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Abstract

Manifold matching works to identify embeddings of multiple disparate data
spaces into the same low-dimensional space, where joint inference can be pur-
sued. It is an enabling methodology for fusion and inference from multiple
and massive disparate data sources. In this paper we focus on a method
called Canonical Correlation Analysis (CCA) and its generalization General-
ized Canonical Correlation Analysis (GCCA), which belong to the more general
Reduced Rank Regression (RRR) framework. We present an efficiency investi-
gation of CCA and GCCA under different training conditions for a particular
text document classification task.

Keywords: Manifold matching, canonical correlation analysis, reduced rank
regression, efficiency, classification.

1. Introduction

1.1. Purpose

In the real world, one single object may have different representations in
different domains. For example, the Declaration of Independence has versions
translated into different languages. Let n denote the number of objects Oi, i =
1, . . . , n, and K be the number of domains. Then we have

xi1 ∼ · · · ∼ xik ∼ · · · ∼ xiK , i = 1, . . . , n (1)

where the ith object Oi has K measurements xik, k = 1, . . . ,K; xik ∈ Ξk is the
representation for object Oi in space Ξk.
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Figure 1: Classification problem

The problem explored in this paper is that for m new objects O′i, i =
1, . . . ,m, how to classify their representations yik ∈ Ξk given the representations
yi′k′ ∈ Ξk′ with k 6= k′. For this task, xik, xik′ , i = 1, . . . , n, described above
are needed to learn the relation between Ξk and Ξk′ so that we can map data
from Ξk and Ξk′ to a common space χ. Thus xik, xik′ are the domain relation
learning training data. In our scenario, we are interested in a particular setting
that the data to be classified is in separated classes different from the data
used to learn the low dimensional manifold. This is shown in Figure 1, where
disks represent the domain relation learning training data xik, xik′ and squares
denote the classifier training and testing data yik,yi′k′ . A classification rule g is
trained on yi′k′ and applied on yik. We consider one domain relation learning
method, Canonical Correlation Analysis (CCA) [8, 7], which can be carried
out using reduced-rank regression routines [9, 10]. We investigate classification
performance in the common space χ obtained via CCA, training the classifier
on yi′k′ and testing on yik. The focus of this paper is not on optimizing the
classifier; rather, we investigate performance for a given clasifier (5-Nearest
Neighbor) as a function of the number of domain relation learning training
data observation n used to learn χ. The main contribution of this paper is an
investigation of the notion of supplementing the training data of classifier by
using data from other disparate sources/spaces.

1.2. Summary

The structure of the paper is as follows: Section 2 talks about related work.
Section 3 discusses the methods employed, including the manifold matching
framework as well as embedding and classification details. Experimental setup
and results are presented in section 4. Section 5 is the conclusion.
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2. Background

Different methods of transfer learning, multitask learning and domain adap-
tation are discussed in a recent survey [19]. There are algorithms developed on
unsupervised document clustering where training and testing data are of differ-
ent kinds [12]. The problem explored in this paper can be viewed as a domain
adaptation problem, for which the training and testing data of the classifier are
from different domains. When the classification is on the text documents in
different languages, as described in the later sections of this paper, it is called
cross-language text classification. There is much work on inducing correspon-
dences between different language pairs, including using bilingual dictionaries
[18], latent semantic analysis (LSA) features [5], kernel canonical correlation
analysis (KCCA) [14], etc. Machine translation is also involved in the cross-
language text classification, which translates the documents into a single domain
[24, 6, 16].

3. Method

In this paper, we focus on manifold matching. The whole procedure can be
divided into the following steps:

• For each single space Ξk, calculate the dissimilarity matrix for all domain
relation learning training data observations Oi.

• For each k, use Multidimensional Scaling (MDS) on the dissimilarity ma-
trix to get a Euclidean representation Ek.

• Run CCA (for K = 2) or Generalized CCA (K > 2) to map the collection
E1, . . . , EK to a common space χ.

• Pursue joint inference (i.e. classification) in the common space χ.

