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Kalman-Filter Based Spatio-Temporal Disparity Integration

Sandino Morales, Reinhard Klette

.enpeda.. Group, The University of Auckland, New Zealand

Abstract

Vision-based applications usually have as input a continuous stream of data. There-
fore, it is possible to use the information generated in previous frames to improve the
analysis of the current one. In the context of video-based driver-assistance systems, ob-
jects present in a scene typically perform a smooth motion through the image sequence.
By considering a motion model for the ego-vehicle, it is possible to take advantage of
previously processed data when analysing the current frame.

This paper presents a Kalman filter-based approach that focuses on the reduction of
the uncertainty in depth estimation (via stereo-vision algorithms) by using information
from the temporal and spatial domains. For each pixel in the current disparity map,
we refine the estimated value using the stereo data from a neighbourhood of pixels in
previous and current frames. We aim at an improvement of existing methods that use
data from the temporal domain by adding extra information from the spatial domain.
To show the effectiveness of the proposed method, we analyse the performance on long
synthetic sequences using different stereo matching algorithms, and compare the results
obtained by the previous and the suggested approach.

Keywords: Stereo algorithms, Kalman filter, disparity propagation, spatial domain,
temporal domain, vision-based driver assistance

1. Introduction

Disparity (or depth) estimation obtained from stereo-vision analysis is commonly used
to provide basic 3-dimensional data for complex vision-based applications [33]. Particu-
larly, in vision-based driver-assistance systems [8], the calculated disparities have been
used to model the environment that surrounds the vehicle where the vision-system is
operating in, i.e. the ego-vehicle. From road-manifold estimation [28] to object detection
and tracking [17], a high accuracy of computed disparity values is required. Accuracy de-
mands actually vary among applications; for example, accurate disparity discontinuities
(i.e. at occluding boundaries) are required in driver-assistance systems, but 3-dimensional
object modelling focuses on accurate disparities within object regions.

We have identified three general options for the estimation of disparities between
the two images in a given stereo pair. The first approach is the design of new, or the
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improvement of existing strategies for stereo matchers. For example the authors proposed
in [11] a hierarchical approach for the improvement of the performance of semi-global
matchers [13].

The second approach is the improvement of functions that define the data and smooth-
ness term on the energy function used to solve the stereo-vision matching problem,
see [27]. Using cost functions in the data term that do not take as granted photometric
consistency between both images in a stereo-pair, has allowed to improve the performance
of stereo-vision algorithms when used in real-world applications [23]. In this sort of envi-
ronments, photometric consistency cannot be assured. For example, census transform or
gradient-based cost functions [11] depend more on the distribution of intensities around
a given pixel rather than on a direct comparison of the intensity values themselves.

An improvement of the functions used to define the smoothness term by, for example,
moving away from the simple Potts model to truncated linear or quadratic functions, has
further allowed the tune-up of stereo-vision algorithms.

The third approach consist in pre-processing the input stereo pair, or post-processing
of the resultant disparity map. By preprocessing of the input stereo pairs it is possible
to filter-out several types of noise that could potentially affect the matching process.
For example, using residuals with respect to smoothing or edge maps as inputs may
reduce the influence of illumination artefacts [31]. Post-processing methods manipulate
the resultant disparity maps, for instance, by using left-right and right-left consistency
to detect miscalculated disparities, or by calculating sub-pixel accurate results. Mean or
median filtering are further options; see [1].

In this paper we propose a method based on the third approach. We post-process
disparity maps using the available spatial and temporal information in the context of
vision-based driver-assistance systems. As the input data for such a system is a time
sequence of stereo pairs, it is possible to use the information contained in the temporal
domain by incorporating disparity data from previous frames into the disparity map
generated in the current time instance. The objective is to reduce the influence of mis-
calculated disparities in particular regions of the disparity maps.

Information contained in the temporal domain has been used before. For example,
in [23] some alpha-blending of disparity values calculated for the current and previous
frames lead to an improved performance for currently measured values at scene points
“roughly matching” the scene geometry assumed by this method. This model did not
yet consider the motion induced by the ego-vehicle, nor the independent motion of other
objects present in the scene.

In [2], the authors merged previous and current information by using an iconic (i.e.
pixel-wise) Kalman filter-based approach [22] and some ego-motion information, namely
the yaw and speed rate. This approach was designed to improve the disparity measure-
ments in regions of the input images where the visible motion was induced only by the
ego-motion, and not by the independent motion of other objects (i.e. by objects that are
static with respect to the ground, which is the surface manifold where the ego-vehicle is
driving on). We refer to this method as the static approach from now on.

