenez et al., 2004; 
Marec et al., 2008; Li et al., 2008; Sause et al., 2009; Sause and Horn, 2010a). 
Utilizing suitable experimental considerations and finite element simulations the 
respective signal types can be associated with specific failure mechanisms 
(Richardson, 1984; Bohse, 2001; Haselbach and Lauke, 2003; Huguet et al., 2002; 
Ramirez-Jimenez et al., 2004; Marec et al., 2008; Li et al., 2008; Sause et al., 2009; 
Sause and Horn, 2010a).  
 
In terms of pattern recognition techniques, the problem faced is the identification of 
natural clusters of acoustic emission signals. One of the major problems in this 
concern is an adequate evaluation of the classification results of different clustering 
approaches. There are many ways to choose features, normalization procedures and 
algorithms that will influence the result of the classification process. 
 
In order to find the natural clusters of a dataset without previous assumptions on the 
number of clusters and previous feature selection an automated screening of feature 
combinations is a suitable approach. To evaluate the quality of the partition of a 
dataset, several cluster validity indices are established in literature (Tou, 1979; 
Davies and Bouldin, 1979; Rousseeuw, 1987; Hubert and Arabie, 1985). Since each 
cluster validity index shows different performance depending on the occurrence of 
outliers and the shape of the clusters, a combined evaluation of multiple cluster 
validation indices is a possibility to increase the reliability of the cluster identification 
method. Such combined evaluation was already proposed by Günter et al. (2003) in 
the form of a voting scheme to measure the overall performance of the different 
indices. 
 
The present publication utilizes the voting scheme of Günter et al. (2003) in an 
exhaustive screening of feature combinations to detect natural classes of acoustic 
emission signals automatically. In the following section, the pattern recognition 
methodology is introduced. In the subsequent sections the suitability of the approach 
is demonstrated for artificial datasets and for experimental datasets of acoustic 
emission signals. 
 

2. Pattern recognition methodology 

 
The goal of the presented unsupervised pattern recognition methodology is to 
introduce an automated technique to detect promising feature combinations for 
clustering of acoustic emission signals. In contrast to feature reduction procedures 
(e.g. based on correlation dendrograms (Anastassopoulos and Philippidis, 1995)) an 
exhaustive search of global optimal combinations of the signal features used is 
performed. 
As already pointed out by Polikar such exhaustive search methods are conceptually 
simple but computationally devastating since the number of feature combinations to 



investigate grows combinatorially with the number of available features (Polikar, 
2006).  
 
Consequently, before application of the presented exhaustive search method an 
educated preselection of promising features for description of the respective acoustic 
emission signals is suggested. However, in principle the method presented has no 
limitation regarding the number of features, but the exhaustive screening of a large 
number of feature combinations will lead to increased computation times. A 
visualization of the complete method is shown in figure 1 as a flowchart diagram.  
 
Determine all feature combinations: 
The first step consists of selection of all possible feature combinations with a given 
minimum number of features M to be used for clustering. The total number N  of 

combinations of K  previously selected features is thus: 
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Preprocessing: 
As a second step all preprocessing options for each feature combination are applied. 
In the current investigation the preprocessing consists solely of feature normalization 
by dividing by the standard deviation. This is based on preceding investigations on 
classification of acoustic emission signals (Sause et al., 2008; Sause et al., 2009; 
Sause and Horn, 2010b). For a generalized approach the settings should be modified 
to fit the specific needs of the classification problem investigated. 
 
Clustering: 
Subsequently the respective partitions for 2, 3, 4, …, P  clusters are calculated 
utilizing the k-means algorithm, with P  as the maximum number of clusters. To allow 
convergence to the global minimum the algorithm introduced by J. MacQueen with 
10 random cluster center initializations and a maximum number of 100 iterations to 
convergence was applied (MacQueen, 1967). As measure of similarity, the Euclidean 
distance was used. For each partition the Tou-Index  , the Davies-Bouldin-Index R , 

Rousseeuw’s silhouette value S , and Hubert’s Gamma statistic   are calculated. 

