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Abstract

The paper proposes a numerically stable recursive algorithm for the exact computation of the linear-chain conditionalrandom field
gradient. It operates as a forward algorithm over the log-domain expectation semiring and has the purpose of enhancing memory
efficiency when applied to long observation sequences. Unlike the traditional algorithm based on the forward-backward recursions,
the memory complexity of our algorithm does not depend on thesequence length. The experiments on real data show that it can be
useful for the problems which deal with long sequences.
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1. Introduction

Conditional random fields (CRFs) [17] are probabilistic dis-
criminative classifiers which can be applied for labeling and
segmenting sequential data. When compared with more tra-
ditional sequence labeling tools like hidden Markov models
(HMMs), theCRFs offer the advantage by relaxing the strong
independence assumptions required byHMMs. Additionally,
CRFs avoid the label bias problem [17] exhibited by the max-
imum entropy Markov models and other conditional Markov
models based on directed graphical models. However, these im-
provements are accompanied by a significant cost in time and
space needed for the parameter estimation ofCRF, especially
for real-time problems like labeling very long sequences which
appear in computer security [18], [28], bioinformatics [16], [19]
and robot navigation systems [15].

The CRF parameter estimation is typically performed by
some of the gradient methods, such as iterative scaling, conju-
gate gradient, or limited memory quasi-Newton methods [12],
[17], [21], [23], [25]. All these methods require the computa-
tion of the likelihood gradient, which becomes computationally
demanding as the sequence length and the number of classes
increase. The standard method for gradient computation [17] is
based on the internal computation ofCRF marginal probabili-
ties by use of the forward-backward (FB) algorithm.

TheFB algorithm first appeared in two independent publica-
tions [4], [5], but it is better known from the subsequent papers
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[2], [3]. It makes use of dynamic programming, running with
the asymptotical time complexityO(N2T) and with the mem-
ory complexityO(NT), whereT denotes the sequence length
andN denotes the number of states classified. In spite of the
time efficiency, it becomes spatially demanding when the se-
quence length is exceptionally large [14]. Furthermore, when
it is used for the linear-chain gradient computation as in [12],
[17], [21], [23], [25] it requires the storage of allCRF transi-
tion matrices which increase the total memory complexity for
O(N2T).

The memory complexity can be reduced with modifications
of theFB algorithm such as the checkpointing algorithm [11],
[24] or with the re-computation of the transition matrices every
time they are used (see section 3.3.). However, these techniques
increase the computational complexity, while the memory com-
plexity still depends on the sequence length. Another possi-
bility is the use of forward-only algorithm [6], [20], [22],for
which the matrices can be computed in runtime. This algorithm
runs with constant memory complexity but it is computation-
ally inefficient since it runs with the computational complexity
O(N4T).

In this paper we propose an algorithm for the exact com-
putation of the linear-chain conditional random field gradient.
The algorithm is derived as a forward algorithm over the intro-
duced log-domain expectation semiring, which means that its
recursive equations can be obtained if real sums and products
from an ordinary FB are replaced with products and sums from
the log-expectation semiring. Accordingly, it can be seen as
a numerically stable version of our previously developed En-
tropy Message Passing algorithm (EMP) [13], and it will also
be called the EMP. Unlike the standard procedure, the EMP
does not compute each marginal separately, but computes the
gradient in a single forward pass by use of double recursion.
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Since only the forward pass is needed, the EMP can be imple-
mented with the memory complexity being independent of the
sequence length, having the advantage over the FB when long
sequences are used.

The paper is organized as follows: In section II we explain
theFB algorithm which operates over a commutative semiring.
In section III we introduce the problem of efficient computation
of a linear-chainCRFgradient and review the standard method
based on theFB algorithm. The algorithms based on theEMP
are presented in section IV, where the complexity analysis is
given. Finally, the experimental results are presented in section
V where two methods are compared and the advantage of the
EMP is discussed.

2. The forward-backward algorithm over a commutative
semiring

Definition 1. A commutative semiringis a tuple(K,⊕,⊗,0,1)
whereK is the set with operations⊕ and⊗ such that both⊕ and
⊗ are commutative and associative and have identity elements
in K (0 and1 respectively), and⊗ is distributive over⊕.

Let (K,⊕,⊗,0,1) be a commutative semiring and lety =
{y0, . . . ,yT} be a set of variables taking values from the setY of
cardinalityN. We define thelocal kernelfunctionsut ∶ Y2 → K
for t = 1, . . . ,T, and theglobal kernelfunctionu ∶ YT+1 → K,
assuming that the following factorization holds

u(y) =
T

⊗
i=1

ui(yi−1,yi) (1)

for all y = (y0, . . . ,yT) ∈ YT+1.
TheFB algorithm [26], [27] solves two problems

1. Themarginalization problem:Computes the sum

vt(yt,yy+1) = ⊕
y{k−1,k}c

u(y) = ⊕
y{k−1,k}c

T

⊗
i=1

ui(yi−1,yi), (2)

