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Abstract

When the dynamic range of radiance values in a scene exceeds the capabilities
of a camera, a single picture can only capture one brightness range of the
scene faithfully at a time. We propose a system for creating high dynamic
range (HDR) videos that overcomes this limitation. It acquires a number of
images under varying exposure settings from dark to bright, each containing
new scene radiance information. The camera motion between the images is
compensated and they are fused into a single HDR frame. For visualization
on regular displays, the video frame is tone mapped to the output range of
the display. We introduce algorithms for reduced redundancy acquisition,
efficient registration and visualization of HDR video that are fast enough to
be used in real-time.

Keywords: HDR video, multi-spectrum video acquisition, image
registration, video tone mapping

1. Introduction

A recurring problem when capturing videos, e.g., for surveillance pur-
poses, is the scene having a range of brightness values that exceeds the capa-
bilities of the capturing device. An example would be a video camera situated
in a bright outside area, directed at the entrance of a building. Because of the
potentially big brightness difference, it may not be possible to capture details
of the inside of the building and the outside simultaneously using just one
shutter speed setting. This results in under- and overexposed pixels in the
video footage, impeding the use of pattern recognition algorithms like face
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Figure 1: The inside of the building is much darker than the outside. There is no shutter
speed setting that exposes both correctly at the same time. A solution to this problem is
using a sequence of shutter speeds and merging the images together.

recognition and human tracking. See Figure 1 for an example. A low-cost
solution to this problem is temporal exposure bracketing, i.e., using a set of
video frames captured in quick sequence at different shutter settings [1, 2].
Each frame then captures one facet of the scene’s radiance range. When fused
together, a high dynamic range (HDR) video frame is created that reveals
details in dark and bright regions simultaneously. Doing exposure bracketing
and merging at a sufficiently fast rate results in an HDR video.

The process of creating a frame in an HDR video can be thought of
as a pipeline where the output of each step is the input to the subsequent
one. It begins by capturing a set of low dynamic range (LDR) images using
varying shutter settings. Typically, the shutter speed is doubled or halved
with each additional image captured. Next, the images are aligned with
respect to each other to compensate for camera and scene motion during
capture. The aligned images are then merged together to create a single
HDR frame containing accurate radiance values of the entire scene. As a last
step, the HDR frame is tone mapped to the output range of a regular LDR
screen for visualization.

HDR video can be understood as a form of multi-spectrum video. We
use the term “multi-spectrum” in a more loosely defined sense here. Orig-
inally, it refers to measuring light intensities at specific wavelength ranges
and combining the measurements. The fact that each wavelength range has
different characteristics makes fusing them challenging. Once this is done
though, information from all ranges can be harnessed simultaneously. In our
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scenario, the wavelengths are restricted to the three color channels red, green
and blue. However, we measure the intensity of the light in each spectrum
more accurately by combining exposures that cover different intensity ranges
(e.g., from dark to bright). The problem of differing characteristics between
the ranges to be fused remains. For example, areas that contain structure
in one image might be completely saturated in another (see Figure 1). The
resulting HDR frame includes information from all intensity ranges. Pat-
tern recognition algorithms can later work directly on the fused HDR data
and take advantage of the increased bit depth and the improved visibility of
detail.

In this paper, we present a system for acquisition, registration and visual-
ization of HDR video. We introduce two separate methods for fast capturing
of the LDR sequences required to create an HDR frame. Both aim at re-
ducing the redundancy when capturing multiple images of the same scene.
Furthermore, we present an image registration technique that is both robust
to extreme brightness differences and fast enough to be used on real-time
video. For the visualization of HDR video, we show an extension of exist-
ing still-image tone mapping techniques to video. It mainly focuses on the
removal of flickering artifacts arising in this situation.

The rest of this paper is structured as follows. Section 2 presents pre-
vious work in the field of HDR images and videos. In Section 3, we give
an overview of the components of the proposed system. Sections 4, 5 and 6
contain the details of our image capture, image registration, and tone map-
ping techniques. Their quality and processing time is discussed in Section 7.
Section 8 concludes the paper.

2. Related Work

In the last few years, several approaches have been proposed that combine
data from different light spectra in video surveillance scenarios. Torresan
et al. use a rule-based decision model to fuse data from the infrared and
the visible spectrum for pedestrian tracking [3]. A general problem of rule-
based approaches is the handling of inconsistency between the two channels.
Conaire et al. describe a system for object segmentation by fusing infrared
and regular image data [4]. To avoid inconsistencies between the segmented
objects in different channels, a ”transferable belief model” is used to combine
conflicting information. The video surveillance system proposed by Chen and
Wolf focuses on object tracking and information fusion of both channels [5].
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This system also handles object merge, split, or occlusion by using a hierar-
chical information fusion approach from pixel level to object level. Kumar
et al. use fuzzy logic and Kalman filtering to track objects more reliably
[6]. Liu and Laganiere focus on registration techniques to align images from
the infrared and the visible spectrum [7]. They are aligned by analyzing the
differences in adjacent frames caused by a moving person.