Since these cluster validity indices are comprehensively described in the respective 
authors’ original publications (Tou, 1979; Davies and Bouldin, 1979; Rousseeuws, 
1987; Hubert and Arabie, 1985) they are not explicitly repeated. It is worth pointing 
out, that the  -Index, the S -value and the  -statistics indicate good partitions by 

value maximization, while the R -Index indicates good partitions by value 
minimization. 
 
Voting Scheme: 

Based on these 4=Q  cluster validity measures the numerical performance of each 

partition is evaluated in the following scheme adapted from S. Günter et al. (2003): 
 

1. The number of clusters with the best index performance is given P  points. 
2. The number of clusters with second-best performance is given ( P -1) points. 
3. The number of clusters with third-best performance is given ( P -2) points. 

… 
4. The number of clusters with worst performance is given 2 points. 



 
Subsequently the points of all four cluster validity indices are accumulated as a 
function of the number of clusters and are evaluated for their global maximum in 
points. The respective number of clusters is defined as numerically optimal and thus 
selected for the current feature combination.  
 
A visualization of this voting scheme is shown in figure 2 for two exemplary feature 
combinations. For the example in figure 2-a, the optimal number of four clusters is 
detected by each of the cluster validity indices independently. Consequently, the 
voting points also show a global maximum at four clusters. The second example is 
shown in figure 2-b. Here the optimal number of clusters differs for the cluster indices 
investigated. In this case the voting scheme yields a combined optimum at four 
clusters. This number of clusters is also found by the R -Index, the  -statistic and the 
S -value, while the  -Index would yield three clusters as numerical optimum. This 

can be caused by outliers, since the  -Index is based on the minimum and maximum 

distances of data points belonging to the respective clusters. 
As discussed by Günter et al. (2003) the combined evaluation of multiple indices can 
improve automated determination of the optimal number of clusters. Since cluster 
validity indices are often affected differently by outliers and the dataset structure, 
strengths of different indices are effectively combined by the voting strategy, while 
weaknesses are reduced.  
In this context it is worth pointing out, that the cluster validity indices used were 
chosen based on their low numerical complexity. There are numerous other cluster 
separation measures available, but these typically come with increased 
computational costs. Thus they are less desirable for automated screening of large 
numbers of feature combinations. 
 
Detection of globally best feature combination: 
As a final step, the feature combination with best global performance is determined. 
By definition, the partition with best global performance is detectable by the extreme 
values of the associated cluster validity indices. To automate this step, a second 
voting strategy is applied, which evaluates the 25 best partitions for each cluster 
validity index. Subsequently, the individual results of the cluster validity indices are 
cumulated utilizing a voting scheme: 
 

1. The partition (feature combination) with best index performance is given 25 
points. 

2. The partition with second-best performance is given 24 points. 
3. The partition with third-best performance is given 23 points. 

… 
 
Thus a partition which is favored by all cluster validity indices would get exactly 100 
points. Similarly, good partitions would get high numbers of points, while less favored 
or ambiguous partitions would get fewer points. As given below, in most cases the 
partition with best global performance has less than 100 points. Thus the individual 
cluster validity indices would suggest different partitions. This indicates why the 
voting strategy is beneficial compared to simple extreme value search, since it takes 
into account the combined evaluation of all partitions by all cluster validity indices. 
 
In the following the performance of this pattern recognition method is evaluated using 
artificial clusters and experimental data. 



 
3. Artificial clusters 

 
Following the approach of Milligan (1985) and the refinement by Qiu et al. (2006a), 
artificial datasets with defined degree of separation were generated within the 
software package R (R-Development, 2010). Subsequently the pattern recognition 
method described in section 2 was applied to identify the number of natural clusters 
and to calculate the respective optimal partition. To determine the efficiency of the 
method, the Rand index was calculated from the known partition of the artificial 
dataset and the respective partition resulting from the clustering approach (Rand, 
1979). 
 
Following the suggestion by Qiu et al. (2006a) a factorial experiment design was 
chosen. Three degrees of separation J  between clusters were generated utilizing 

the measure introduced by Qiu et al. in (Qiu and Joe, 2006b). The measure is based 
on the separation of two clusters generated from two univariate normal distributions 

(0,1)N   and (0, )N A . For the values of 8=A , 6=A  and 4=A  the measure of the 

degree of separation ranges from 0.342=J  over 0.213=J  to 0.010=J  (Qiu and Joe 

2006a; Qiu and Joe, 2006b; Qiu and Joe, 2009).  
 