2. Thenormalization problem:Computes the sum

Z =⊕
y

u(y) =⊕
y

T

⊗
i=1

ui(yi−1,yi). (3)

TheFB recursively computes theforward vector

αi(yi) = ⊕
y0∶i−1

i

⊗
t=1

ut(yt−1,yt), (4)

which is initialized to

α0(y0) = 1, (5)

and recursively computed using

αi(yi) =⊕
yi−1

ui−1(yi−1,yi) ⊗ αi−1(yi−1) (6)

and thebackward vector

βi(yi) = ⊕
si+1∶T

T

⊗
t=i+1

ut(yt−1,yt), (7)

which is recursively computed using

βi(yi) =⊕
yi+1

ui+1(yi ,yi+1) ⊗ βi+1(yi+1) (8)

and initialized to
βT(yT) = 1. (9)

Once the forwardαk−1 and backwardβk vectors are computed,
we can solve the marginalization problem by use of the formula

⊕
y{k−1,k}c

T

⊗
i=1

ui(yi−1,yi) = αk−1(yk−1)⊗uk(yk−1,yk)⊗βk(yk) (10)

The normalization problem can be solved with the forward
pass only according to

⊕
y

T

⊗
i=1

ui(yi−1,yi) =⊕
yT

αT(yT). (11)

3. Linear-Chain CRF Training using the Forward Back-
ward Algorithm

Linear-chain CRFs are discriminative probabilistic models
over observation sequencesx = (x1, . . . , xT) and label se-
quencesy = (y1, . . . ,yT), defined with conditional probability

p(y∣x; θ) =
1

Z(x; θ)

T

∏
i=1

e⟨θ, f(yi−1,yi ,x,i)⟩. (12)

The symbol⟨⋅, ⋅⟩ denotes the scalar product between anM-
dimensional parameter vector

θ = [θ1, . . . , θM] (13)

and thefeature vectoron positioni

f(yi−1,yi , x, i) = [ f1(yi−1,yi , x, i), . . . , fM(yi−1,yi , x, i)]. (14)

The normalization factor

Z(x; θ) = ∑
y

T

∏
i=1

e⟨θ, f(yi−1,yi ,x,i)⟩ (15)

is called thepartition function.
The goal of theCRF training is to build up the model (12)

from the data set{(x(d), y(d)}D
d=1. The standard method is to

maximize the log likelihood of (12):

L(θ) =
D

∑
d=1

ln p(y(d)∣x(d); θ) (16)

over the parameter vectorθ for the chosen set of feature vectors
f(yi−1,yi , x, i). The maximum can be found with several of the
gradient methods [12], [17], [21], [23], [25], which requires
the computation of the gradient∇θL(θ). The gradient can be
expressed, according to (12) and (16), as:

∇θL(θ) =
D

∑
d=1

T(d)

∑
i=1

f(y(d)i−1,y
(d)
i , x(d), i)−

D

∑
d=1

∇θZ(x; θ)
Z(x; θ)

, (17)
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Figure 1: Forward-backward computation scheme.

whereT(d) is the length of thed-th observation sequence.
The main problem in the evaluation of the log likelihood gra-

dient (17) is the computation of the quotient between the parti-
tion function gradient and the partition function. The partition
function gradient can be represented as

∇θZ(x; θ) = [∇θ1Z(x; θ), . . . ,∇θM Z(x; θ)], (18)

where∇θmZ(x; θ) denotes them-th partial derivative, and can
be obtained from (15) after the use of the Leibniz’s product rule:

∇θZ(x; θ) = ∑
y0∶T

T

∏
i=1

e⟨θ, f(yi−1,yi ,x,i)⟩
T

∑
k=1

f(yk−1,yk, x,k). (19)

The standard method for the computation of the partition func-
tion and its gradient [17] is based on the forward-backward al-
gorithm which is reviewed in the following section.

3.1. Sum-product semiring forward-backward algorithm

Definition 2. The sum-product semiring is the tuple(R,+⋅,1,0), where R is the set of real numbers and the
operations defined in a standard way.

The partition function (15) can be obtained as the solution of
the normalization problem (11) for factorization:

T

∏
i=1

e⟨θ, f(yi−1,yi ,x,i)⟩. (20)

as

Z(x; θ) = ∑
y0∶T

T

∏
i=1

e⟨θ, f(yi−1,yi ,x,i)⟩ (21)

The gradient can be computed using the solution for the
marginalization problem (10) in the sum-product semiring.
First, we change the sum ordering in (19) and split the sum
overy to y{k−1,k} andy{k−1,k}c sums, transforming (19) to:

∇θZ(x; θ) = T

∑
k=1
∑

y{k−1,k}

( ∑
y{k−1,k}c

T

∏
i=1

e⟨θ, f(yi−1,yi ,x,i)⟩)
⋅ f(yk−1,yk, x,k). (22)

The marginal values,

∑
y{k−1,k}c

T

∏
i=1

e⟨θ, f(yi−1,yi ,x,i)⟩, (23)

as the marginalization problem over the sum-product semiring,
can be found by recursive computation of forward vectors,

αi(yi) = ∑
y0∶i−1

i

∏
t=1

e⟨θ, f(yt−1,yt ,x,t)⟩ (24)

and backward vectors

βi(yi) = ∑
yi+1∶T

T

∏
t=i+1

e⟨θ, f(yt−1,yt ,x,t)⟩. (25)

The FB algorithm over the sum-product semiring suffers
from numerical instability since the exponential terms canfall
out of the machine precision scope and it is usually replaced
with a more stableFB algorithm over the log-domain sum-
product semiring.