This procedure combines MDS and (Generalized) CCA in a sequential way.
Firstly MDS is applied to learn low-dimensional manifolds, then (Generalized)
CCA is used to match those manifolds to obtain a common space.

This paper focuses on manifold matching and it demonstrates the classifica-
tion improvement via fusing data from additional space to learn the common low
dimensional manifold. It is interesting to investigate how to generate the low
dimensional space using all data instead of matching separate manifolds. But
this requires calculating the dissimilarity information for the objects’ represen-
tation in different spaces properly for the multi-dimensional scaling purpose.
This issue had been investigated, e.g., [17, 23], but there had not been any clear
answer.

3.1. Manifold Matching Framework

The framework structure for manifold matching is shown in Figure 2 [17, 23].
For each of the n objects Oi ∈ Ξ, i = 1, . . . , n, there are K representations
xik ∈ Ξk, k = 1, . . . ,K generated by the mappings πk. Manifold matching
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Figure 2: Manifold matching model

works to find ρ1, . . . , ρK to map xi1, . . . ,xiK to a low-dimensional common
space χ = Rd:

x̃ik = ρk(xik), i = 1, . . . , n, k = 1, . . . ,K. (2)

After learning the ρks, we can map a new measurement yk ∈ Ξk into the
common space χ = Rd via:

ỹk = ρk(yk) (3)

This allows joint inference to proceed in Rd.

3.2. Embedding

The work described in this paper is based on dissimilarity measures. Let δk
denote the dissimilarity measure in the kth space Ξk, and δ̃ be the Euclidean
distance in the common space Rd. There are two kinds of mapping errors
induced by the ρks: fidelity error and commensurability error.

Fidelity measures how well the original dissimilarities are preserved in the
mapping xik 7→ x̃ik, and the fidelity error is defined as the within-condition
squared error:

ε2fk =
1(
n
2

) ∑
1≤i<j≤n

(δ̃(x̃ik, x̃jk)− δk(xik,xjk))2 (4)

Commensurability measures how well the matchedness is preserved in the
mapping, and the commensurability error is defined as the between-condition
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squared error:

ε2ck1k2
=

1

n

∑
1≤i≤n

(δ̃(x̃ik1
, x̃ik2

))2 (5)

Multidimensional Scaling (MDS) [26, 3, 2] works to get a Euclidean repre-
sentation while approximately preserving the dissimilarities. Given the n × n
dissimilarity matrix ∆k = [δk(xik,xjk)] in space Ξk, multidimensional scaling

generates embeddings x̃′ik ∈ Rd′
for xik ∈ Ξk, i = 1, . . . , n, k = 1, . . . ,K, which

attempts to optimize fidelity, that is, ||x̃′ik − x̃′jk|| ≈ δk(xik,xjk).

For the K = 2 case, multidimensional scaling generates n × d′ matrices X̃ ′1
from ∆1 and X̃ ′2 from ∆2. The ith row vector x̃′ik of X̃ ′k is the multidimensional
scaling embedding for xik.

Canonical correlation analysis is applied to the multidimensional scaling re-
sults. Canonical correlation works to find d′ × d matrices U1 : X̃ ′1 7→ X̃1 and
U2 : X̃ ′2 7→ X̃2 as the linear mapping method to maximize correlation for the
mappings into Rd, where two matices satisfy UT

1 U1 = I and UT
2 U2 = I. That is,

for the lth (1 ≤ l ≤ d) dimension, the mapping process is defined by ul
1 and ul

2,
the lth column vector of U1 and U2 respectively. The orthonormal requirement
on the columns of U1 (similarly U2) implies that the correlation between differ-
ent dimensions of the embedding is 0. The correlation of the mapping data is
calculated as

ρl =
(X̃ ′1u

l
1)T (X̃ ′2u

l
2)

‖ X̃ ′1ul
1 ‖‖ X̃ ′2ul

2 ‖
(6)

which is equivalent to
ρl = (X̃ ′1u

l
1)T (X̃ ′2u

l
2) (7)

subject to

(X̃ ′1u
l
1)T (X̃ ′1u

l
1) = (X̃ ′2u

l
2)T (X̃ ′2u

l
2) = 1 (8)

And the constraint can be proved to be equivalent to

(X̃ ′1u
l
1)T (X̃ ′1u

l
1) + (X̃ ′2u

l
2)T (X̃ ′2u

l
2)

2
= 1 (9)

For CCA it holds ρ1 ≥ ρ2 ≥ . . . ≥ ρd.
For new data yk, k = 1, 2, out-of-sample embedding for multidimensional

scaling [1, 27] generates d′ dimensional row vector ỹ′k. The final embeddings in
the common space Rd are given by ỹ1 = ỹ′1U1 and ỹ2 = ỹ′2U2.

