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In this paper, we propose a novel method for semi-supervised learning, called logistic label propagation
(LLP). The proposed method employs the logistic function to classify input pattern vectors, similarly to
logistic regression. To cope with unlabeled samples as well as labeled ones in the semi-supervised learn-
ing framework, the logistic functions are learnt by using similarities between samples in a manner similar
to label propagation. In the proposed method, these two methods of logistic regression and label propa-
gation are effectively incorporated in terms of posterior probabilities. LLP estimates the labels of input
samples by using the learnt logistic function, whereas the method of label propagation has to optimize
the whole labels whenever an input sample comes. In addition, we suggest the way to provide proper
parameter setting and initialization, which frees the users from determining a parameter value in trial
and error. In experiments on classification (estimating labels) in the semi-supervised learning frame-
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work, the proposed method exhibits favorable performances compared to the other methods.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A fundamental procedure in pattern recognition is to classify
pattern vectors. Various classification methods have been devel-
oped along with the advances in machine learning, such as SVM
(Vapnik, 1998) and kernel-based methods (Scholkopf and Smola,
2001). Classifiers are generally learnt by using given training (la-
beled) samples. For example, in two-class (binary) classification,
we have to prepare both positive and negative labeled samples.
Although the performance of the classifier depends on the amount
of such labeled samples, the task to label (annotate) samples by
hand requires heavy human labor, making it difficult to prepare
plenty of labeled samples in practical situations. In such cases, it
is an effective approach to exploit both the labeled and unlabeled
samples, which leads to semi-supervised and transductive learn-
ing, because we can easily collect unlabeled samples just by mea-
suring the data without annotating it. The semi-supervised
learning (Belkin and Niyogi, 2006; Cai et al., 2007) has attracted
great deal of attentions over the last decade. We give brief reviews
of the semi-supervised learning methods in Section 2.

The method of label propagation (LP) (Zhu et al., 2003) is fre-
quently used in the framework of semi-supervised learning, such
as for patch labeling (Bishop and Ulusoy, 2005), image matting
(Levin et al., 2008; Grady et al., 2005), image annotation (Kang
et al., 2006) and image classification (Cheng et al., 2009). The la-
bel propagation method estimates the label values based on the
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graph Laplacian (Belkin and Niyogi, 2003), i.e., similarities
between samples, given a few labeled samples. The labels are
retrieved as if the given labels propagate through the graph over
the whole unlabeled samples. In this label propagation, the
unlabeled samples are effectively incorporated by the graph
Laplacian without imposing prior models on the sample distribu-
tion. A probabilistic interpretation can also be given to the meth-
od of label propagation (Grady et al, 2005), and from this
probabilistic viewpoint, the estimated label values are regarded
as posterior probabilities for the classes at each sample.

The method of logistic regression (LR) (Bishop, 2007) is one of
the well-known supervised classification methods. The method
produces promising performances, such as in biological (EEG) sig-
nals (Tomioka et al., 2007). In the logistic regression, the classifier
based on the logistic function is learnt from labeled samples and
estimates the class posterior probabilities of the input pattern
vectors.

In this paper, we propose a novel method for semi-supervised
learning, called logistic label propagation (LLP). The proposed meth-
od employs the logistic function to classify input pattern vectors as
in logistic regression, and the classifier is optimized in the frame-
work of semi-supervised learning as in label propagation using the
graph Laplacian so as to cope with both labeled and unlabeled sam-
ples. The contributions of the proposed method are listed below:

o From the probabilistic viewpoint, both methods of label propa-
gation and logistic regression are efficiently integrated.

e We utilize the graph Laplacian with the given labels in a dis-
criminative manner as in label propagation, while the other
semi-supervised methods such as Laplacian SVM (Belkin and
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Niyogi, 2006) and semi-supervised DA (Cai et al., 2007) intro-
duce the graph Laplacian just for regularization.

e The proposed method provides the classifiers to estimate the
labels of the newly input pattern vectors by using the learnt
logistic functions at a quite low computational cost, unlike the
label propagation method which requires exhaustive computa-
tion to deal with such newly input samples.

o The logistic classifiers are learnt (optimized) by using both the
labeled and the unlabeled samples, which possibly avoids the
over-fitting problem that has been addressed in the logistic
regression.