The basic dataset structure consists of ten features including five noisy features. The 
term noisy refers to a feature with uniform distribution, which is independent of all 
other noisy and non-noisy features. The number of objects in each cluster was 
randomly chosen within the range [50,200]  which reflects reasonable variability of 

the cluster sizes. In addition the clusters were prepared with or without additional 
outliers. In total 10 outlier data points are generated from a distribution whose 
marginal distributions are independent uniform distributions. The range of the n-th 
marginal uniform distribution depends on the range [𝜇𝑛 − 4𝜎𝑛; 𝜇𝑛 + 4𝜎𝑛] of non-
outliers in the n-th dimension with mean value 𝜇𝑛 and standard deviation 𝜎𝑛 of the n-
th feature (for more details see (Qiu and Joe, 2006a)). Further, the factorial 
experiment design includes an evaluation of three, four and five number of clusters 
and an independent generation of three datasets per configuration as listed in table 
1. This yields 54 artificial datasets in total for the investigation. 
 

Factors Levels 

Number of clusters 3, 4, 5 

Degree of separation 0.342, 0.213, 0.010 

Outliers 0, 10 

Iterations 3 

Total 3 x 3 x 2 x 3 = 54 Datasets 

Table 1. Factorial experiment design used for investigation. 
 
An example of the cluster structure of the artificial datasets is shown in figure 3 in 
scatter plots of two representative non-noisy features for each of the three degrees of 
separation. Clearly, the plots visualize the degree of separation, which is described 
by Qiu et al. (2006a) as “well-separated” ( 0.342=J ), “separated” ( 0.213=J ) and 

“close” ( 0.010=J ).  

 
The pattern recognition approach described in section 2 was applied to each of the 
54 artificial datasets using K =10, P =10 and M =4. The result of this investigation is 



summarized in table 2. For all 54 datasets the method is able to detect the correct 
number of clusters and respective feature combinations automatically. For the 
partitions found the range of the Rand index is [0.7481, 1]. As a function of 
decreasing degree of separation, the Rand index values decrease as well. This is 
attributed to the increasing overlap and the subsequent error of classification using 
the k-means algorithm. However, independent of the occurrence of outlier data, the 
method is able to retrieve a suitable partition for each dataset.  
 
   Rand-Index 

Outliers Separation Iteration 3 Clusters 4 Clusters 5 Clusters 

no 

0.01 

1 0.7979 0.8509 0.8162 

2 0.7481 0.8494 0.8184 

3 0.8585 0.8742 0.8311 

0.213 

1 0.9388 0.9547 0.9831 

2 0.9933 0.9605 0.9675 

3 0.9944 0.9964 0.9812 

0.342 

1 1.0000 0.9776 0.9949 

2 1.0000 0.9952 0.9887 

3 1.0000 0.9936 0.9964 

yes 

0.01 

1 0.7788 0.8502 0.8503 

2 0.7790 0.8338 0.8663 

3 0.7953 0.7673 0.8043 

0.213 

1 0.9230 0.9698 0.9694 

2 0.9576 0.9350 0.9377 

3 0.9224 0.9465 0.9455 

0.342 

1 0.9563 0.9780 0.9771 

2 0.9678 0.9696 0.9825 

3 0.9611 0.9687 0.9790 

Table 2. Results of investigation for artificial clusters with degrees of separation 
0.342=J , 0.213=J  and 0.010=J . 

 
 

4. Clustering of acoustic emission signals 
 
The experimental datasets were obtained from acoustic emission signals recorded 
during failure of CFRP specimens. The specimens were made of the T800/913 
prepreg system with a [0°/90°/90°/90°/90°]sym stacking sequence symmetrical around 
the medial plane. Here 0° and 90° fiber axis direction refer to the in-plane directions 
of the specimen, with 0° parallel to the x-direction in figure 4. The specimens with 
dimensions of 100 mm × 15 mm × 1.4 mm (length × width × height) were loaded in a 
four-point bending setup according to DIN-EN-ISO 14125. The acoustic emission 
signals were acquired using two broadband piezoelectric sensors of type WD in a 
linear arrangement as shown in figure 4. The acquisition settings were 40 dB 
preamplification with a threshold of 35 dB, 10 MSPs sampling rate and a bandpass 
ranging from 20 kHz to 1 MHz. Only the acoustic emission signals localized between 
the two upper supports were used for the pattern recognition process. 
 