Several of the aforementioned challenges are very similar to high dynamic
range video. In case of HDR, all frames are captured in the visible spectrum
and the images are more similar to each other than to infrared. Neverthe-
less, only a small amount of pixels contain useful data when comparing under-
and overexposed images, and classical feature based image registration tech-
niques fail. Our system focuses on the special challenges in the context of
HDR video. Besides the question of how to fuse inconsistent data, efficient
algorithms to capture and process frames are discussed.

The HDR video creation pipeline consists of four steps: capturing, LDR
image registration, merging LDR frames into an HDR frame, and tone map-
ping. Most of the previous work focuses on one step only. Our goal is to
combine all steps in an application which is able to handle the data in real-
time. Such a combined system allows to use information calculated in the
other steps to improve the visual quality and the speed of the overall system.

The most popular technique to create HDR images is using a set of
LDR images captured in quick sequence at different exposure settings. Most
works in this field focus on the estimation of the inverse camera response
function to map pixel values onto scene radiance [1, 8, 9, 10]. An obvious
disadvantage is the increase of capture time required to record a scene. Alter-
native approaches use sophisticated hardware like beam splitters that allow
an array of LDR cameras to view the same scene at the same time [11, 12].
The shutter speeds of the cameras differ from each other. With multiple
cameras, an entire set of LDR images that covers the scene’s full dynamic
range can be captured at once, leading to high capture speed. The major
disadvantage is the significantly increased hardware cost.

Several techniques have been proposed to determine suitable exposure
settings. Barakat et al. [13] present an approach which minimizes the num-
ber of exposures while covering the entire dynamic range of the scene. Min-
imum and maximum of the scene’s irradiance range are taken into account,
and the least possible overlap of exposures is chosen. They do not consider
the SNR of the HDR result during the choice of exposure times, that is, each
pixel is considered to contribute the same amount to the result regardless of
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its value. The algorithm is a fast heuristic suitable for real-time use. A recent
method to determine noise-optimal exposure settings uses varying gain levels
is proposed in [14]. For a given sum of exposure times, increasing gain also
increases the SNR. The authors define SNR as a function over log radiance
values. However, they only consider the worst-case SNR, i.e., the minimum
of the SNR function and ignore the average SNR of the HDR result. Only
the extrema of the scene’s brightness are considered. The computation of
the exposure settings is too expensive to be used in a real-time scenario.

Existing approaches to image registration often have difficulties coping
with the high brightness difference between LDR exposures [15]. Only few
techniques treat this problem specifically. Kang et al. propose a method
for estimating camera and scene motion, but its computational cost is too
high to be used in real-time [16]. Ward uses thresholded images that are
robust to brightness variation and performs an efficient hierarchical search
for translational camera motion [17]. In previous work, we have proposed a
fast registration algorithm that extends Ward’s technique [18].

Tone mapping (TM) operators map radiance values back to suitable 8-
bit pixel values for display. They are classified as spatially invariant, global
operators and spatially variant, local operators.

Global operators are non-linear functions based on the content of an image
as a whole, using statistical values such as average luminance to estimate
optimal mapping parameters for a particular image. These operators are
simple and fast, but are limited in their ability to process very high dynamic
ranges. The histogram adjustment method proposed by Ward et al. [19]
applies a monotonic tone reproduction curve to all pixels. The idea is to
allocate most of the displayable dynamic range to luminance ranges that are
represented by many pixels. Thus pixels in less frequent brightness levels are
compressed more strongly. Additionally, human visual limitations such as
glare or visual acuity are regarded in further processing steps.

Local operators like the photographic operator published by Reinhard et
al. [20] consider a set of neighboring pixels for estimation of the parameters
of a transformation function. Each pixel of an image is mapped differently,
based on the local features of its neighborhood. Because the human vi-
sual system is sensitive to local contrast, high quality images spanning high
dynamic ranges are possible with this method. Due to the more complex
nature of these operators, computation time increases and artifacts such as
halo effects can occur.

Only few TM operators specific to HDR video content have been pro-
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posed. Benoit et al. [21] propose a model based on properties of the human
retina. HDR video content is enhanced by a non-separable spatio-temporal
filter with added temporal constancy. This is done by imitating the retina’s
luminance compression and additional temporal information processing. A
general model for temporal luminance adaptation was proposed by Krawczyk
et al. [22]. In accordance with the human visual system, that reacts to tem-
poral changes in luminance conditions, a time constant for the speed of the
adaptation is introduced. The drawback of existing video tone mapping
techniques is that they can only be used with a specific TM operator. We
have developed a TM technique for videos which removes flicker in a post-
processing step and is applicable to all TM operators [23].

3. HDR Video Processing Pipeline

The process of creating a frame in an HDR video is a pipeline where the
output of each step is the input to the subsequent one. This is shown in Figure
2. It consists of four modules: LDR image capture, image registration, HDR
stitching, and video tone mapping. We have made isolated contributions to
the fields of capturing, registration and tone mapping. In this article, we
integrate our previous contributions into a complete HDR video system and
tackle the arising challenges. Our additions include:

• GPU-based color conversion of the image material between the steps
of the pipeline.