Canonical correlation analysis optimizes commensurability without regard
for fidelity [23]. For our work, first we use multidimensional scaling to generate a
fidelity-inspired Euclidean representation, and then we use canonical correlation
analysis to enforce low dimensional commensurability.

Canonical correlation analysis is developed as a way of measuring the corre-
lation of two multivariate data sets, and it can be formulated as a generalized
eigenvalue problem. The expansion of canonical correlation analysis to more
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than two multivariate data sets is also available [13], which is called General-
ized Canonical Correlation Analysis (GCCA). Generalized canonical correlation
analysis simultaneously find U1 : X̃ ′1 7→ X̃1, . . . , UK : X̃ ′K 7→ X̃K to map the
multivariate data sets in K spaces to the common space Rd. Similarly for the
new data yk, k = 1, . . . ,K, we can get their representations in the common
space Rd as ỹ1 = ỹ′1U1, . . . , ỹK = ỹ′KUK . Similar to CCA, the correlation of
data in the lth mapping dimension is calculated as [28]

ρl =
1

K(K − 1)

K∑
g,h=1

(X̃ ′gu
l
g)T (X̃ ′hu

l
h) (10)

subject to

1

K

K∑
g=1

(X̃ ′gu
l
g)T (X̃ ′gu

l
g) = 1 (11)

GCCA can be formulated as a generalized eigenvalue problem. Different
algorithms have been developed as the solution, e.g. least square regression.
For the particular dataset used in our experiments, because it is not very large,
we can perform eigenvalue decomposition on the respective matrices directly.

3.3. Classification

Given the measurements of m new data points yik, i = 1, . . . ,m, k =
1, . . . ,K, (generalized) canonical correlation analysis in section 3.2 yields the
embeddings ỹik in the common space Rd. To classify ỹik, instead of using data
points from the same space Ξk (i.e. ỹi′k, i

′ 6= i), we consider the problem in
which we must borrow the embeddings from another space Ξk′ for training, that
is, ỹi′k′ , i′ 6= i, k′ 6= k. This problem is motivated by the fact that in many
situations there is a lack of training data in the space where the testing data lie.

3.4. Efficiency Investigation

We investigate the effect of the number of domain relation learning training
data observations on the classification performance.

4. Experiments Results

4.1. Dataset

Our experiments apply canonical correlation analysis and its generalization
to text document classification. The dataset is obtained from wikipedia, an
open-source multilingual web-based encyclopedia with around 19 million articles
in more than 280 languages. Each document may have links pointing to other
documents in the same language which explain certain terms in its content as
well as the documents in other languages for the same subject. Articles of the
same subject in different languages are not necessarily the exact translations of
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one another. They can be written by different people and their contents can
differ significantly.

English articles within a 2-neighborhood of the English article ”Algebraic
Geometry” are collected. The corresponding French documents of those English
ones are also collected. So this data set can be viewed as a two space case:
Ξ1 is the English space and Ξ2 is the French space. There are in total 1382
documents in each space. That is, z1,1, . . . , z1382,1 ∈ Ξ1, and z1,2, . . . , z1382,2 ∈
Ξ2. Note that zik, i = 1, . . . , 1382, k = 1, 2 includes both domain relation
learning training data xik, i = 1, . . . , n and new data points yik, i = 1, . . . ,m
(m+ n = 1382) used for classification training and testing.