The rest of this paper is organized as follows: the next section
briefly reviews the related works, including the logistic regression
and the label propagation. In Section 3, we describe the details of
the proposed method, logistic label propagation (LLP), and the asso-
ciated practical issues. Then, the experimental results on classifica-
tion (label estimation) in the semi-supervised learning framework
are shown in Section 4. Finally, Section 5 contains our concluding
remarks.

The preliminary version of the proposed LLP has been published

n (Watanabe et al., 2010). The method proposed in this paper is
generalized from that in the points that we introduce the classifi-
cation cost on the labeled samples together with a balancing
parameter and propose some practically effective methods regard-
ing to the balancing parameter and initialization.

2. Related works

In this section, we briefly review the methods that optimize the
classifiers in the framework of semi-supervised learning.

Although the class-dependent structure is not directly exploited
even by using unlabeled samples, it is possible to exploit the whole
structure (manifold) of the pattern vectors through the unlabeled
samples. The framework of semi-supervised learning has mainly
been studied in the following three directions.

The first direction is based on transductive learning. The well-
known method is transductive SVM (Vapnik, 1998; Joachims,
1999). Another is the semi-supervised logistic regression (Amini
and Gallinari, 2002), which is closely related to the proposed
method. These methods incorporate the unlabeled samples into
supervised learning framework, iteratively relabeling (estimating)
the labels of the unlabeled samples, and thus are susceptible to
local minima. On the other hand, the proposed method differs
from the method of semi-supervised logistic regression (Amini
and Gallinari, 2002) in the following point: we define the objec-
tive cost function incorporating the unlabeled samples in a
unified manner via graph Laplacian, and thereby the labels of
the unlabeled samples are directly obtained without iteratively
relabeling.

The second direction is to incorporate generative models,
resulting in a hybrid model of the generative models and the dis-
criminative models of supervised learning (Fujino et al., 2008;
Lasserre et al., 2006). Ng and Jordan (2002) showed that the gener-
ative classifiers often work better than discriminative classifiers in
the case of a few labeled samples, and thus the hybrid model
would effectively perform on the semi-supervised problems. Prac-
tically speaking, however, it is difficult to appropriately determine
the (parametric) generative model in advance.

The third direction is to use a graph-based representation, called
graph Laplacian (Belkin and Niyogi, 2003), of the sample
distribution. In the graph Laplacian, nodes stand for the samples
and (weighted) edges between nodes represent the pairwise
relationships between samples. Usually, predefined similarity
measures between samples are assigned to the edge weights. Such

defined graph Laplacian is used not only in the unsupervised learn-
ing to discover the (lower-dimensional) manifold of sample distri-
bution (Belkin and Niyogi, 2003; Yan et al., 2007), but also in the
semi-supervised learning. For example, the Laplacian support
vector machine (LapSVM) introduces the unlabeled samples into
the framework of SVM (Vapnik, 1998) and the method of semi-
supervised discriminant analysis (SDA) (Cai et al., 2007; Zhang and
Yeung, 2008) has also been proposed to incorporate the unlabeled
samples into the well-known discriminant analysis. These methods
define the energy cost function in the semi-supervised framework,
consisting of the cost derived from discriminative learning and the
energy over the graph Laplacian using the similarities. The latter
graph-based energy plays a role of regularization in optimizing the
classifiers. In the proposed method, we also follow this direction,
but use the graph Laplacian not just as regularization but for dis-
criminative learning in a manner similar to label propagation (see
Section 3).

The similarity measures between samples are inherently re-
quired to construct the graph Laplacian. The performance of the
semi-supervised classifier based on the graph Laplacian depends
on what kind of similarity measure is used. There are a lot of works
for measuring effective similarities: the most commonly used sim-
ilarities are k-NN based similarity and Gaussian kernel similarity
(Belkin and Niyogi, 2002), and the more sophisticated similarities
are proposed by Cheng et al. (2009), Wang and Zhang (2007) and
Wang et al. (2009) who assume linear relationship among the local
neighborhoods of sample vectors. In this study, the design of the
similarities is out of our focus and we suppose certain type of sim-
ilarity is already given.

In the following subsections, we briefly describe the methods of
logistic regression (Bishop, 2007) and label propagation (Zhu et al.,
2003), since our proposed method is related to those methods.