• Calculation of an initial shutter setting for the partial re-exposure mod-
ule from the average pixel value of the HDR frame created during HDR
stitching.

• GPU implementations of the most time-consuming parts of the HDR
pipeline and performance evaluation of the system as a whole.

• An alternative approach for capturing image sequences based on opti-
mal shutter speeds (see Section 4.2).

Step 1: LDR Image Capture
The capturing of LDR images constitutes the first step. We present two
alternative methods for capturing with reduced redundancy. The decision
about which one to use is based on the capabilities of the capturing camera
as well as the preferred optimization. The first one minimizes the amount of
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Figure 2: Overview of the HDR video processing pipeline. As a first step, a sequence of
LDR images is captured using one of the two presented methods. The image sequence is
passed to the registration module where camera motion in the sequence is compensated.
The registered sequence is then stitched into a single HDR frame, which is finally tone
mapped for display. HDR image statistics are passed back to the capturing module and
used to determine the capture parameters for the next frame.

image data by only re-capturing the potentially small badly exposed areas
of a base LDR image. These areas are detected during the capturing process
and new images are triggered one by one. The second approach presented
here has not been published yet. The idea is to only use the shutter speeds
that contribute the most information to the HDR frame. In this case, the
shutter sequence is determined in advance using the histogram of the previous
frame. It is transmitted to the camera which then captures all images in one
go.

Step 1 (a): Partial Re-Exposures
Many industrial FireWire CCD cameras have a feature called true partial
scan. It allows the definition of a rectangular sub-area of cells on the CCD
sensor – a region of interest – to be read out while all other cells are being
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discarded. As a result, the time needed to read out the relevant parts of
the sensor and to transmit the image data over the FireWire bus is reduced,
leading to a higher frame rate at lower image sizes.

In our partial re-exposure approach, we do not capture a fixed number
of LDR images with varying shutters, but adapt the number to the dynamic
range of the scene. Additionally, we make use of the idea that it might
not always be necessary to capture a full image at another exposure setting
if only few image areas require a higher dynamic range. We developed an
algorithm that detects badly exposed regions in an already captured image
and triggers the camera to re-capture only these regions. Reducing the image
size decreases the overall capture time of an image significantly. Capturing
partial images also reduces the amount of redundant data that is used to
merge the LDR images into an HDR image which saves additional processing
time.

Step 1 (b): Optimal Shutter Sequences
Another way of speeding up capturing is to optimally choose shutter speeds
at which to capture. The fewer images are captured, the less time is taken
to process them, leading to higher frame rates. Yet at the same time, the
dynamic range of the scene may necessitate a certain minimum number of
exposures so that all detail is captured properly. So the goal is to get the
most out of the recorded exposures.

In an HDR video, the histogram of scene radiance values is often a by-
product of tone mapping the previous frames [19]. This second approach
thus uses the available histogram to calculate a shutter speed sequence in
real-time. The shutter speeds are chosen in a way, such that frequently oc-
curring brightness values are well-exposed in at least one of the captured
LDR images. This increases the average signal-to-noise ratio (SNR) for a
given number of exposures or minimizes the number of exposures required
to achieve a desired SNR.

Step 2: Image Registration
We address the challenge of estimating the camera motion between two par-
tial LDR frames in an efficient way. We argue that a purely translational
camera motion model is sufficiently accurate for high frame rates. This as-
sumption is supported by [17]. At 200 frames per second, 5 ms pass between
two consecutive LDR frames. Assuming that a visually pleasing camera pan
takes 5 seconds to pan across the entire width of a frame, the motion from
one exposure to the next is only one thousandth of the frame. Registration
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inaccuracy due to a simple translational model is not visible on such a small
scale. Local object motion, however, is not accounted for in our global model.
Object motion in the context of HDR has been determined in [16] by esti-
mating the optical flow in an offline process. It is too slow to be performed
in real-time.

The goal of the registration algorithm is thus to estimate a translation
vector between two LDR frames captured at different exposure settings. We
improve upon the approach based on mean threshold bitmaps [17]. The hi-
erarchical 2D search is replaced by two separate exhaustive 1D searches to
speed up the computation. We start by counting the number of dark pixels
in each column of both frames to be aligned to create column histograms.
By using a normalized cross correlation between the two column histograms,
we estimate the horizontal component of the translation vector. Repeating
this process for image rows allows us to estimate the vertical component,
respectively. The resulting vector is then validated using a Kalman filter to
incorporate knowledge of the prior motion into the estimation.

Step 3: HDR Stitching
The registered image sequence is then merged into a single frame. The
weighting functions shown here are used again in Section 4.2 to determine
optimal shutter speeds.