The static approach was modified in [29] by adding a disparity rate term to the
Kalman filter. The authors were interested in the improvement of the disparity measure-
ments for objects that move relatively to the ego-vehicle in longitudinal direction. The
disparity-rate term introduces into the Kalman filter the change in disparity of a tracked
pixel from one frame to the next one. We refer to this method as the dynamic approach
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Figure 1: After initialising the filtering process with values from a disparity map at time
t0, the proposed method refines the disparity estimation at time t > t0 of each pixel using
data from corresponding neighbourhoods from the current (at time t) and the immediate
previous disparity maps.

from now on.
Post-processing of disparity maps can also aim at optimising the computed measure-

ments by considering disparity values within a neighbourhood of the current pixel, i.e.
using data from the spatial domain. In [23] the authors used once again an alpha-blending
approach for modifying the disparity value of a given pixel by using the computed dis-
parities of the north and south neighbours. Again, no ego- or independent motion was
taken into consideration.

We aim to improve the disparity estimation of objects that are static with respect to
the ground or moving longitudinally away from the ego-vehicle. The idea is to modify
the dynamic and static method by adding to the Kalman-filtering process data from the
spatial domain. Spatial information is used from the previous and the current disparity
maps, and can be taken from an arbitrarily defined neighbourhood. Actually, those
should not be “too large”.

After initialising the filtering process with values from a disparity map at a reference
time instance t0, the disparity value of a pixel representing a 3-dimensional point P is
improved by considering sets of pixels from the current and previous disparity maps.
The ego-motion data is used to estimate the relative motion of P to obtain the position
where it is projected on the previous and current images. We assume that the ego-vehicle
describes a 2-dimensional motion (i.e. horizontal and longitudinal) over the ground
assumed to be a plane and exclude any horizontal translation. To describe such motion
it is only required to know the speed and yaw rate between consecutive frames. Roll and
pitch are not included into our model, but we acknowledge that both do have a minor
influence when modelling the motion of vision-augmented vehicles. Figure 1 presents a
diagram of the followed approach.

We perform experiments with a computer-generated sequence from [5] with available
(stereo and optic-flow) ground truth, as introduced in [30]. To generate the input dis-
parity maps, we use three different stereo-vision algorithms. For each of the selected
stereo matchers, we use three different configurations based on different cost functions.
In Figure 2 we depict sample frames of the sequence used for experimentation. The
segmented blue car represents a static object with respect to the ground while the green
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Figure 2: Sample frames from the used data set [30]. Left : Segmented object that moves
relatively to the ego-vehicle in longitudinal direction. It is used to test the improvements
over the dynamic method. Middle: Segmented object static with respect to the ground
used to test the achieved improvements over the static method. Right : Colour coded
(red large and blue small) stereo ground truth. We use this colour coding for the sample
results presented on Figure 5.

vehicle moves longitudinally away from the ego-vehicle. As expected for perfect input
stereo pairs, the generated raw disparity maps are very close to the ground truth data,
letting almost no room for improvement. Thus, to make our experiments more challeng-
ing, we selected three different real-world effects to alter the input stereo pairs: additive
Gaussian white-noise, Gaussian blurring, and a constant additive intensity change.

In driver-assistance systems, or any other vision-based outdoor application, the Gaus-
sian noise could be added to the images by a low-quality sensor in the cameras. Blurring
could be caused by rainy environments or by a misalignment of the camera lenses. An
intensity difference between the images of a given stereo pair could be caused by un-
expected shadows, reflections, difference in the gain of the recording cameras and so
forth.

We compare the results of the spatio-temporal analysis with those obtained when
using only information from the temporal domain. We investigate also the effect of the
size of the neighbourhood used to incorporate data from the spatial domain.

The approach described in this paper was originally presented in [25]. In this pa-
per we explain further ideas behind the presented method and include also more ex-
perimental data. We use three different stereo-vision algorithms to analyse four long
stereo-sequences. Each of the matching algorithms was tested with three different cost
functions, to define in total nine different stereo-vision matching techniques. The rest
of this paper is structured as follows. We start in Section 2 with briefly recalling the
structure of Kalman filters. The assumed motion model is discussed in Section 3. In
Section 4 we describe the proposed approach. We continue by discussing the results
obtained in our experiments along with the specification of the stereo-vision algorithms
used in there. We finalise in Section 6 with conclusions.
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2. Kalman Filter

We briefly explain the linear Kalman filter [15] as commonly used for a given discrete
dynamic system [21], with states xt, measurements yt, state transition matrix A, process
noise v, control matrix B, and measurement noise w.