2.1. Logistic regression

The method of logistic regression (LR) (Bishop, 2007) is applied
to learn the classifier for pattern (feature) vectors in the probabilis-
tic and supervised framework. Let x; € R¢ be the ith d-dimensional
feature vector and y; € {0,1}¢ be its binary label vector in which
only the component y; associated with the assigned class
(cef{1,...,C}) is 1 and the others are 0. In the logistic regression,
the logistic function is employed to estimate the label vector y;
from the feature vectors x;:

exp(wx;)

oo [ €7 "
1c .1 (C _ C) )

1+Z exp(w,, Xi)

where w, (c=1,...,C — 1) are the coefficient vectors for the respec-
tive classes. The estimated label values y;. are regarded as posterior
probabilities over classes (1 ~ C). Thus, in the logistic regression, to
optimize w,, we minimize the following cost function derived from
the probabilistic perspective:

C N C N
J(w) = —log (H W> Z > yiclog(¥ic), )
c=1 1 c=1 i=1

i=

where N denotes the number of samples. The minimization of this
cost function means that log-likelihood is maximized across sam-
ples. The optimization is actually performed based on gradient
descents (Bishop, 2007):

N
= 2 Y. 3)
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Fig. 1. All N samples are divided into labeled (£) and unlabeled (/) ones.

2.2. Label propagation

The method of label propagation (LP) (Zhu et al., 2003) inte-
grates labeled and unlabeled samples for estimating binary class
labels in the framework of semi-supervised learning. We consider
a binary (two-class) label estimation problem and denote the class
label value of the ith sample by y; € [0,1] in which positive and
negative labels are indicated by 1 and O, respectively. Suppose, in
all N samples, some of samples are labeled as positive (y=1) or
negative (y = 0), and the others are not assigned any labels. Let £
be the index set of those labeled samples and ¢/ be that of the
remaining unlabeled samples (LNU = ¢,|LUU| =N), as shown
in Fig. 1. Given a symmetric similarity s;=s;; between the i, jth
samples (1 <1i,j < N), the method of LP estimates the labels y,, of
the unlabeled samples so as to minimize the following cost func-
tion with the given (fixed) y,:

N
Jy,) = % Zsij(yi —yj)z, under y, € {0,1}(Vl € £) are given

ij=1

1
=3 ZSU(J/:‘ *yj')z + Z Su(Vy —y1)° + const

ijeu uel lel
= Yu(Duas = Sur)¥y — 2Y1Sucy c + const, (4)

where S is a similarity matrix, S; =s;, and D is a diagonal matrix,
Djj = Y-} ;s;. The optimum labels are obtained in a closed form:

Yu = Dot — Suat) " Sucy . (5)

LP estimates the class labels by solving the above analytic form (Eq.
(5)), not by using any classifiers. Therefore, it has a difficulty in esti-
mating the labels of newly input samples which are not taken into ac-
count in the training samples. In such cases, we have to reconstruct
the whole similarity matrix including the newly input samples and
solve Eq. (5) again at every time when new samples come, which re-
sults in significant computational cost even for the large amount of
training samples.

A probabilistic interpretation is given to the LP from the view-
point of random walks (Grady et al., 2005); namely, when the bin-
ary label values (0/1) are assigned to y,, the estimated label values
Y are regarded as posterior probabilities for the positive class.

3. Logistic label propagation

We incorporate the logistic function in Eq. (1) into the frame-
work of label propagation described in Section 2.2 in order to cope
with the unlabeled samples in the semi-supervised manner. So, the
proposed method is named logistic label propagation (LLP).

3.1. Definition

We use the same notations as in Sections 2.1 and 2.2. In the pro-
posed method, we minimize the following cost function using sim-
ilarities s; between samples:

C
1<w):z{% 3 s+ 30 suz@uc—yk)z—Zmylclog@m} ()

c=1 ieU jeu uel leL leC

s.t.VleL,Vce{l,...,C}, y,.€{0,1} isgiven, (7)

exp (w;x)
—
vigo= | Tt T ®
1+ch:l] exp (wyx)

where 7 is a balancing parameter at the Ith labeled sample. We esti-
mate the class label values of unlabeled samples y,, as well as those of
labeled ones y: by using logistic functions in Eq.(8).In Eq. (6), the first
two terms indicate the cost derived from label propagation (Section
2.2) to cope with the unlabeled samples in a semi-supervised man-
ner, and the last term’ measures the classification errors across the la-
beled samples by negative log-likelihood as in logistic regression
(Section 2.1). These terms are balanced in each labeled sample by
using the parameters #;. The way to determine the parameter values
is described in Section 3.2.2. By minimizing the above-defined cost
function, we can obtain the optimum logistic functions that favorably
estimate the class label values (posterior probabilities) from the semi-
supervised perspective.