An HDR frame is a map of radiances in a scene. In order to reconstruct
this radiance map from the pixel values of the captured LDR images, the
camera’s response function f must be known [1]. For the duration Δt that
the camera’s shutter is open, a pixel on the CCD sensor integrates the scene
radiance E, resulting in a total exposure of EΔt. The camera’s response
function then maps the exposure to a pixel value I = f(EΔt), usually in
the range of [0, 255]. When the shutter speeds Δti used to capture the LDR
images are known, the inverse of the response function can be used to make
an estimate Ẽi of the original radiance from pixel value Ii in LDR image i:

Ẽi =
f−1(Ii)

Δti
. (1)

A good approximation of the radiance value at a pixel in the HDR image is
then obtained by computing a weighted average over all estimates Ẽi:

E =

∑
i w(Ii)Ẽi∑

i w(Ii)
. (2)
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The weighting function w determines how much the radiance estimate Ẽi

from a pixel Ii contributes to the corresponding HDR pixel E. In other
words, it judges a pixel’s usefulness for recovering a radiance value based on
its brightness value.

Step 4: Video Tone Mapping
In order to be displayable on a regular screen, the large radiance ranges
of an HDR frame need to be compressed to 8-bit values. Preferably, the
compression is done in a way that maintains as much of the gained HDR
information as possible. This process is called tone mapping. It is our goal to
perform tone mapping of HDR videos using standard operators designed for
still images. When doing so, temporal changes of the minimum, maximum, or
average scene radiance lead to flicker in the tone mapped video. We propose
a generic method for the automatic detection and removal of flicker. Flicker
is detected by large changes in the average image brightness from one tone
mapped frame to the next. To reduce flicker, we adjust the image brightness
after tone mapping by normalization and clamping. The brightness variation
is smoothed over several frames, becoming less disturbing. The advantage of
this approach is that it is applicable to all tone mapping operators.

4. LDR Image Capture

4.1. Capturing with Partial Re-exposures

When capturing low dynamic range (LDR) sequences with a camera that
allows to read out a smaller region of interest (ROI) on the image sensor,
the size of the region influences the capture speed. Increasing the height of
the ROI leads to a linear increase in capture time. This is obvious because
CCD sensors are usually read out row by row, while rows that are not to be
captured are discarded completely. Contrary to this, no time can be saved by
decreasing the ROI width because the read-out time of a row on the sensor
is constant.

Parts of the costs of capturing an image are constant for all ROI sizes,
e.g., triggering the camera and exposing the sensor to the light, while others
depend linearly on the height of the ROI. The constant cost of image cap-
turing can exceed the variable cost for small ROI heights by far. Instead of
capturing two close but distinct ROIs, it can therefore be more efficient to
capture both regions and the area in between in one step.

Our algorithm to capture HDR frames using partial re-exposures of poorly
exposed regions can be divided into the following steps (see Figure 3):
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Figure 3: The left image shows the base image of an LDR image sequence. Some areas of
the base image are badly exposed. Only the rectangular ROIs are captured again with a
shorter (top) and longer (bottom) shutter speed.

1. Capture a base image of the scene at full resolution and an initial
shutter setting,

2. Search the captured image for under- or overexposed pixels,

3. Group these pixels into ROIs for re-exposure and determine an appro-
priate shutter speed setting,

4. Re-Capture all ROIs from the previous step with different shutter set-
tings and repeat from 2 using each newly captured image,

5. Stop if no more under- or overexposed regions are found.

The initial shutter setting to capture the base image is determined from
the average radiance of the previous HDR frame. It is chosen such that
the average radiance is mapped to the center of the pixel value range (e.g.,
128). The algorithm explores the base image and all subsequently captured
partial images iteratively and captures only as many images as necessary
to cover the full dynamic range of the scene. In order to search captured
images for under- or overexposed pixels, we define that a pixel is valid (well
exposed) if its brightness value p lies within an interval [pmin, pmax] and is
invalid otherwise.

No performance gain can be achieved by capturing images at less than full
width. We therefore restrict the set of possible ROIs to those with a width
equal to the full width of the CCD sensor. Such a region is fully described
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by the location of the first row belonging to the ROI and its height. Thus, as
a first step in determining areas for re-exposure, a histogram is created with
as many bins as the number of rows in the image to be considered. Each bin
stores the number of invalid pixels found in its corresponding image row.

From now on, only row histograms counting invalid pixels are considered,
reducing the problem of finding ROIs to a one-dimensional one. A threshold
rmax is then applied to the smoothed histogram, marking those image rows
having an invalid pixel count of more than rmax percent. Marked rows in the
histogram are the ones to be considered for re-exposure.

Next, the thresholded row histogram is searched for contiguous runs of
marked rows. They are expanded to a minimum size of hmin rows, which
is a characteristic of the camera used. When two ROIs are close enough
together for it to be faster to capture both at once, they are merged into a
single region. Lastly, the detected ROIs are pushed into the image capture
queue. Depending on whether the image was analyzed for under- or over-
exposed pixels, the regions will be re-exposed with either longer or shorter
shutter speeds respectively. In this approach, we vary the shutter speeds by
a constant factor between an exposure and a partial re-exposure. As soon
as no more invalid pixels are found in any of the newly captured images,
the algorithm terminates. Therefore, no more exposures than necessary to
capture the scene’s dynamic range are used.