3.2. Log-domain sum-product semiring forward-backward al-
gorithm

Definition 3. The log-domain sum-product semiring is the tu-
ple(R∗,⊕,⊗,−∞,0) whereR∗ is the extended set of real num-
bers and the operations are defined by

a⊕b = ln(ea
+ eb) (26)

a⊗ b = a+ b, (27)

for all a,b ∈ R.

The following lemma follows straightforwardly from the def-
inition of the log-domain sum-product semiring.

Lemma 1. Let ai ∈ R for all 1 ≤ i ≤ T. Then, the following
equalities hold for log-domain sum-product semiring:

ln ( T

∑
i=1

ai) = T

⊕
i=1

ln ai , ln ( T

∏
i=1

ai) = T

⊗
i=1

ln ai . (28)

In log-domain the local kernels have the form:

ui(yi−1,yi) = ⟨θ, f(yi−1,yi , x, i)⟩, (29)

for i = 1, . . . ,T. According to Lemma 1 and expression (4), the
forward vector in the log-domain sum-product semiring is the
logarithm of the forward vector in the sum-product semiring:

αi(yi) = ⊕
y0∶i−1

i

⊗
t=1

ut(yt−1,yt) =
= ln ( ∑

y0∶i−1

i

∏
t=1

e⟨θ, f(yt−1,yt ,x,t)⟩). (30)

The forward vectorα0 is initialized to 0 which is the identity
for ⊗,

α0(y0) = 0, (31)

and it is recursively computed using

αi(yi) =⊕
yi−1

(ui(yi−1,yi) + αi−1(yi−1)). (32)
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Similarly to Lemma 1 and to expression (7), the backward vec-
tor in the log-domain sum-product semiring is the logarithmof
the backward vector in sum-product semiring:

βi(yi) = ⊕
yi+1∶T

T

⊗
t=i+1

e⟨θ, f(yt−1,yt ,x,t)⟩ =

= ln ∑
yi+1∶T

T

∏
t=i+1

e⟨θ, f(yt−1,yt ,x,t)⟩, (33)

being initialized to
βT(yT) = 0, (34)

and recursively computed using

βi(yi) =⊕
yi+1

(ui+1(yi ,yi+1) + βi+1(yi+1)). (35)

If the log-domain addition is performed using the definition,
a⊕ b = ln(ea

+ eb), the numerical precision is being lost when
computingea andeb. But, as noted in ([23]),⊕ can be computed
as

a⊕ b = a+ ln(1+ e(b−a)) = b+ ln (1+ e(a−b)), (36)

which can be much more numerically stable, particularly if we
pick the version of the identity with the smaller exponent.

The logarithm of the normalization constant (21) is according
to Lemma 1

lnZ(x; θ) = ln∑
y

T

∏
i=1

e⟨θ, f(yi−1,yi ,x,i)⟩ =⊕
y

T

⊗
i=1

ui(yi−1,yi),
(37)

and it can be computed using the solution of normalization
problem in the log-domain sum-product semiring with forward
algorithm according to (11)

ln Z(x; θ) =⊕
yT

αT(yT). (38)

According to Lemma 1, the marginal values (23) in the log-
domain sum-product semiring have the form

vk(yk−1,yk) = ln ∑
y{k−1,k}c

T

∏
i=1

e⟨θ, f(yi−1,yi ,x,i)⟩ =

= ⊕
y{k−1,k}c

T

⊗
i=1

ui(yi−1,yi). (39)

The marginal values can efficiently be computed according to
the solution of the marginalization problems (10):

vk(yk−1,yk) = αk−1(yk−1)⊗ uk(yk−1,yk)⊗ βk(yk), (40)

whereαk−1(yk−1) andβk(yk) are computed with theFB algo-
rithm over the log-domain sum-product semiring, using equa-
tions (31)-(35). Then, by taking the logarithm of them-th com-
ponent in gradient expression (22), we get

ln∇θmZ(x; θ) =
=

T

⊕
k=1
⊕

y{k−1,k}

vk(yk−1,yk)⊗ ln fm(yk−1,yk, x,k), (41)

for m = 1, . . . ,M. Finally, the quotient between the partition
function and its gradient can be computed according to

∇θZ(x; θ)
Z(x; θ) = eln∇θZ(x;θ)−ln Z(x;θ)

. (42)

Algorithm 1: Log-domainFB algorithm

input : x, θ, f(yk−1,yk, x,k); yk−1,yk ∈ Y , k = 1, . . . ,T;
output: ∇θZ(x; θ)/Z(x; θ);
/* Matrices initialization */