The result of parameter based pattern recognition techniques is predominantly 
influenced by the definition and selection of the features describing an object of a 
dataset. In our case, the object is an acoustic emission signal which is a part of a 
dataset containing all signals for classification. The signal features are certain 
characteristics of the acoustic emission signals derived from the time or frequency-
domain as illustrated in figure 5. 
 
As introduced in section 1, the aim of the application of pattern recognition 
techniques in the current context is the identification of signals originating from 



particular failure mechanisms. Based upon the results from previous finite element 
simulations we solely used frequency features, since there was no indication of a 
correlation between acoustic emission energy and failure mechanisms in CFRP 
(Sause and Horn, 2010a). This is not necessarily the case for failure of other 
composite material types, like failure of multi-layer coatings on CFRP as reported 
before (Sause et al., 2008; Sause et al., 2009). The approach to distinguish between 
fiber breakage and matrix cracking based on significant contributions at high 
frequencies (fiber breakage) or low frequencies (matrix cracking) of the acoustic 
emission signals was already proposed by various authors (Bohse, 2001; Haselbach 
and Lauke, 2003; Huguet et al., 2002; Ramirez-Jimenez et al., 2004; Marec et al., 
2008; Li et al., 2008). We recently presented a finite element simulation introducing a 
micromechanical acoustic emission source model able to simulate different types of 
failure within fiber reinforced composites (Sause and Horn, 2010a; Sause and Horn, 
2010b). It was demonstrated that matrix-cracking, fiber-breakage and interface-
failure result in distinguishable frequency spectra in the presented four-point bending 
setup.  
 
 
Table 3 holds the investigated frequency features, which are partially derived from 
the time domain as well. Here the signal duration tAE and the signal rise time tpeak as 
shown in figure 5-a are used to determine the rising part of the signal and the falling 

part. In addition the overall number of threshold crossings AEN and the number of 

threshold crossings Npeak up to Umax is used (see figure 5-a). Other features are 

directly obtained from the Fourier-Transformation ( )U f  of the signal ( )U t
 
(see figure 

5-b). Here fpeak defines the frequency position of maximum FFT-Magnitude. It is worth 
noting, that the features in table 3 are not meant to provide a comprehensive list for 
characterization of acoustic emission signals.  
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Partial Power 1: f1 = 0 kHz; f2 = 150 kHz 
Partial Power 2: f1 = 150 kHz; f2 = 300 kHz 
Partial Power 3: f1 = 300 kHz; f2 = 450 kHz 
Partial Power 4: f1 = 450 kHz; f2 = 600 kHz 
Partial Power 5: f1 = 600 kHz; f2 = 900 kHz 



Partial Power 6: f1 = 900 kHz; f2 = 1200 kHz 

Table 3: Acoustic emission signal features used for pattern recognition. 
 
For the investigated experimental datasets, the number of objects in the individual 
datasets is between 525 and 1611. The pattern recognition approach as introduced 
in section 2 with K =12, P =10 and M =5 was applied to six experimental datasets. 
The total number N  of feature combinations investigated is thus 3302 for each 

dataset.  
 
The results of the pattern recognition approach are summarized in table 4. The table 
holds the identified number of clusters, the respective identifier (ID) of the feature 
combination (listed in detail in table 5) and the associated voting points. In addition, 
the values of the cluster validation statistics used are given for the respective 
partition. The last column holds a subjective rating if the found partition and number 
of clusters is able to detect the expected signal classes within the experimental 
datasets. In order to find the best visualization of the cluster structure, all pair-wise 
scatterplots of the identified feature combination were evaluated. The plot of Partial 
Power 2 over Weighted Peak-Frequency shown in figure 6 was found to be optimal, 
while the remaining scatterplots show larger overlap of the clusters, which effectively 
impairs the values of the cluster validity indices reported in table 4.   
 