From the moment the camera’s sensor is exposed to the light of the scene,
until the image is fully received from the camera, the CPU is idle. We can
use this idle CPU time to analyze the captured images without adding to
the overall capture time. We found that in our setup, capturing even the
smallest possible image took longer than analyzing a full image. As long as
there are more images to re-expose, the analysis can thus be performed for
free and does not add to the overall capture time.

4.2. Capturing with Optimal Shutter Sequences

In this section, we present the alternative capturing approach that makes
use of the camera’s sequence mode. A shutter sequence is determined and
transmitted to the camera, which then captures the image sequence asyn-
chronously. This approach makes use of the weighting functions introduced
in Section 3 (see Figure 4 for an example).

For a given shutter speed Δt, we can calculate how well a radiance value
E can be estimated from an image captured at Δt by combining the response
and the weighting function. A radiance value E is mapped to a pixel value
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Figure 4: Example of a weighting function. The weight of a pixel is its value multiplied
by a hat function normalized to a maximum weight of 1.

using the camera’s response function f . The weighting function w then
assigns a weighting to the pixel value. We define

cΔt(E) = w(f(EΔt)) (3)

as the contribution of an image captured at Δt to the estimation of a radiance
value E.

When creating HDR video in real-time, the scene’s radiance histogram is
known from the previous frames, e.g., as a by-product of tone mapping [19].
Each histogram bin with index j = 1, ...,M counts the number H(j) of pixels
in the HDR image having a log radiance of bj = log(Ej). A log radiance
histogram can be used to calculate a sequence of shutter speeds Δti which
allows the most accurate estimation of the scene’s radiance. We do this by
choosing the Δti such that the peaks of the contribution functions cΔti(E) of
the LDR images coincide with the peaks in the histogram. That is, radiance
values that occur frequently in the scene lead to LDR images to be captured
which measure these radiance values accurately. This is illustrated in Figure
5.

Equation 3 states that, for a given shutter speed Δt and an LDR image
captured using Δt, the value of cΔt(exp(bj)) indicates how accurately log
radiance bj is represented in the LDR image. The continuous contribution
function sampled at bj results in a discrete vector of contribution values.
The contribution vector corresponding to a different shutter speed Δt′ can
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Figure 5: The solid line depicts an example log radiance histogram. The dashed line is the
contribution function in the log domain corresponding to the first shutter speed chosen
by our algorithm. The exposure was chosen such that it captures the most frequently
occurring radiance values best.

be easily obtained by shifting the original vector to another position in the
histogram. This allows us to move the contribution function over a peak in
the histogram and then derive the corresponding shutter speed.

Here, we explain how a new shutter speed is added to an existing shutter
sequence. The first shutter can be determined analogously. We assume that
the sequence already consists of a number of shutter speeds Δti. To each
Δti belongs a contribution vector cΔti(Ej). To find out which new shutter
brings the biggest gain in image quality, we define a combined contribution
vector C(Ej) that expresses how well the radiances Ej are captured in the
determined exposures. We define it as the maximum contribution for each
histogram bin

C(Ej) = max
i

(cΔti (Ej)) . (4)

This definition can now be used to calculate a single coverage value C to
estimate how well-exposed the pixels in the scene are in the exposures. C
is obtained by multiplying the frequency of occurrence of a radiance value
H(j) by the combined contribution C(Ej) and summing up the products:

C =
M∑

j=1

C(Ej)H(j). (5)
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The algorithm tries out all possible shifts between a new contribution vector
and the log histogram. The shutter speed corresponding to the shift that
leads to the biggest increase of C is added to the sequence.

We stop adding shutters to the sequence once one of three stop criteria
is met:

1. A maximum number of exposures is reached,

2. the coverage value C is above a threshold, meaning that scene radiance
can be estimated sufficiently well from the exposure sequence, or

3. the sum of shutter speeds exceeds the time available for exposure in a
video frame.

Changing the shutter sequence for every frame when creating an HDR
video can create visible flicker. Also, stable shutter sequences are more prac-
tical when operating the camera in the sequence mode. In this mode, a
sequence of exposure parameters is sent to the camera. It then repeatedly
captures exposures by cycling through the parameter list. This is done asyn-
chronously by the camera and the captured exposures are buffered. Changing
the shutter sequence requires a costly retransmission of the parameters, and
the buffers are used suboptimally. For these reasons we impose a stability
criterion upon the shutter sequence. We begin by defining whether two given
shutter speed sequences are similar based on the percentual distance between
their shutter values. Using this definition, we achieve temporal stability by
distinguishing between two states: changing and static. The transition to
changing only happens, when the calculated shutter sequence differs from
the one currently set in the camera for a number of frames in a row. Only in
the changing state, the new sequence is actually transmitted to the camera.
Like this, small variations in the shutter speed sequence are ignored.