We apply the gradient descent approach to minimize the cost
function (Eq. (6)) in a manner similar to logistic regression in Eq.
(3). The derivative of the cost function in Eq. (6) with respect to
the coefficient vector w, is written by

C
63{’5 =2 Z (yuceuc _yuc Z}h&q@q) Xy + Z?’]l(j/,c _ylc)xh (9)

ueld q=1 lec
where Vi € U, V¢, € = Z(D,-u — Si)Puc — Zs,-,y,c. (10
ueu leL

Details are described in Appendix A. By using the gradient, we can
apply, e.g., quasi-newton method and conjugate gradient method
(Nocedal and Wright, 1999). We present how to select the favorable
initial points for the optimization in Section 3.2.1.

From the probabilistic viewpoint, the logistic function in Eq. (8)
is suitable in the framework of label propagation, since the func-
tion approximates the posterior probability and outputs the value
ranged from O to 1. Therefore, it can be said that the LLP estimates
the posterior probability more accurately than label propagation
which does not explicitly impose such probabilistic constraint
(0 <y < 1) on the estimated values. The method of locality pre-
serving projection (He and Niyogi, 2004) also considers the graph
Laplacian using similarities in the lower dimensional space into
which sample vectors are mapped via linear (or kernel-based) pro-
jections. The locality preserving projection, however, is an unsu-
pervised method using only ‘unlabeled’ samples without labeled
ones, and the embedded space is unbounded, not providing prob-
abilistic interpretations.

A graphical model of LLP is shown in Fig. 2(a) in the case of a
binary classification. There are N nodes of samples and two special
nodes standing for the binary classes (y). We introduce three types
of edges: the first type is defined between unlabeled samples (the
first term in Eq. (6)), the second type is between the unlabeled and
the labeled samples (the second term in Eq. (6)), and the third type
links the labeled samples and the class node, i.e., the given label
(the third term in Eq. (6)). The first and the second types of edges
are weighted by the similarity measures s, while the third type
edge is assigned with the parameter value #,. It should be noted
that the labeled samples are not directly connected to the unla-
beled ones, but indirectly via the class nodes. Thus, the associated
terms, i.e., the first and the second terms in Eq. (6), exhibit high
discriminative power as in label propagation.

As a simple alternative model of LLP, it is conceivable to directly
connect the labeled samples to the unlabeled ones, as shown in
Fig. 2(b), and its cost function is then described by

1 In (Watanabe et al., 2010), we did not take this term into account.
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(a) Graphical model of LLP

(b) Alternative model

Fig. 2. Graphical model used in LLP. The empty circle nodes indicate the unlabeled
samples, while the filled nodes denote the labeled ones. Those nodes are connected
by the edge (solid line) with the weight of s;;. There are two special nodes standing
for positive and negative classes. (a) In LLP, the labeled nodes are linked to the
unlabeled ones not directly but via class nodes. (b) We can consider the alternative
model of the LLP, in which the labeled and the unlabeled nodes are directly
connected. This model, however, makes it difficult to appropriately determine the
parameter value (1) corresponding to the edge weight between the labeled and the
unlabeled samples.

C N
Jw) =3 {% > il =9’ = D ne lOg(fhc)} (1
i=1j=1 lec
This alternative model is, however, impractical, because it is difficult
to appropriately determine the balancing parameter #. Actually, the
first term in Eq. (11) has the trivial global optimum solution, namely
all the components are uniform (y; = £ 1), while the second term en-
forces the solution to be the discriminative solution of logistic regres-
sion applied to the labeled samples. These two solutions are
contradictory to each other and the parameters #; cannot balance
those properly. In practice, we can find that, by varying those param-
eter values, the obtained solution switches between those solutions.

Based on the above arguments, we can say that the model in the
proposed LLP (Fig. 2(a)) is meaningful, combining two discrimina-
tive costs derived from label propagation and logistic regression,
respectively. The parameter n can appropriately balance those
two discriminative costs, as described in Section 3.2.2.