For four of the six investigated datasets, the algorithm was able to find suitable 
partitions with three clusters in terms of this physical correlation. The differences in 
frequency spectra cause significantly different frequency features and result in the 
formation of the three distinct clusters as shown in figure 6 for specimen B. For 
specimen E the algorithm finds four clusters. This unexpected additional cluster 
arises from 13 very similar signals, which could reasonably be identified as noise 
signals. The partition of specimen C rated as unsuitable is shown in figure 6-b. 
Clearly the assignment is different from that of figure 6-a. In particular, the voting 
points and the respective cluster validity indices values are worse than those of the 
remaining (suitable) partitions.  
 
Specimen Clusters Points ID R  S  Rating 

A 3 90 85 0.8516 1.9792 0.4636 0.6768 Suitable 

B 3 90 110 0.8903 2.0652 0.4662 0.6770 Suitable 

C 4 53 324 0.6803 1.1241 0.5226 0.6629 Unsuitable 

D 3 50 195 0.9813 1.8582 0.4736 0.3657 Unsuitable 

E 4 71 119 0.8938 0.8753 0.5027 0.6602 Suitable (Noise) 

F 3 83 285 0.8466 1.9473 0.4602 0.7007 Suitable 

Table 4. Summary of pattern recognition results of acoustic emission signals. 
 
Since the experimental setup was identical for all specimens investigated it should be 
possible to identify a single characteristic feature combination which can be used for 
pattern recognition of all datasets. Since no unique feature combination was found in 
the investigation so far, an alternative approach was employed. 
 
 

Feature 
combination 85 

Partial 
Power 1 
[%] 

Partial 
Power 2 
[%] 

Reverberation 
Frequency[Hz] 

Peak 
Frequency 
[Hz] 

Weighted Peak-
Frequency [Hz] 

Feature 
combination 110 

Partial 
Power 1 

Partial 
Power 2 

Partial Power 4 [%] Peak 
Frequency 

Weighted Peak-
Frequency [Hz] 



[%] [%] [Hz] 

Feature 
combination 119 

Partial 
Power 1 
[%] 

Partial 
Power 2 
[%] 

Partial Power 6 [%] Peak 
Frequency 
[Hz] 

Weighted Peak-
Frequency [Hz] 

Feature 
combination 195 

Partial 
Power 1 
[%] 

Partial 
Power 3 
[%] 

Partial Power 5 [%] Partial 
Power 6 
[%] 

Frequency 
Centroid [Hz] 

Feature 
combination 285 

Partial 
Power 1 
[%] 

Partial 
Power 4 
[%] 

Reverberation 
Frequency[Hz] 

Peak 
Frequency 
[Hz] 

Weighted Peak-
Frequency [Hz] 

Feature 
combination 324 

Partial 
Power 1 
[%] 

Partial 
Power 4 
[%] 

Partial Power 6 [%] Peak 
Frequency 
[Hz] 

Weighted Peak-
Frequency [Hz] 

Table 5: List of feature combinations for distinction of acoustic emission signals. 
 
 
In order to find a feature combination suitable for clustering all datasets an alternative 
strategy was applied. Thus all experimental data sets were combined together 
resulting in a total number of 5848 objects. Subsequently, the algorithm introduced in 
section 2 with K =12, P =10 and M =5 was applied to random subsets of 1000 
objects drawn from this new dataset. The result of this investigation is summarized in 
table 6. 
 
Iteration Clusters Points ID R  S  

1 3 78 110 0.9122 1.9259 0.4508 0.6503 

2 3 60 110 0.9221 1.9391 0.4419 0.6427 

3 3 87 110 0.9013 1.9000 0.4435 0.6460 

4 3 69 110 0.8881 1.9034 0.4505 0.6515 

5 3 71 110 0.9400 1.9193 0.4341 0.6399 

6 3 60 85 0.8717 1.8630 0.4576 0.6649 

7 3 67 85 0.8773 1.7272 0.4549 0.6607 

8 3 62 85 0.8846 1.7555 0.4526 0.6600 

9 3 75 110 0.9213 1.9335 0.4325 0.6364 

10 3 86 110 0.9109 1.8669 0.4449 0.6408 

Table 6. Summary of pattern recognition results of acoustic emission signals (random 
subsets of all signals). 
 