All 1382 documents are manually labeled into 5 disjoint classes (0−4) based
on their topics. The topics are category, people, locations, date and math things
respectively. There are 119 documents in class 0, 372 documents in class 1, 270
documents in class 2, 191 documents in class 3, and 430 documents in class
4. The documents in classes 0, 2, 4 are the domain relation learning training
data xik, i = 1, . . . , n, k = 1, 2. There are in total 819 documents in those 3
classes (n = 819). The 563 (m = 563) documents in classes 1, 3 are the new
data yik, i = 1, . . . ,m, k = 1, 2. They are used to train a classifier and run the
classification test.

4.2. Dissimilarity Matrix

The method described in section 3.2 starts with the dissimilarity matrix. For
our work two different kinds of dissimilarity measures are considered: text con-
tent dissimilarity matrix ∆t

k and graph topology dissimilarity matrix ∆g
k. Both

matrices are of dimension 1382× 1382, containing the dissimilarity information
for all data points z1k, . . . , z1382k.

Graphs Gk(V,Ek) can be constructed to describe the dataset; V represents
the set of vertices which are the 1382 wikipedia documents, and Ek is the set
of edges connecting those documents in language k.

The (i, j) entry ∆g
k(i, j) ∈ ∆g

k is the number of steps on the shortest path
from document i to document j in Gk. In the English space Ξ1, ∆g

1(i, j) ∈
{0, . . . , 4}, where the 4 comes from the 2-neighborhood document collection. In
the French space Ξ2, zi2 ∈ Ξ2 is the document in French corresponding to the
document zi1 ∈ Ξ1, and ∆g

2(i, j) ∈ ∆g
2 depends on the French graph connections.

It is possible that ∆g
2(i, j) 6= ∆g

1(i, j). At the extreme end, ∆g
2(i, j) = ∞ when

zi2 and zj2 are not connected. We set ∆g
2(i, j) = 6 for ∆g

2(i, j) > 4.
∆t

k(i, j) ∈ ∆t
k is based on the text processing features for documents zik, zjk ∈

Ξk. Given the feature vectors fik, fjk, ∆t
k(i, j) is calculated by the cosine dis-

similarity ∆t
k(i, j) = 1 − fik·fjk

‖fik‖2‖fjk‖2 . For our experiments, we consider three

different features for f : mutual information (MI) features [15, 20, 21], term
frequency-inverse document frequency (TFIDF) features [25] and latent seman-
tic indexing (LSI) features [4]. The wikipedia dataset used in the experiments
are available online 1. See the paper [22] for more details/description.

1http://www.cis.jhu.edu/~zma/zmisi09.html
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Figure 3: Square root of eigenvalues for covariance matrix (all data used)

4.3. Embedding Dimension Selection

To choose the dimension d for the common space Rd, we pick a sufficiently
large dimension and embed ∆t

k and ∆g
k via multidimensional scaling. The scree

plot for the MDS embedding is shown in Fig 3 (term frequency-inverse document
frequency features are used for the text dissimilarity calculation).

Based on the plots in Figure 3, we choose d = 15 for the dimension of the
joint space χ, which is low but preserves most of the variance [11]. This model
selection choice of dimension is an important issue in its own right; for this
paper, we fix d = 15 throughout.

For the canonical correlation analysis step, since it requires to multidimen-
sional scale the dissimilarity matrices to d′ at the beginning, as described in
section 3.2, when we choose different number n′ of domain relation learning
training documents, d′ depends on n′. The choice of dimension is once again
an important model selection problem; for this paper, the values of d′ with
different n′ are shown in Table 1. We believe that the values of d′ are chosen
large enough to preserve most of the structure yet still small enough to avoid
dimensions of pure noise which might deteriorate the following (G)CCA step.
The second column indicates what percentage of the total manifold matching
training data xik is used.
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Table 1: MDS Dimensions

n′ % of n d′

82 10% 40

164 20% 80

246 30% 100

328 40% 100

410 50% 150

491 60% 150

573 70% 150

655 80% 200

737 90% 200

819 100% 200

4.4. Classification Performance

The classifier used in the experiment is κ-nearest neighbor (κ-NN). The
class label of the test data is assigned by the majority class label of the κ closest
training data points. The distance used is the usual Euclidean distance. For
our experiments we use the 5-nearest neighbor classifier (We do not claim that
κ = 5-NN is optimal for our experimental data. Rather, it is, illustrative; the
goal of our experiments is to demonstrate the utility of using disparate domain
relation learning training documents via GCCA).