The other semi-supervised methods by Belkin and Niyogi
(2006) and Cai et al. (2007) are also based on the graph-based for-
mulations (graph Laplacian), while the transductive methods of
Joachims (1999) and Amini and Gallinari (2002) are not. Those
methods simply introduce the graph-based energy as regulariza-
tion of the classifier weights; the graph-based energy is described
by Y14 ;_18§(Jic — Vic)®. This graph-based regularization is similar
to Eq. (11) and Fig. 2(b), but it is defined without considering the
given labels unlike the proposed method.

3.2. Practical issues

In this subsection, we address two practical issues in the pro-
posed method: one is how to select the initial points for the optimi-
zation, and the other is how to determine the balancing parameter
value #;.

3.2.1. Initialization

Since the cost function in Eq. (6) is not necessarily convex, the
gradient-descent based optimization can be trapped by one of local
minima. In this case, the initial points in the optimization affects
the obtained solution and it is important to select ‘good’ initial
points for w such that the obtained local minima is close to the glo-
bal minimum. In this study, we determine the initial point w(®
based on the solution by linear regression which is analytically
obtained.

In the proposed method, the logistic functions in Eq. (8) are em-
ployed to approximate the label values in the label propagation
through the cost function in Eq. (6). Thus, we determine the initial
logistic functions that directly approximate the solution of label

propagation. First, we obtain the solution y: of the label propaga-
tion by analytically solving Eq. (5). Note that the given labels are
also utilized by setting y;. = y,., (I € £). Next, the logistic models
are fitted to the solution y; in a least square sense:

(0)
N exp(we:’ X; ’ N Cc-1 / N
Gim PR e w®'x) -5 Y expwOx)~d (12)
1+ exp(w” %)

c=1

1 _5’71 _5’1'*1 _5’?1 5’11
W%, ~ log : :
_5’1‘*@1 _5/?(‘—1 1 _5’?@1 5/?(‘—1
=i
(13)
= WX ~ log([i1, ... /n]) (14)
. WO :argmmi/nHW’X—lo_g([/ll,...,in})Hz, (15)

where log(M) denotes the matrix consisting of truncated logarithm
of the components;
log(M;;)
log(4)

(Mif > A)>

(otherwise), (16)

{log(M)}; = {

where 4 is the small positive number (say, A = 2e~'6). Eq. (15) cor-
responds to a linear least square problem, which can be analytically
solved. The solution W?) is employed as the initial points in the
optimization of W.

3.2.2. Balancing parameter

We have no prior knowledge about the parameter #; which bal-
ances the cost derived from label propagation and that from logis-
tic regression in Eq. (6). Such parameter is generally determined
based on the empirical classification performance, e.g., by cross
validations. The empirical determination, however, requires addi-
tional exhaustive computation besides the optimization process
and also somewhat larger amount of labeled samples to statisti-
cally estimate the classification performance. Therefore, we sug-
gest the following way to settle the parameter value #,.

The parameter 7,(l € £) are associated with the labeled samples
(£). By focusing on the last two terms in Eq. (6) connected to the
labeled samples, the parameter #; actually balances those terms:

Zslu(}’lc *}A’uC)z +n{-Yiclog(ic)}- (17)

ued

By comparing the coefficients with respect to y,,, we can determine
11 so as to equally balance these two terms as follows,

m=>_Su (18)

uel

In the case that we do not have any unlabeled samples, ¢/ = ¢, how-
ever, the above-defined #; results in 0. To avoid such unfavorable
situations, we simply introduce the lower bound of #, by

1, = max (ZS’”’1>' (19)

ueld

It should be noted that we use the similarity bounded by 0 <s; < 1
and simply set the lower bound of # as 1. In the experiments (Sec-
tion 4), the parameter #, is determined by Eq. (19) on all datasets.