1 for k← 1 to T do
2 foreachyk−1 in Y do
3 foreachyk in Y do
4 uk(yk−1,yk) = ∑

m∈Ak(yk−1,yk)
θm ⋅ fm(yk−1,yk, x,k)

/* Forward phase */

5 foreachy0 in Y do
6 α0(y0) ← 0;

7 for k← 1 to T do
8 foreachyk in Y do
9 αk(yk)←⊕yk−1

(uk(yk−1,yk) + αk−1(yk−1))
/* Backward phase */

10 foreachyT in Y do
11 βT(yT) ← 0;

12 for k← T − 1 to 0 do
13 foreachyk in Y do
14 βk(yk)←⊕yk+1

(uk+1(yk,yk+1) + βk+1(yk+1));
/* Termination */

15 ln Z(x; θ) =⊕yT
αT(yT)

16 for k← 1 to T do
17 foreachyk−1 in Y do
18 foreachyk in Y do
19 v = αk−1(yk−1) + uk(yk−1,yk) + βk(yk)
20 foreachm inAk(yk−1,yk) do
21 ln f ← ln fm(yk−1,yk, x,k);
22 ln∇mZ← ln∇mZ⊕ (v+ ln f )
23 for m← 1 to M do
24 ∇θmZ(x; θ)/Z(x; θ)← eln∇mZ−ln Z

3.3. Time and Memory Complexity

The time and memory complexity of the algorithm for the
computation of the partition function and its derivatives by the
FB algorithm is given in Table 1. The time complexity is de-
fined as the number of operations required for the execution of
the algorithm for a given pseudo code. In our analysis we con-
sider real operations (addition and multiplication), log-domain
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⊕ + × ln Mem

u − N2T A N2T A − N2T
α N2T N2T − − NT
β N2T N2T − − NT
v − 2N2T − − 1

ln f − − − N2T A 1
ln Z(x; θ) N − − − 1

ln∇θmZ(x; θ) N2T A N2T A − − M
Asymptotical N2T A 2N2T A N2T A N2T A N2T +M

Table 1: Time and memory complexity of the log-domainFB algorithm.

operations (recall that log-domain multiplication is defined as
real addition) and the number of computed logarithms. The
memory complexity is defined as the number of 32-bit regis-
ters needed to store variables during algorithm execution.The
complexity expressions are simplified by taking the quantities
in expressions to tend to infinity, and keeping only the leading
terms. In discussion, we will use bigO notation [7].

In applications, the feature functionsf(yk−1,yk, x,k)map the
input space for a fixed sequencex into sparse vectors, which has
nonzero values only at positions

Ak(yk−1,yk) = {m ; fm(yk−1,yk, x,k) is nonzero}, (43)

which allows the complexity reduction by performing the com-
putation only for nonzero elements. In our analysis we will use
the average number of nonzero elements defined as

A = ∑T
k=1Ak(yk−1,yk)

T
. (44)

As Table 1 shows, the computationally most demanding
part of the algorithm is the termination phase, which requiresO(N2T A) log-additions (recall that one log-addition requires
the computation of the exponent and logarithm). The mem-
ory complexity of the algorithm isO(N2T + M), governed by
the space needed for storing the matricesui. The dependence
of the memory complexity on the sequence length can signifi-
cantly decrease computational performances of the algorithm if
a long sequence is used, since it can cause overflows from the
internal system memory to the disk storage, as shown in section
5.

The memory complexity can be reduced by the re-
computation of the matricesui in the backward pass (line 14)
and in the termination step (line 19), but this leads to the
increased total number of additions and multiplications for
2N2T A, while the memory complexity still depends on the se-
quence length since all forward and backward vectors need to
be stored. The further improvement can be achieved if one
notes that the backward vectors are computed during the ter-
mination step since they are used only once in line 19. In this
case, each backward vector can be deleted after use in line 19
and all backward vectors can be stored at the memory location
not depending on the sequence length. Then, the matricesui can

be recomputed only once in the termination step, where they are
used for the computation of the backward vector but, again, all
forward vectors need to be stored and the memory complexity
isO(NT + M), still depending on the sequence length.

The problem of memory complexity of the forward-
backward algorithm for theHMM has already been studied by
Khreich et al. in [14]. In this paper they have proposed the algo-
rithm for the computation of marginal probabilities calledfor-
ward filtering backward smoothing (EFFBS), which runs with
the memory complexity independent of the sequence length,O(N), with the same asymptotical computational complexity
as the standard forward-backward algorithm. However, the al-
gorithm is based on theHMM assumption that the transition
matrix is constant, and as such cannot be applied toCRFs.
Khreich et al. also gave a good review of the previously devel-
oped techniques for memory reduction such as checkpointing
and forward-only algorithm, which try to reduce the memory
complexity of theFB algorithm at the cost of computational
overhead, and these techniques can be modified to deal with
CRFs.