There are 563 new data points yik in classes 1 and 3. Class 1 has 372
data points, and the remaining 191 have class label 3. For each n′ in Table 1,
we randomly sample n′ out of the total 819 domain relation learning training
documents to learn the common space Rd into which we project the new data
points. The classification is run in a leave-one-out way. We use 200 Monte Carlo
replicates to calculate the average performance.

The method described in section 3.2 generates the embeddings ỹik ∈ R15, i =
1, . . . , 563, k = 1, 2. Because there are two kinds of dissimilarity matrices con-
sidered, we have ∆t

k 7→ ỹt
ik and ∆g

k 7→ ỹg
ik. The training and testing data can

be chosen from not only different spaces (i.e. English space and French space),
but also from different dissimilarity measures (i.e. text content dissimilarity
and graph topology dissimilarity). Classification results are shown in Figures
4a, 4b and 4c. Note that we use different text document processing features to
calculate ∆t

k. Figures 4a, 4b and 4c are based on the latent semantic indexing,
term frequency-inverse document frequency and mutual information features
respectively.

For all three figures, the x-axis label S indicates what proportion of the total
n data points are used for domain relation learning training, that is, S = n′

n ;
the y-axis is classification accuracy.
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To get the solid circle curve, ∆g
2 is used for training and ∆g

1 is for testing,
thus xg

ik, i = 1, . . . , n′, k = 1, 2 are employed to learn the manifold matching
methods. For each test data point ỹg

i1, i ∈ {1, . . . ,m}, the 5-NN classifier is
trained on ỹg

i′2, i
′ = 1, . . . , i− 1, i+ 1, . . . ,m, and the classification accuracy is

calculated as m′/m, where m′ is the number of correctly classified testing data
points. For each n′, 200 Monte Carlo replicates are run to randomly sample n′

out of the total n domain relation learning training data points xg
ik, i = 1, . . . , n.

The average accuracy is plotted; standard errors are available via bootstrap
resampling.

The dashed triangle curve is similar to the solid circle curve except the
training data is from ∆t

2 instead of ∆g
2. Since ∆t

2 and ∆g
1 are within different

ranges, prescaling is needed, which is done via ∆t
2 = ∆t

2
‖∆g

1‖F
‖∆t

2‖F
.

The remaining three curves (dotted plus, dotdash diamond, longdash aster-
isk) show the results of the generalized CCA, which embeds ∆g

1, ∆g
2 and ∆t

2

simultaneously to get ỹg∗
i1 , ỹ

g∗
i2 and ỹt∗

i2 i = 1, . . . , 563 (with prescaling for ∆t
2

via ∆t
2
‖∆g

1‖F
‖∆t

2‖F
). For all three curves, ỹg∗

i1 is the testing data. For the dotted plus

curve, the 5-NN classifier is trained on ỹg∗
i2 . For the dotdash diamond curve,

training data is ỹt∗
i2 . And the longdash asterisk curve is for the classification

performance trained on (ỹg∗
i2 + ỹt∗

i2)/2.
Based on the results shown in Figures 4a, 4b and 4c, when canonical corre-

lation analysis is used to embed the pair (∆g
1, ∆g

2) or (∆g
1, ∆t

2) in the same low
dimensional space Rd, ∆t

2 outperforms ∆g
2 in terms of classifying ∆g

1 for TFIDF
and MI text features. But if we consider the generalized canonical correlation
analysis on mapping ∆g

1, ∆g
2 and ∆t

2 to Rd simultaneously, it improves the em-
bedding training in terms of classification performance. That is, to classify the
embeddings of ∆g

1, the 5-NN classifer trained on ỹg∗
i2 and tested on ỹg∗

i1 (dotted
plus curve) outperforms the one trained on ỹg

i2 and tested on ỹg
i1 (solid circle

curve), and similar result holds for the pair of ∆g
1 and ∆t

2 (dotdash diamond and
dashed triangle curves). This indicates incorporating information from an addi-
tional domain improves upon the embedding obtained via canonical correlation
analysis in terms of classification task. The best classification results (longdash
asterisk curves) come from the case not only using generalized canonical cor-
relation analysis for domain relation learning training, but also using both ỹg∗

i2

and ỹt∗
i2 for classification training.