584 T. Kobayashi et al./ Pattern Recognition Letters 33 (2012) 580-588
25 T T T 2. T T T T r
) O m class 1 ) O m class 1
I AL, A 1 I AL, A i
V- N A A class 2 V- A A class 2
1.5¢ R G BB, g 1.5 R G A%, g
A A
1 2, | e, <
A %AA
0.5 Al oy 1 0.5+ Al N 1
A A A A
Ap A Ap A
or Lol s ] o Lol s ]
A A
051 A A 1 05 A A 1
an B an B0
1+ A AAAA 4 1t A ﬁAA 4
N V-
15t E -15f E
X & A 2 AN K & A £ AN
2F s £ 2 kA 1 2 s £ N 1
25 . . . 25 . . . . .
-05 0.5 1 1.5 2 2.5 -05 0 0.5 1 15 2 2.5

(a) Logistic regression (LR)

(b) Logistic label propagation (LLP)

Fig. 3. Experimental results on toy examples. There are two classes denoted by blue squares and red triangles. We labeled only three samples per class, denoted by filled
markers, and regarded the others as unlabeled samples (unfilled markers). The obtained classifiers (w) are indicated by black solid lines. (a) Logistic regression learnt from the
labeled samples produces unfavorable classifier, (b) while logistic label propagation learnt from all samples provides the favorable classifier successfully classifying the

samples.

3.3. Kernel logistic label propagation

At the last of this section, we mention the extension of LLP to
the kernel-based method via kernel tricks (Schélkopf and Smola,
2001). The method of LLP defined in Section 3.1 uses the logistic
function with linear coefficients w, for the feature vector x. By
replacing it with the kernel-based logistic function as in kernel lo-
gistic regression (Zhu and Hastie, 2005), we can easily obtain the
method of kernel logistic label propagation (KLLP) as follows:

o exp (X ck(x)
C1g S 1 exp (Zf‘; oc,-qlc(xi7x))

__ exp(ak()
1+ Y expak(x)

, (20)

where k(x,z) indicates the kernel function for the sample vectors of
x and z, k(x) = [k(x1,X),... . k(xy,%)] € RN, and o = [oq,. ..
.one] € RN denotes the coefficient vectors for the cth class. In KLLP,
we minimize the objective cost function in Eq. (6) under Eq. (20) in-
stead of Eq. (8), and then obtain the following derivative by simply
replacing w, and x; with a. and k(x;) in Eq. (9), respectively:

) X R )
a_] = 2 Z (yuceuc _.yuc thﬁ;q) k(xu) + Z '71(J’1c - YIc)k(xl)7
Oc uel q=1 leL
(21)
where Vi € U, V¢, €c = (Diu — Si)Vuc = ) S (22)

ueld lec

We can apply the same practical techniques described in Section 3.2
to the KLLP.

4. Experimental results

We conducted experiments on classification in the framework
of semi-supervised learning. There are three experiments; a toy
example, benchmark datasets from UCI repository, and EtH-80 data-
set (Leibe and Schiele, 2003) for object recognition. As to the sim-
ilarity, we employed the similarity proposed in (Wang and Zhang,
2007; Wang et al., 2009) on all datasets.

4.1. Toy example

First, in order to demonstrate the effectiveness of the proposed
method (LLP), we applied LLP to a toy example consisting of two
classes: samples in one class are generated according to the Gaussian
distribution and those in the other class obey the curved distribu-
tion, as shown in Fig. 3. We assigned the class labels only to three
samples in each class (filled markers in Fig. 3). For comparison, the
method of logistic regression (LR) in the supervised learning
framework is applied. The sample distribution and the classifiers
obtained by LLP and LR are shown in Fig. 3. LR utilizes only the la-
beled samples and thus yields the classifier that cannot properly
classify the unlabeled samples as shown in Fig. 3(a). On the other
hand, LLP learns the classifier using both the labeled and the unla-
beled samples, and all the samples are correctly classified as shown
in Fig. 3(b). Through the graph Laplacian using similarities between
samples, the underlying manifold structure of the whole samples
are effectively extracted, as in graph embedding method (Yan
et al., 2007). This result shows the effectiveness of the proposed
method in the framework of semi-supervised learning.

4.2. Benchmark dataset

Next, we applied the method to several benchmark datasets
collected from UCI repository; HEART, SATIMAGE, SEGMENT, VOWEL, WAVE-
rorM and Yeast. By using these datasets, we evaluated the perfor-
mances by threefold cross validation. In each fold, the training
set is further randomly split into labeled and unlabeled samples.
The performances are evaluated on various ratios of labeled sam-
ples: |£]/(|£] + |4]) = 0.1 ~ 0.9. The unlabeled samples, which are
not assigned with any class labels, are used for training in the
semi-supervised learning methods, and the performance is mea-
sured on the test samples with excluding the training samples.
At each ratio, the trial is repeated three times. Finally, we report
the averaged performances across the three times trials for the
threefold cross validations.