The checkpointing algorithm [11], [24] divides the input se-
quence into

√
T and during the forward pass only stores the

first forward vector in each sub-sequence (checkpoint vectors).
In the backward pass, the forward values for each sub-sequence
are sequentially recomputed, beginning with checkpoint vec-
tors. In this way, the computational complexity required for the
computation of the forward and backward vectors is increased
to O(2T − N2

√
T), while the matricesui should also be re-

computed, which leads to greater total computational cost.On
the other hand, the memory complexity, although reduced toO(N√T), still depends on the sequence length.

In the forward-only algorithm [6], [14], [20], [22], the ex-
pression of the form is obtained from three-dimensional matri-
ces which are recursively computed. For theHMM, the com-
putation can be realized in the constant memory space indepen-
dent of the sequence lengthO(N2

+N) and with time complex-
ity O(N4T). However, if it is applied to theCRF, its time com-
plexity increases toO(N4MT), which is significantly slower
than theFB algorithm.

In the following section we derive a forward-only algorithm
which operates with the time complexity of orderO(N2(M +
A)T), while keeping the memory complexity independent of

5



the sequence length.

4. Log-domain expectation semiring forward algorithm

In this section we consider a memory-efficient algorithm for
CRF gradient computation which operates as aFB algorithm
over an expectation semiring and develop its numerically sta-
ble log-domain version. In our previous work [13], we have
developed the Entropy Message PassingEMP, which operates
as a forward algorithm over the entropy semiring, which is the
special case the expectation semiring. Although the algorithms
presented in this paper are more general, in the following text
they will be called theEMP, since they operate in the same
manner as the algorithm from [13].

4.1. Expectation semiring forward algorithm

Definition 4. The expectation semiring of an order M is a tuple⟨ R × RM , ⦶, ⊙, (0, 0), (1, 0) ⟩, where the operations⦶ and
⊙ are defined with:

(z1, h1)⦶ (z2, h2) = (z1 + z2, h1 + h2), (45)

(z1, h1)⊙ (z2, h2) = (z1z2, z1h2 + z2h1), (46)

for all (z1, h1), (z2, h2) fromR×RM , and0 denotes zero vector.
The first component of an ordered pair is called a z-part, while
the second one is an h-part.

For M = 1, the expectation semiring reduces to the entropy
semiring considered in [13]. According to the addition rule, the
zandh components of sum of two pairs are the sums ofzandh
components respectively, which gives us the following lemma.

Lemma 2. Let (zi , hi) ∈ R × RM for all 1 ≤ i ≤ T. Then, the
following equality holds in the expectation semiring:

T⦶
i=1
(zi ,zi hi) = ( T∑

i=1
zi ,

T∑
i=1

hi ). (47)

Note that if the pairs have the form(z,zh), the multiplication
acts as

(z1, h1)⊙ (z2, h2) = (z1z2, z1z2(h1 + h2). (48)

This can be generalized with the following lemma.

Lemma 3. Let (zi ,zi hi) ∈ R × RM for all 1 ≤ i ≤ T. Then, the
following equality holds in the expectation semiring:

T⊙
i=1
(zi ,zi hi) = ( T∏

i=1
zi ,

T∏
i=1

zi ⋅

T∑
j=1

h j ) (49)

According to lemma 3, if the local kernels have the form:

ui(yi−1,yi) = (e⟨θ, f(yi−1,yi ,x,i)⟩,

e⟨θ, f(yi−1,yi ,x,i)⟩
⋅ f(yi−1,yi , x, i)), (50)

for i = 1,⋯,T, the global kernel is, according to the Lemma 3

T

⊗
i=1

ui(yi−1,yi) = ( T

∏
i=1

e⟨θ, f(yi−1,yi ,x,i)⟩, (51)

T

∏
i=1

e⟨θ, f(yi−1,yi ,x,i)⟩
⋅

T

∑
j=1

f(y j−1,y j , x, j)).
By applying lemma 2 to the expression (51), we can obtain the
partition function (15),

Z(x; θ) =∑
y

T

∏
i=1

e⟨θ, f(yi−1,yi ,x,i)⟩, (52)

and its gradient (19):

∇θmZ(x; θ) = ∑
y

T

∏
i=1

e⟨θ, f(yi−1,yi ,x,i)⟩
⋅

T

∑
j=1

f(y j−1,y j , x, j), (53)

aszandh parts of the sum

⊕
y

T

⊗
i=1

ui(yi−1,yi) = ( Z(x; θ), ∇θZ(x; θ)). (54)

The expression (54) can be computed as the normalization
problem (11) by use of the forward algorithm over the expecta-
tion semiring. Note thatz-parts of addition and multiplication
acts as addition and multiplication in the sum-product semiring.
Accordingly, thez-parts of forward vectors will be the same
as the forward vectors in the sum-product semiring, and their
computation is numerically unstable. In the following subsec-
tion we a develop numerically stable forward algorithm which
operates over a log-domain expectation semiring.

4.2. Log-domain expectation semiring forward algorithm

The log-domain expectation semiring is a combination of the
log-domain sum-product semiring and the expectation semir-
ing. It can be obtained if real addition and multiplication in the
definition of expectation semiring operations are replacedwith
their log-domain counterparts.