Instead of using the MDS dimensions given in Table 1, we also consider a
lower dimension d′′ for each considered n′. By reducing the MDS dimensions,
we impose additional regularization. Thus we refer to this as Regularized CCA
and GCCA. How to choose the values of d′′ properly is a non-trivial model
selection problem. The values of d′′ imply the regularization level. We choose
d′′ to be smaller than d′ to remove noisy dimensions from MDS embedding, but
not too small to keep the fidelity of MDS. We use d′′ = d′/2. The classification
results are shown in Figures 4d, 4e and 4f, and they are better than the non-
regularized CCA and GCCA results in Figures 4a, 4b and 4c, which is consistent
with our expectation. The improvement of regularized CCA and regularized
GCCA over their non-regularized counterparts comes from the removal of the
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Table 2: Classification Accuracy

Non-regularized Regularized

S = 10% S = 100% S = 10% S = 100%

d′ = 40 d′ = 200 d′′ = 20 d′′ = 100

CCA LSI 61.24%± 0.12% 63.50%± 0.10% 66.67%± 0.13% 71.84%± 0.10%

(GF → GE)
TFIDF 61.73%± 0.12% 63.48%± 0.10% 66.69%± 0.13% 71.85%± 0.10%

MI 61.88%± 0.12% 63.51%± 0.10% 66.47%± 0.13% 71.85%± 0.10%

CCA LSI 64.75%± 0.11% 67.05%± 0.18% 68.51%± 0.14% 76.20%± 0.11%

(TF → GE)
TFIDF 65.64%± 0.12% 75.13%± 0.10% 68.43%± 0.15% 77.09%± 0.11%

MI 67.14%± 0.09% 71.05%± 0.09% 71.03%± 0.12% 76.91%± 0.11%

GCCA LSI 65.30%± 0.14% 74.42%± 0.10% 66.91%± 0.14% 74.42%± 0.08%

(GF → GE)
TFIDF 65.57%± 0.15% 70.70%± 0.11% 66.84%± 0.14% 72.47%± 0.09%

MI 66.30%± 0.14% 71.40%± 0.10% 66.80%± 0.14% 74.60%± 0.08%

GCCA LSI 69.21%± 0.12% 74.07%± 0.13% 69.77%± 0.13% 78.51%± 0.07%

(TF → GE)
TFIDF 69.33%± 0.13% 75.31%± 0.10% 69.41%± 0.15% 77.09%± 0.09%

MI 70.63%± 0.12% 78.15%± 0.08% 72.24%± 0.12% 79.04%± 0.06%

GCCA LSI 71.31%± 0.11% 77.26%± 0.11% 71.02%± 0.12% 83.21%± 0.06%

(GTF → GE)
TFIDF 70.53%± 0.11% 79.93%± 0.10% 69.77%± 0.13% 81.61%± 0.08%

MI 70.66%± 0.11% 77.26%± 0.09% 70.23%± 0.12% 80.82%± 0.08%

noisy dimensions in the MDS embedding.
Table 2 shows the classification accuracy of various methods for S = 10%

and S = 100%.
In the experimental settings described above, the documents in classes 1

and 3 are used for classifier training and testing, while the documents in the
remaining three classes (0, 2, 4) are the domain relation learning training data.
Experimental results in Figure 4 and Table 2 show that GCCA is superior to
CCA. However, it remains questionable whether this phenomenon holds in other
settings. We investigate this problem via choosing different classes combinations
for classifier training and testing. In addition to the choice of classes 1 and 3
used above, we also considered other possible combinations of two classes for
classifier traning and testing. Regularized GCCA is considered here because it
yields the best classification performance in the previous experimental settings.
Given two classes for classifier training and testing, we use all domain relation
learning training data available, that is, all the documents in the remaining
three classes (S = 100%). The embedding dimension for MDS is d′′ = 100 as
specified earlier in Table 2. Regarding the text feature, latent semantic indexing
is selected. The results of the investigation outlined above are shown in Table 3,
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Table 3: Classification Accuracy for All Classes Combinations