As a performance study, we compare LLP to the (fixed) LLP with
7 =0,2 demonstrating the effectiveness of the logistic regression
term in Eq. (6). Note that in LLP, the parameter values #,(l € £) are

2 The preliminary formulation in (Watanabe et al., 2010) corresponds to the LLP
with n=0.
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Fig. 4. Performance study of LLP by using benchmark datasets.

Table 1
Classification accuracies for various balancing parameters at |£|/(|£| + |t/|) = 0.4. The numbers in the parentheses indicate the ranks of the performances.
Heart Satimage Segment Vowel Waveform Yeast

(a) Similarity by Wang and Zhang (2007) and Wang et al. (2009)
Ours 0.8136 (1) 0.8522 (2) 0.9410 (1) 0.6569 (1) 0.8653 (1) 0.5793 (1)
n=1 0.8136 (2) 0.8523 (1) 0.9410 (2) 0.6495 (2) 0.8637 (3) 0.5750 (4)
n=>5 0.8012 (3) 0.8413 (3) 0.9401 (3) 0.6360 (3) 0.8643 (2) 0.5768 (2)
n=10 0.7975 (4) 0.8392 (4) 0.9392 (4) 0.6293 (4) 0.8634 (4) 0.5757 (3)
(b) Gaussian kernel similarity
Ours 0.7704 (1) 0.8204 (1) 0.8492 (1) 0.6202 (1) 0.8451 (1) 0.5613 (1)
n=1 0.6889 (4) 0.7233 (4) 0.4724 (4) 0.3943 (4) 0.7605 (4) 0.4393 (4)
n=>5 0.7259 (3) 0.7285 (3) 0.5306 (3) 0.5172 (3) 0.7796 (3) 0.4827 (3)
n=10 0.7630 (2) 0.7348 (2) 0.5856 (2) 0.5684 (2) 0.7938 (2) 0.5135 (2)
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Table 2
Objective cost values (J) of the proposed and random initialization at |£|/(|£| + |U|) = 0.4.
Heart Satimage Segment Vowel Waveform Yeast
Ours -1.4120 -111.9236 —99.7839 72.1649 —35.3092 148.4519
Rand (100 trials) -1.4120 —110.3993 —96.7556 72.1649 —35.3092 148.4793
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Fig. 5. Classification performances compared to the other methods on benchmark datasets.

adaptively determined as described in Section 3.2.2. The
performance results are shown in Fig. 4. LLP exhibits superior perfor-
mances in all datasets, and thus we can say that the performances
are improved by incorporating the logistic regression term. The
performances of the LLP with 7 = 0 are maximized around the half
ratio of labeled samples on most of the datasets. The reason is as fol-
lows. When only a few samples are labeled, such label information is
insufficient to discriminate the other samples. On the other hand, for
larger amount of labeled samples, the LLP with # =0 is learnt from

only a few unlabeled samples in contrast (see the first two terms in
Eq. (6)), resulting in less generalization performance. Thus, the half ra-
tio of labeled samples is a trade-off point where the performance is
maximized. The proposed LLP effectively incorporates the labeled
samples in the logistic regression cost (the last term in Eq. (6)) with
adaptively determined parameter value #;, and thus the performance
is improved as the number of labeled samples increases.

Then, we investigated the sensitivities to the balancing parame-
ter 7 and show the effectiveness of the adaptive determination of the
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Fig. 6. ETH-80 dataset (Leibe and Schiele, 2003). (a) There are eight categories (row) and ten objects (column) in each category. (b) In each object, 41 images are captured

from various camera angles. The labeled images (views) are indicated by boxes.

Table 3

Classification accuracy on etH-s0 dataset.
Method Acc.
LLP 0.6308
LR 0.1302
SLR 0.1302
SVM 0.4829
LapSVM 0.4841
DA 0.5125
SDA 0.6198

parameter described in Section 3.2.2. For comparison, we applied
the constant parameter values # with the similarity (Wang and
Zhang, 2007; Wang et al., 2009) that we use in the experiments
and Gaussian kernel similarity, and the classification accuracies
are shown in Table 1. As shown in Table 1(a), the proposed method
exhibits favorable performances, while all the parameter values,
especially # =1, are comparable due to the discriminative power
of the similarity (Wang and Zhang, 2007; Wang et al., 2009). In the
Gaussian kernel similarity, the performances of the proposed meth-
od are significantly superior to the others. This experimental result
shows that the proposed parameter determination adaptively works
on various types of similarities.