Before we define the log-domain expectation semiring, we
introduce some usefull notation. Firstly, recall that log-domain
addition and multiplication are defined with

a⊕ b = ln(ea
+ eb) (55)

a⊗ b = a+ b. (56)

The log-product between the scalarz ∈ R and the vectorh =(h[1], . . . ,h[M]) ∈ RM is defined as the vectorz⊗ h:

z⊗ h = z⊗ (h[1], . . . ,h[M]) = (z⊗ h[1], . . . ,z⊗ h[M]), (57)

the logarithm of the vector[h1, . . . ,hM] ∈ RM is defined as

ln[h1, . . . ,hM] = [ln h1, . . . , ln hM]. (58)

The vector−∞ is defined as a vector all of whose coordinates
are−∞.
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Figure 2:EMP computation scheme.

Definition 5. The log-domain expectation semiring of an order
M is a tuple ⟨ R × RM , ⦶, ⊙, (−∞, −∞), (0, −∞) ⟩, where
the operations⦶ and⊙ are defined with:

(z1, h1)⦶ (z2, h2) = ( z1 ⊕ z2, h1 ⊕ h2 ), (59)

(z1, h1)⊙ (z2, h2) = ( z1 ⊗ z2, (z1 ⊗ h2) ⊕ (z2 ⊗ h1)), (60)

for all (z1, h1), (z2, h2) fromR×RM . Similar to the expectation
semiring, the first component of an ordered pair is called a z-
part, while the second one is an h-part.

The following lemma is the log-domain version of Lemma 2.

Lemma 4. Let (zi ,zi hi) ∈ R × RM for all 1 ≤ i ≤ T. Then, the
following equality holds in the log-domain expectation semir-
ing:

T

⦶
i=1
(zi , hi) = ( T

⊕
i=1

zi ,
T

⊕
i=1

hi ), (61)

where
T

⊕
i=1

ai = ln ( T

∑
i=1

eai). (62)

Similar to the expectation semiring, if the pairs have the form(z, z⊗ h) the multiplication acts as

(z1,z1 ⊗ h1)⊗ (z2,z2 ⊗ h2) = ( z1 ⊗ z2, z1 ⊗ z2 ⊗ (h1 ⊕ h2)).
(63)

The following lemma is the log-domain version of Lemma 3.

Lemma 5. Let(zi , zi⊗hi) ∈ R×RM for all 1 ≤ i ≤ T. Then, the
following equality holds in the log-domain expectation semir-
ing:

T

⊗
i=1
(zi , zi ⊗ hi) = ( T

⊗
i=1

zi ,
T

⊗
i=1

zi ⊗

T

⊕
j=1

h j ), (64)

where
T

⊗
i=1

ai =
T

∑
i=1

ai . (65)

Let for i = 1, . . . ,T

ψi(yi ,yi−1) = ⟨θ, f(yi−1,yi , x, i)⟩. (66)

Then, the logarithm partition function (15) can be written as

ln Z(x; θ) =⊕
y

T

⊗
i=1
ψi(yi ,yi−1). (67)

The logarithm of them-th partial derivative can be written as

ln∇θmZ(x; θ) = ln (∑
y0∶T

T

∏
i=1

e⟨θ, f(yi−1,yi ,x,i)⟩
T

∑
k=1

fm(yk−1,yk, x,k)),
(68)

or, using the operations from the log-domain sum-product
semiring,

ln∇θZ(x; θ) =⊕
y0∶T

T

⊗
i=1
ψi(yi ,yi−1)⊗ T

⊕
k=1

ln f(yk−1,yk, x,k). (69)

If the local kernels have the form:

ui(yi−1,yi) = (ψi(yi ,yi−1), ψi(yi ,yi−1)⊗ ln f(yi−1,yi , x, i)),
(70)

for i = 1,⋯,T, the global kernel is, according to Lemma 5

T

⊙
i=1

ui(yi−1,yi) = ( T

⊗
i=1
ψi(yi ,yi−1),

T

⊗
i=1
ψi(yi ,yi−1)⊗ T

⊕
j=1

ln f(y j−1,y j, x, j)). (71)

Furthermore, Lemma (4) for addition in the expectation semir-
ing implies that the sum of ordered pairs is the ordered pair of
the sums so the partition function and its gradient can be found
as thezandh part of the sum:

⦶
y

T

⊙
i=1

ui(yi−1,yi) = ( ln Z(x; θ), ln∇θZ(x; θ)). (72)

Expression (72) can be computed as the normalization prob-
lem (11) by use of the forward algorithm over the log-domain
expectation semiring (log-domain EMP algorithm). The for-
ward algorithm is initialized to the log-domain expectation
semiring identity for the multiplication:

α0(y0) = (0,−∞), (73)

for all y0 ∈ Y. After that, we compute other forward vectors
using the recurrent formula

αi(yi) =⦶
yi−1

ui(yi−1,yi)⊙ αi−1(yi−1), (74)

where the local factors are given with (70).
According to the rules for the addition and multiplication in

the expectation semiring, thezandh parts of recursive equation
(74) are:

α
(z)
i (yi) =⊕

yi−1

ψi(yi ,yi−1)⊗ α(z)i−1(yi−1) (75)

α
(h)
i (yi) =⊕

yi−1

ψi(yi ,yi−1)⊗ α(h)i−1(yi−1)⊕
⊕
yi−1

ψi(yi ,yi−1)⊗ α(z)i−1(yi−1)⊗ ln f(yi−1,yi , x, i)
(76)
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for eachyi ∈ Y, i = 1, . . .T. Finally, the normalization problem
can be solved by summation

⦶
y0∶T

T

⊙
i=1

ui(yi−1,yi) =⦶
yT

αT(yT), (77)

whosezpart is a partition function and theh part is its gradient:

ln Z(x; θ) =⊕
yT

α
(z)
T (yT), ln∇θZ(x; θ) =⊕

yT

α
(h)
T (yT). (78)

Hence, the algorithm consists of two parts: i)forward pass,
at which the forward vectors are initialized according to (73)
and recursively computed by (75)-(76), and during each step
the corresponding matrixui is computed and ii)termination,
at which the final summation of the forward algorithm is per-
formed according to (78) and the partition function and its
derivatives are obtained.

Figure 2 describes theEMPcomputation scheme. Recall that
the forward-backward based computation requires that all for-
ward and backward vectors be computed and stored until the
partition function and the derivatives are obtained in the termi-
nation step. When theEMP is used, the computation terminates
when the last forward vector is computed by use of the formu-
las (75) and (76). This can be realized in the fixed memory
space with the size independent of the sequence length since
the vectorsα(z)i−1, α(h)i−1 and the matricesψi should be computed
only once ini−1-th iteration and, after having been used for the
computation ofα(z)i andα(h)i , they can be deleted. The pseudo
code is given in the table Algorithm 2. Here, the computation
is performed using only two pairs of vectors(α̂(z), α̂(h)) and
(α(z),α(h)). Note that the coordinates of theh-parts,α̂(h)(yi)
andα(h)(yi), are vectors which carry the information about the
gradient and them-th components of these vectors are denoted
with α̂(h)

[m](yi) andα(h)
[m](yi).

In comparison to theFB algorithm which needs the mem-
ory size ofO(N2T + M), the EMP has a memory complex-
ity O(N2

+ NM), no longer depending on the sequence length
T as in theFB algorithm. The additional cost is paid in time
complexity which is increased for the termN2T M. This is the
consequence of the non-sparse computation of theEMP hcom-
ponent in line 13. Recall that theFB can be completely sparse
implemented and, sinceA << M in most of the application, the
FB time complexity is lower. However, the sparsity can be re-
duced using the conditionally trained hidden Markov model as-
sumption considered in [29], which we used in our implemen-
tation. With the reduced sparsity, the time complexity of the
EMP is decreased and it becomes closer to theFB algorithm.
When long sequences are used, theEMP becomes dominating
since theFB needs to use the external memory. This assertion
is justified in the following section, where we compare the two
algorithms on a real data example.

5. Experiments

The intrusion detector learning task is to build a predictive
model capable of distinguishing between ”bad” connections,

Algorithm 2: Log-domainEMP algorithm

input : x, θ, f(y j−1,y j , x, j); j = 1, . . . ,T, y j−1,y j ∈ Y;
output: ∇θZ(x; θ)/Z(x; θ) ;

/* Forward algorithm */

1 foreachy0 in Y do
2 α(z)(y0)← 1
3 for m← 1 to M do
4 α

(h)
[m](y0)← −∞;

5 for i ← 1 to T do
6 foreachyi in Y do
7 foreachyi−1 in Y do
8 ψ(yi−1,yi) = ⟨θ, f(yi−1,yi , x, i)⟩;
9 foreachyi in Y do

10 α̂(z)(yi) =⊕yi−1
(ψ(yi−1,yi) + α(z)(yi−1));

11 for m← 1 to M do
12 foreachyi in Y do
13 α̂

(h)
[m](yi)←⊕yi−1

(ψ(yi−1,yi) + α(h)[m](yi−1));
14 foreachyi−1 in Y do
15 foreachyi in Y do
16 γ(yi−1)← ψ(yi−1,yi) + α(z)(yi−1);
17 foreachm inA(yi−1,yi) do
18 ln f ← ln fm(yi−1,yi , x, i)

α̂
(h)
[m](yi)← α̂

(h)
[m](yi)⊕ (γ(yi−1) + ln f );

19 foreachyi in Y do
20 α(z)(yi)← α̂(z)(yi);
21 for m← 1 to M do
22 α

(h)
[m](yi)← α̂

(h)
[m](yi);

/* Termination */

23 ln Z←⊕yT
α(z)(yT)

24 ln∇mZ←⊕yT
α
(h)
[m](yT)

25 for m← 1 to M do
26 ∇θmZ(x; θ)/Z(x; θ)← eln∇mZ−ln Z

called intrusions or attacks, and ”good” normal connections.
Conditional random fields have proven to be very effective in
detecting intrusion [30].