Regularized (LSI text feature), S = 100%, d′′ = 100

Classification CCA CCA GCCA GCCA GCCA

Classes (GF → GE) (TF → GE) (GF → GE) (TF → GE) (GTF → GE)

0, 1 75.36%± 0.04% 67.82%± 0.11% 80.24%± 0.03% 73.93%± 0.03% 77.39%± 0.04%

0, 2 74.29%± 0.06% 66.58%± 0.11% 83.03%± 0.05% 75.84%± 0.04% 86.89%± 0.05%

0, 3 80.00%± 0.08% 71.94%± 0.17% 85.48%± 0.05% 87.42%± 0.07% 95.81%± 0.04%

0, 4 76.14%± 0.05% 67.40%± 0.07% 78.51%± 0.04% 75.41%± 0.03% 77.41%± 0.04%

1, 2 59.19%± 0.07% 58.10%± 0.09% 61.99%± 0.07% 63.71%± 0.07% 66.98%± 0.06%

1, 3 71.84%± 0.10% 76.20%± 0.11% 74.42%± 0.08% 78.51%± 0.07% 83.21%± 0.06%

1, 4 55.74%± 0.06% 53.12%± 0.07% 61.60%± 0.06% 57.11%± 0.08% 65.84%± 0.06%

2, 3 59.22%± 0.12% 67.46%± 0.12% 64.64%± 0.11% 67.25%± 0.09% 69.85%± 0.09%

2, 4 65.71%± 0.07% 64.29%± 0.07% 71.43%± 0.05% 69.43%± 0.05% 73.00%± 0.04%

3, 4 73.11%± 0.08% 73.91%± 0.09% 76.81%± 0.05% 76.97%± 0.07% 82.13%± 0.05%

where each row corresponds to one pair of classes. For example, the first row in
Table 3 is for the case where classes 0 and 1 are used for classifier training and
testing, and all documents in classes 2, 3, 4 are the domain relation learning
training data. The results in Table 3 indicate that GCCA performs better than
CCA for different choices of class combinations, thus strongly supporting the
conclusion that GCCA is superior to CCA in terms of classification accuracy.

Inferences regarding differences in the relative performance between compet-
ing methodologies (as well as the seemingly non-monotonic performance across
S for a given methodology) are clouded by the variability inherent in our per-
formance estimates. However, these real-data experimental results nonetheless
illustrate the general relative performance characteristics of CCA and GCCA
and their regularized versions, as a function of S.

5. Conclusion

Canonical correlation analysis and its generalization are discussed in this
paper as a manifold matching method. They can be viewed as reduced rank
regression, and they are applied to a classification task on wikipedia documents.
We show their performance with manifold matching training data from differ-
ent domains and different dissimilarity measures, and we also investigate their
efficiency by choosing different amounts of manifold matching training data.
The experiment results indicate that the generalized canonical correlation anal-
ysis, which fuses data from disparate sources, improves the quality of manifold
matching with regard to text document classification. Also, if we use regular-
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ized canonical correlation analysis and its generalization, we further improve
performance.

Finally, increasing the amount of domain relation learning training data from
10% to 100% (S in the Figures 4a, 4b, 4c, 4d, 4e and 4f) of the available 819
documents yield approximately 10% improvement in classification performance.
This improvement is independent of the amount of training data available for
the classifier.
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(a) LSI Non-regularized (b) TFIDF Non-regularized

(c) MI Non-regularized (d) LSI Regularized

(e) TFIDF Regularized (f) MI Regularized

Figure 4: Classification accuracy with different amount of domain relation learn-
ing training data for (G)CCA the regularized (G)CCA with LSI, TFIDF, and
MI text features
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