5. Image Registration

This section describes our histogram-based algorithm for image registra-
tion. The input to our algorithm is a set of n exposures consisting of one full
resolution base frame I0 and possibly smaller re-exposures Ii for i = 1, ..., n−1
captured at different exposure settings. Each re-exposure was initiated by
badly exposed regions in an already captured parent frame. The base frame
is the root of the whole set. The output of image registration is a two-
dimensional integer translation vector �vi describing the shift between each
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Figure 6: Mean Threshold Bitmap of an LDR frame (a) and its corresponding column
histogram counting black pixels (b).

exposure Ii and its parent Ii−1. Our algorithm performs no image registration
on the base frame of an exposure set.

For estimating the translation vectors, we use mean threshold bitmaps
(MTB) as described in [17]. A mean threshold bitmap is a black and white
image that was created from the brightness channel of an image such that
50% of the image pixels are white and 50% are black. The threshold mi

that achieves this ratio is calculated from the brightness histogram. The
advantage of an MTB compared to a regular grayscale image is that – within
certain limits – two exposures depicting the same scene captured at two
different exposure settings will result in approximately the same MTB. This
fact is very desirable for image registration.

We estimate a two-dimensional shift �vi = (xi, yi) between two exposures
Ii−1 and Ii by estimating two one-dimensional shifts xi and yi separately.
We start by estimating the horizontal shift xi. The first step in doing so
is to build column histograms over the full image Ii and the overlapping
image area of Ii−1. A bin in the column histogram represents the number
of black pixels in the corresponding column of the exposure’s MTB. This is
demonstrated in Figure 6.

Let wi and hi be the width and height of Ii. The column histogram
Bx

i (j) of exposure Ii counting black pixels is a function of the column index
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j = 1, ..., wi and is defined as

Bx
i (j) = |{Ii(j, k) < mi ; k = 1, ..., hi}| (6)

where Ii(j, k) is the pixel value at position (j, k) and | · | denotes the number
of elements in the set. The histogram for Ii−1 is defined accordingly.

The horizontal shift xi is now estimated using these two histograms. We
let the shift s assume all possible integer values within a search range (e.g.,
-64 to 64 pixels) and compute the normalized cross correlation (NCC) be-
tween the histograms of exposures Ii−1 and Ii under the given shift. The
s producing the highest correlation value is then used as the estimate for
xi. Using row histograms, the vertical shift yi can be estimated analogously.
Our experiments show that the choice of which dimension to start with and
the number of iterations have little effect on the final result. We therefore
only estimate xi and yi once and set �vi = (xi, yi) as the resulting translation
vector. In addition to NCC, we also experimented with different metrics for
comparing histograms. The advantage of simpler ones like the sum of abso-
lute/squared differences and histogram intersection is their lower computa-
tional complexity. We found, however, that NCC achieves the best results.
The computational effort of calculating the NCC between two histograms
with at most 640 bins is negligible compared to the computation of bright-
ness, row and column histograms over a full image.

As a last step, all resulting vectors are validated using a Kalman filter to
incorporate knowledge of the prior motion into the estimation. A certainty
criterion is used to determine the weighting between using the computed
translation directly and extrapolating it from the preceding trajectory.

The computation of the brightness histogram to determine the median
threshold and the creation of row and column histograms are the most time-
consuming steps in our algorithm. We thus implemented them in a parallel
way to be executed on a graphics processing unit (GPU). The image is first
subdivided into rectangular areas of size 32×64 pixels. A separate histogram
is created for each area in parallel. All histograms are then successively added
up to one final histogram over the entire image.

6. Video Tone Mapping

When using existing still image tone mapping operators to visualize HDR
videos, temporal incoherence of the minimum, maximum, or average scene
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Figure 7: Three tone mapped frames of an example video. As soon as the window enters
the camera’s field of view, the scene’s minimum and maximum luminance changes greatly,
leading to a visible brightness difference of the tone mapped frames.

radiance leads to image flicker. An example would be an HDR video with a
camera turn from a dark indoor area towards a window showing a light out-
door scene. The tone mapping operator now attempts to map the suddenly
increased radiance range to the same output values, leading to an overall
much darker image. When this transition from light to dark happens too
quickly, it is perceived as flicker. This is illustrated in Figure 7.

Such flicker artifacts are sufficiently well detected by computing the ge-
ometric average image brightness of a tone mapped frame and comparing
it to the average of the previous frame. The biggest challenge here is find-
ing a suitable threshold for the difference of the averages of two consecutive
frames. We made use of a model found in the literature on the human visual
system called Stevens’ power law [24]. It uses the notion of a just noticeable
difference ΔR, which depends on a given background luminance R, and in-
troduces an adjustable parameter k. For a given luminance level (in our case
the log average of the previous frame), this model allows the computation
of a maximum luminance change that will remain unnoticed to a human ob-
server. Even though the setting for which this law was developed slightly
differs from ours, it serves as a perceptional basis for our criterion. In its
general form, it is given by

ΔR = kRα, (7)

where α ≈ 0.33 when considering brightness. A suitable value for the param-
eter k was determined by us experimentally. ΔR is then used as threshold
for the geometric average image brightness to detect flicker.