As we have already mentioned, in the standardCRF train-
ing based on theFB algorithm the storage requirements are
high when long train sequences are used. This may cause over-
flows from the internal system memory to disk storage which
decreases computational performances, since accessing paged
memory data on a typical disk drive is significantly slower than
accessing data in RAM [14],[28]. On the other hand, theEMP
runs with a small fixed memory and it becomes preferable for
long sequences.

In Figure 3 we show the time and memory usage of both al-
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⊕ + × ln Mem

ψ − N2T A N2T A − N2

α̂(z) N2T N2T − − N
γ − N2T − − 1

α̂
(h)
m N2T(M + A) N2T(M + A) − N2T A NM
α(z) − − − − N
ln f − − − N2T A 1

α
(h)
r − − − − NM

ln Z(x; θ) N − − − 1
ln∇θmZ(x; θ) NM − − − M
Asymptotical N2T(M + A) N2T(M + 2A) N2T A N2T A N2

+NM

Table 2: Time and memory complexity of the log-domainEMP algorithm.
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Figure 3: CPU and RAM usage ofFB andEMP algorithms

gorithms as functions of the sequence length. The experiments
are performed using a computer with 3GB RAM and IntelCore
2 Duo CPU 2.33GHz. In our experiments, we used a KDE
corpus [31] for sequences up to 5 million, while the sequences
longer than 5 million are created by the concatenation of the
KDE corpus on itself. We consider four different implementa-
tion cases depending on the sequence length:

Case I: This corresponds to short sequences, with the length
shorter than 4 million. This case corresponds to the basic ver-
sion of theFB algorithm (Algorithm 1). In this case, the se-

quence is stored in RAM and the RAM usage of both algorithms
linearly grows with the sequence length (Figure 3a). How-
ever, theFB algorithm usesO(N2T + M) memory for storing
intermediate results and its RAM usage grows faster in com-
parison to theEMP, which needs fixed-size additional spaceO(N2

+ NM). RAM usage growth reflects on the computa-
tional performances ofFB algorithm, which runs faster then
the EMP for the sequences with the length up to 4.5 million.
As Figure 3a shows, at the sequence length of 3 millionsFB
RAM usage becomes considerable and theFB growth becomes
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nonlinear due to the memory paging. Finally, at the sequence
length of about 4.5 million the EMP becomes faster thanFB.
One possibility forFB memory reduction is recomputation of
transition matrices which is done in the Case II.

Case II: This corresponds to middle length sequences, be-
tween 4 and 5 million. At this case the sequence and all inter-
mediate results are stored in RAM, but the transition matrices
are recomputed every time they are used. Similar to the Case
I, as the sequence becomes longer, the memory required for
storing the forward vectors increases and, for sequences longer
then 5 million, FB algorithm becomes slower than theEMP
(see Figure 3b).

Case III: This corresponds to long sequences between 5 and
25 million. As in Case II, transition matrices are recomputed
and all another intermediate results are stored in RAM, but the
sequence cannot fit in RAM and needs to be stored on the sec-
ondary memory. In theFB the sequences have to be read twice
from secondary memory, once in the forward and once in the
backward phase. On the other hand, theEMP uses a single
forward pass and reads the sequence only once, which makes it
faster than theFB (Figure 3c).

Case IV: This corresponds to very long sequences loger than
25 million. In this case, similar to the CaseIII , the sequence
is stored on the secondary memory. To avoid theFB perfor-
mance decreasing due to a large number of intermediate vari-
ables stored inRAM, the portion of variables is stored on the
secondary memory, which keeps the RAM usage constant, no
longer dependent on the sequence length (Figure 3c). This in-
creases the number of accessions to the secondary memory,
which further decreasesFB performances in comparison to
CaseIII . On the other hand, theEMP does not need to store
additional data on the secondary memory and has the same time
growth as in CaseIII , while using a small constant memory.

The previous results can vary with different operating sys-
tems and used hardware. Nevertheless, the access to secondary
memory is very expensive operation and the algorithm with a
low memory complexity has the advantage, when all data can-
not fit in RAM, since the secondary memory accesses can be
avoided.

6. Conclusion

In this paper, we have developed a numerically stable algo-
rithm for the computation of the linear-chain CRF gradient.As
opposed to the standard way of finding a CRF gradient by use
of the forward-backward algorithm, the calculation by the pro-
posed algorithm requires only the forward pass and can be real-
ized with the memory independent of the observation sequence
length. This makes the algorithm useful in the long sequence
labeling tasks found in computer security [18], [28], bioinfor-
matics [16],[19], and robot navigation systems [15].

The proposed algorithm operates as a forward algorithm over
the log-domain expectation semiring, which can be seen as a
modification of the expectation semiring used in the automata
theory and probabilistic context free grammars [32], [33].As
mentioned in the paper, the use of the expectation semiring

leads to numerically unstable algorithms and its log-domain
counterpart can also be applied to numerically stable solutions
of problems considered in [32], [33].
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