All subset partitions yield a suitable partition with cluster positions as shown in figure 
6-a. This is expressed in the comparable values of the respective cluster validity 
indices and the high values above 60 voting points. The feature combinations 85 and 
110 are repeatedly identified as the best feature selection. In particular, all subsets 
favoring feature combination 85 rank feature combination 110 as second-best 
combination. This suggests choosing feature combination 110 as given in table 5 as 
the best selection for pattern recognition of the given datasets with the current 
preprocessing and cluster algorithm. 
 

 
5. Conclusion 
 
It was demonstrated that the proposed pattern recognition method is able to identify 
the correct number of clusters and respective partitions in artificial datasets 



generated according to the method of Qiu et al. (2006a). The method is robust 
against a limited number of outliers and was able to retrieve suitable partitions for 
degrees of separation of 0.342=J , 0.213=J  and 0.010=J . 

 
In application to acoustic emission signals the method is able to detect suitable 
partitions, which reflect the physically expected differences in the signal types. In 
particular, the identified cluster positions reflect the difference in frequency features 
extracted from the frequency spectra of the signals. This in turn is directly correlated 
to their physical origin of matrix cracking, interface failure and fiber breakage as 
suggested by various authors (Bohse, 2001; Haselbach and Lauke, 2003; Huguet et 
al., 2002; Ramirez-Jimenez et al., 2004; Marec et al., 2008; Li et al., 2008) and 
demonstrated by finite element simulations (Sause and Horn, 2010a; Sause and 
Horn, 2010b). 
 
While the optimal feature combinations identified to find this partition were strictly 
individual for each single dataset, an alternative strategy applied to random subsets 
of all datasets yields clearly favored feature combinations and stable partitions. In 
combination with the results of the single datasets it was observed that high values of 
voting points are indicative of good partitions. Based on the current investigations, 
partitions below 60 voting points are not expected to describe the natural clusters 
hidden within the dataset.  
 
In comparison to other feature selection techniques like dendrograms, breadth-first or 
hill-climbing algorithms the greatest drawback is the computational efficiency of the 
proposed method. By selection of statistically representative subsets of the 
experimental datasets it was demonstrated, that the method is able to retrieve similar 
results. This drastically improves the computational efficiency of the method. As an 
alternative to the currently used k-means algorithm, hierarchical cluster algorithms 
could be used. These are computationally advantageous for calculation of 
subsequently increasing number of clusters P . Similar increase in performance can 
be achieved by reasonable limitation of the maximum number of clusters P  
investigated for each feature combination. For the current investigation this value 
was chosen as P =10, while higher efficiency could be achieved by dynamic 
reduction of P  based on saturation criteria of the cluster validity indices used. Finally, 
the minimum number of features M  should be chosen adequately high to allow 
reasonable description of the dataset without losing the discriminative power of single 
features. 
 
Based on the values of the R -Index, the  -statistics, the S -value and the  -Index 

the experimental datasets’ degree of separation is found to be slightly worse than 
those of the artificial datasets with 0.213=J . Using this information we may 

approximately estimate the classification error of the experimental datasets based on 
a comparison with the respective Rand-Index values of the artificial datasets. This 
gives a mean error value of 4 % for our proposed pattern recognition method.  
 
Moreover, the method can also be used to identify the importance of particular 
features better than utilizing correlation dendrograms. Since all feature combinations 
are taken into account, the importance of a single feature can be evaluated by its 
frequency of occurrence in high ranking partitions. This enables the assessment of 
the discriminative power of newly defined features of acoustic emission signals.  
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Figure 1. Flowchart of pattern recognition approach. 
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Figure 2. Evaluation of several cluster index values in voting scheme adapted from 
Günter et al. (2003) for two examples of feature combinations of the same dataset. 
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Figure 3. Representative cluster structure in scatter plots of two non-noisy features 
for degree of separation 0.342=J  (a), 0.213=J  (b) and 0.010=J (c).  

 

 
Figure 4. Experimental setup according to DIN-EN-ISO 14125. 
 

 
 
Figure 5. Extraction of features from acoustic emission signals in time (a) and 
frequency domain (b).  
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Figure 6. Suitable partition of specimen B according to feature combination 110 (a) 
and unsuitable partition of specimen C according to feature combination 324 (b). 
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