A robust flicker detection makes flicker removal straightforward. If flicker
occurs in a frame, we iteratively adjust its brightness until it is within the
tolerable threshold. We use the example at the beginning of this section to
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Figure 8: Frame t is too dark after tone mapping (Ĩ0
t < Ĩt−1 −ΔR). Its brightness is thus

iteratively adjusted towards the target value I∗. After three iterations, it falls within the
tolerable brightness range drawn in gray.

explain flicker removal. The algorithm is implemented as a post-processing
step and works with any tone mapper. We start by tone mapping the current
frame t with the chosen operator and settings. Next, the log average pixel
value Ĩt of the frame is computed. Then we calculate the maximum allowable
brightness difference ΔR to the previous frame using Stevens’ power law
(Equation 7):

ΔR = k(Ĩt−1)
0.33, (8)

where Ĩt−1 is the log average of the previous frame. Now, we check whether
|Ĩt−1 − Ĩt| > ΔR. If it is not, then the frame is likely not to be a flickering
frame. In our example however, it is assumed that the current frame is much
darker than the previous one (Ĩt−1 − ΔR > Ĩt). The goal is now to increase
the frame’s brightness so that it falls within a tolerable range. The lower end
of this range is given by Ĩt−1−ΔR, meaning that there shall be no detectable
flicker. It is also desirable to maintain the original brightness produced by
the TM operator as well as possible. After adjustment, Ĩt should therefore
be close to the lower end of the range. To accommodate this fact, we set
the upper bound to Ĩt−1 − pΔR, where p is a percentage we set to 50%
in our implementation. The next step is to iteratively adjust the frame’s
brightness, producing a sequence Ĩ0

t , Ĩ1
t , ..., Ĩ i

t , until it falls into the desired
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Figure 9: This plot shows a rapid decrease of average brightness between frames 1 and
2. Frame 2 is adjusted to reduce the brightness gap. The amount of adjustment needed
decreases with each subsequent frame. In frame 5, the adjusted brightness has converged
towards the value achieved by tone mapping with standard parameters. No more adjust-
ment is required.

range of [Ĩt−1 − ΔR, Ĩt−1 − pΔR]. As an explicit target value I∗, we aim
for the range’s center. The process of iteratively approaching the desired
brightness is depicted in Figure 8.

The adjusted brightness Ĩ i
t of frame t is now slightly lower than Ĩt−1 (more

specifically: Ĩ i
t ≈ I∗ < Ĩt−1), and the difference is within a range we consider

to be unobtrusive. The next frame t + 1 is then tone mapped with standard
parameters again. If there is no more rapid scene histogram change between
frames t and t + 1, Ĩt+1 is now closer to Ĩt than Ĩt was to Ĩt−1 and the
amount of adjustment required is smaller. After a few frames, the difference
approaches a value less than ΔR and no further adjustment is necessary.
Figure 9 illustrates this convergence towards standard parameters.

7. Evaluation

In this section, we evaluate the presented algorithms. It is split up into
two parts. The first discusses the achieved quality of the algorithms according
to our metrics. In the second part, we evaluate the processing times of the
presented subparts.
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For all experiments, we used a desktop PC with an AMD Athlon II X2
250 64-bit CPU with two cores running at 3 GHz and a total of 4 GB of RAM.
The installed graphics card is an Nvidia GeForce GTX 480 with 15 multicores
running at a clock rate of 1.4 GHz and 1.5 GB of dedicated memory. Each
multicore can process 32 threads at once. Our camera is an AVT Pike F-
032C FireWire camera capable of capturing 208 frames per second in VGA
resolution. It can capture in the sequence mode and uses a Bayer color filter
array to acquire color images. Unless stated otherwise, we use five HDR video
sequences in VGA resolution for our evaluation. Each is about 10 seconds
long. The LDR base image sequences are stored for each frame.

7.1. Quality of the Results

When capturing LDR sequences with partial re-exposures, we leave out
redundant areas that are already well exposed in a previously captured image.
However, we only consider an image row for re-exposure, when it contains
more than rmax badly exposed pixels. Depending on the choice for this
threshold, a certain percentage of pixels remain invalid in the final HDR
frame. When setting rmax to 0%, 0.7%, 5% and 10% of the image width, the
percentages of invalid pixels in the HDR frame are 0%, 0.03%, 0.66% and
3.73% respectively. We chose rmax = 0.7% for our running system.

To evaluate the quality of results produced by using our optimal shutter
speed sequences, we performed a subjective user study. We believe that a
subjective evaluation is superior to an objective one, since the HDR images
created from our optimized sequences are targeted at human observers. To
our knowledge, there exists no objective metric that is specific to judging the
quality of an HDR image. Comparing the results to a perfect reference HDR
image by using standard metrics like the PSNR is heavily biased in favor
of underexposure. An underexposed image exhibits quantization noise with
pixel values differing only by small amounts from the reference. The true
brightness of a saturated pixel however can be arbitrarily large. A reflection
of the sun appearing as a small white disk might be acceptable, even though
the displayed brightness is orders of magnitude lower than the real one.