We further investigated the optimality of the LLP with the pro-
posed initialization described in Section 3.2.1. Table 2 shows the
objective cost values J in Eq. (6) for the proposed initialization
and the random initialization. In the random initialization, we re-
port the best performance over the 100 times random initializa-
tions. The cost values by the proposed initialization are lower
than (or equal to) those by the random initialization. We can say
that the proposed initialization is effective to obtain ‘good’ solu-
tion, though the obtained solution is not surely global optimum
due to that the proposed formulation is not necessarily convex as
described in Section 3.2.1.

For a comparative study, we applied the other methods: logistic
regression (LR), semi-supervised logistic regression (SLR) (Amini
and Gallinari, 2002), SVM (Vapnik, 1998), Laplacian SVM (LapSVM)
(Belkin and Niyogi, 2006), discriminant analysis (DA), and semi-
supervised discriminant analysis (SDA) (Cai et al., 2007). The meth-
ods of DA and SDA construct the lower-dimensional discriminant
space into which the sample vectors are mapped, and the linear
classifier is learnt by applying SVM to labeled samples in that space
for a fair comparison; all the methods are based on linear classifi-

ers. The methods of LLP, SLR, LapSVM and SDA are semi-supervised
learning methods. The performance results in Fig. 5 show that LLP
exhibits favorable performances compared to the others in almost
all datasets and ratios of labeled samples. The logistic regression
(LR) in supervised learning framework is susceptible to over-
fitting. The proposed method (LLP), however, incorporates not only
labeled but also unlabeled samples and thus it possibly avoids such
over-fitting problem.

4.3. etH-s0 dataset

The etH-80 database (Leibe and Schiele, 2003) contains 80 objects
from eight categories, as shown in Fig. 6(a). Each object is repre-
sented in 41 images from equally spaced viewpoints over the
upper viewing hemisphere, as shown in Fig. 6(b). The perfor-
mances are measured by fivefold cross validation for objects; the
images of 64 objects are used for training and those of the re-
mained 16 objects are for test. In the training, we labeled only
two images (views) for each object, as shown in Fig. 6(b). In this
case of quite a few labeled samples, we constructed the graph
Laplacian by using all images both of training and test ones. The
bag-of-features (Csurka et al., 2004) are extracted from the image
by using SIFT features (Lowe, 2004) on grid points and then by
clustering them via hierarchical k-means (Nister and Stewenius,
2006) with 11 branches and four depths. All the methods are based
on linear classifiers in the same manner as Section 4.2. The perfor-
mance results are shown in Table 3. LLP produces the superior per-
formance to the others even in such case of a few sparsely labeled
sample. SLR falls to a local minimum corresponding to the initial
point produced by LR in this case.

5. Concluding remarks

We have proposed the method of logistic label propagation (LLP)
in the framework of semi-supervised learning. The proposed LLP can
effectively incorporate unlabeled samples as well as labeled ones via
similarities as in label propagation, and in addition, the label values
are estimated by using the logistic functions which are used in logis-
ticregression. In LLP, these methods of label propagation and logistic
regression are integrated in terms of posterior probabilities. LLP can
estimate the label values of newly input samples (vectors) by using
the learnt logistic function as posterior probabilities without the
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exhaustive computation for solving linear equations of the whole
graph Laplacian unlike the standard label propagation. Another
merit of the proposed semi-supervised learning method is that it
can estimate the labels from a small amount of labeled samples,
which is favorable in practical situations where labeling samples is
a exhaustive task. In addition, we suggested the ways for the param-
eter setting and the initialization in the optimization of the proposed
method, and as a result, the proposed method has no parameter that
users have to determine. In the experiments on classification in
the semi-supervised learning framework, the proposed method
produced favorable performances compared to the other semi-
supervised learning methods including Laplacian support vector
machine and semi-supervised discriminant analysis, etc.

Appendix A. Gradients in LLP

The derivative of the cost function in Eq. (6) with respect to w,
is

RS 3 W o 0y
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(A1)

The respective forms of the derivative that appear in Eq. (A.1) are
written as follows:
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where §(g,c) is a delta function which equals to 1 only for g =cand 0
otherwise. By substituting these equations into Eq. (A.1), we obtain
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