In our subjective study, the 27 participants were shown twelve datasets,
each consisting of a reference, an HDR result created using shutter speeds
from our approach and one where evenly spread shutters were used. Each
of the two results had to be rated using five scores ranging from very good
(5) to very poor (1). Averaging the ratings results in a score of 3.73 for the
optimal shutter algorithm and 2.83 for the equidistant approach. Note that
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Video # Ward our approach

1 1.56 (3.46) 1.12 (2.60)
2 1.05 (2.21) 1.13 (0.89)
3 1.37 (4.05) 0.78 (0.78)
4 2.27 (4.70) 1.38 (1.37)
5 3.96 (6.33) 2.77 (2.89)

Table 1: Average image registration error (and standard deviation in brackets). We com-
pared Ward’s algorithm to our registration approach.

the HDR material was intended to be flawed for better comparison. Our
approach achieved a better score in 70%, the same in 16%, and a worse score
in 14% of the ratings.

For the evaluation of our image registration, all frames of the sequences
were registered manually first. The resulting translation vectors constitute
the ground truth. As the criteria for our evaluation, we use mean and stan-
dard deviation of the distance between the estimate and the ground truth
over all frames of the videos. We compare it to our implementation of Ward’s
still image algorithm [17]. By incorporating knowledge of the motion in the
previous frames, our algorithm thus achieves a better registration accuracy.
Table 1 shows this result.

The HDR test sequences were tone mapped with three different opera-
tors [25, 19, 20] without using our proposed flicker reduction. In a subjective
user study with 10 participants, a total of 50 frames were marked as flickering
by 50% or more of the participants. From the marked frames, we determined
the value for the adjustable parameter k in Stevens’ power law. We set
the parameter in a way such that the power law produced only one false
negative (missed flicker frame) and 87 false positives (erroneously detected
flicker). False positives are acceptable, since additional tone mapping of a
non-flicker frame merely increases the computational effort. From the num-
ber of false negatives and false positives for our choice of k, we can conclude
that exceeding the threshold is a necessary criterion for a flickering frame.
That is, if our detector classifies a frame as non-flickering, it is very likely
to actually be a non-flicker frame. Adjusting a frame’s brightness until our
detector stops reporting flicker thus removes flicker with a high likelihood.
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7.2. Processing Time

We’ve conducted experiments to compare the time taken to capture an
LDR sequence using our partial re-exposure algorithm to the time of the
traditional approach of creating HDR images using full images. Averaged
over all sequences, our approach saved 29% of the total capturing time. The
amount of saving varied from 49% in a scene with only one small saturated
light source to 20% in a scene with large reflecting surfaces. Throughout
all test sequences, the overhead introduced by image analysis accounts for
approximately 5% of the overall duration.

When computing optimal shutter sequences, the histogram of the previous
HDR frame is available from tone mapping. Histogram creation is thus not
included in the timing measurements. Our experiment showed that 96.5%
of our shutter speed algorithm’s processing time is spent for trying out all
possible shifts between contribution vector and histogram to find the next
shutter speed with the best coverage value. As a consequence, the processing
time is roughly proportional to the number of shutters in the sequence. We
measured 0.14 ms per shutter value.

The time taken to register two images of the LDR sequence depends
linearly on the size of the smallest image. We always capture at full image
width. Varying the image height from 100 to 480 pixels resulted in processing
times from 2 to 8ms on a CPU. The overall processing time was decreased by
a factor of 5.9 in the average by running parts of the algorithm on a GPU.

For judging the computational effort of our flicker reduction algorithm,
we assume that the log average brightness of a frame is obtained from the
tone mapping operator as a by-product. This is the case for our GPU imple-
mentation of the tone mapper presented in [19]. The cost of flicker detection
is thus negligible. Hence, the additional computational effort produced by
our flicker reduction algorithm is mainly due to the repeated normalization
of flickering frames. The brightness of 4.16 frames was adjusted in the aver-
age to smooth the brightness variance of each detected flicker frame. Each
adjustment took 1.317 iterations of normalization until the desired target
brightness was met.

8. Conclusions

We presented a system for acquisition, registration, and visualization of
high dynamic range videos. Each HDR video frame is created using a se-
quence of LDR images. A combined HDR frame then contains more infor-
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mation than each individual exposure. The improved HDR algorithms suit
the needs of an HDR video system like high frame rates and temporal co-
herence. They benefit from knowledge obtained from previous frames. We
showed that in the average, capturing with partial re-exposures saves 29%
of the time for exposure acquisition compared to capturing full images while
only introducing 0.03% of under- or overexposed pixels into the HDR result.
Adapting shutter speeds to the scene instead of simply using equidistant
shutters gave better subjective quality in 70% and the same quality in 16%
of the cases. In our test sequences, the still-image registration algorithm
introduced in [17] produced an average error of 2.0 pixels. Our approach
is simpler and more efficient to compute, but achieves a lower error of 1.4
pixels by making use of prior knowledge in a video. Its average processing
time was decreased by a factor of 5.9 by running parts of the algorithm on a
GPU. 49 out of 50 flickering frames were detected and removed by our video
tone mapping techniques. With these improvements, our system makes HDR
video possible for real-time applications.
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