Given the system

xt = A · xt−1 + B · ut + v (1)
yt = H · xt−1 + w (2)

The Kalman filter is defined in two steps. In the first step, the information from the
previous step is incorporated into the filter by generating a predicted state

xt|t−1 = A · xt−1|t−1 (3)

Pt|t−1 = A ·Pt−1|t−1 ·AT + Q (4)

We use the notation t|t− 1 to denote an intermediate step between t − 1 and t, while
t− 1|t− 1 denotes the state obtained with the Kalman filter at time t − 1. Matrix Q
represents the process noise variance (obtained from vector v) and Pt|t−1, denotes the
covariance matrix of the error of xt|t−1 compared to the true value xt|t.

In the second step, the predicted state is corrected using data from the current state
via the measurement vector yt and the predicted matrix Pt|t−1:

xt|t = xt|t−1 + Kt

(
yt −H · xt|t−1

)
(5)

where
Kt = Pt|t−1 ·HT

(
Ht ·Pt|t−1 ·HT + R

)
(6)

and R represents the measurement noise variance obtained from vector w. The matrix
K is the Kalman gain as derived in [15]. It follows that

Pt|t = (I−Kt ·HT )Pt|t−1 (7)

This is an iterative process. The initial state x0|0 and the initial covariance matrix
P0|0 need to be given to start with the process.

3. Motion Model

We assume that the ego-vehicle is driven on a flat road moving according to the
so-called bicycle model [8]. This type of motion is described by a 2-dimensional trans-
formation defined by a translation in the longitudinal direction or a rotation around the
vertical axis.

Given the position of the ego-vehicle at time instance t− 1 with respect to a known
coordinate system, we calculate its spatial position at time instance t with respect to the
same reference coordinate system. The parameters necessaries for estimating the new
position are the frame rate, the speed and yaw rate. Roll and pitch are not included into
our model, but we acknowledge that both do have a minor influence for vision-augmented
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vehicles. In the assumed bicycle model, the speed and yaw rate define the ego-motion
data of the ego-vehicle.

The tangential speed vt, is the speed of the ego-vehicle at time t − 1. The yaw rate
ψ̇t, also known as the angular velocity, represents the angular change with respect to the
constant time unit ∆ ∈ R+ that is defined by the sequence’s frame rate.1

Assume for now that the reference coordinate system is that of the ego-vehicle at
time instance t − 1. Let O denote the origin of this coordinate system. If ψ̇t = 0, then
the position of the ego-vehicle at time t is given by point

Pt = (0, 0,∆ · vt)T (8)

meaning that the ego-vehicle describes a uniform rectilineal motion. If ψ̇t 6= 0, the ego-
vehicle describes a circular trajectory [9]. To fully describe such a motion, the radius
r ∈ R+ and centre C ∈ R3 of the followed circle C need to be calculated. The radius is
given by

r =
vt

ψ̇t

(9)

To calculate the coordinates of C, we use the fact that the origin O of the reference
coordinate system is an element of C. Thus, as r is already known, C is defined by the
set

C =
{

(X,Y, Z)T ∈ R3|(X − r)2 + Z2 = r2
}

(10)

whose centre is at point C = (r, 0, 0)T . Therefore, the position of the ego-vehicle at time
t, with respect to the coordinate system at time t− 1, is given by

Pt =

 1− cos
(
ψ̇t∆

)
0

sin
(
ψ̇t∆

)
 (11)

Note that we assume that there is no movement in the vertical direction, between t− 1
and t we drive on a plane. Using this same set of equations me can model the induced
motion of static objects with respect to the ground as they describe an analogous motion
but in the opposite direction.

Figure 3 presents the described motion model when ψ̇t 6= 0. The ego-vehicle moves
across the XZ plane following the circle defined by point C and radius r. Point Pt is
defined by Equation (11) and represents the position of the ego-vehicle at time t if its
position at time t− 1 is assumed to be at O.

4. Approach

The basic idea of our approach is to incorporate disparity information contained
in the spatial domain [23] into the static [2] and dynamic approach [29]. These two
Kalman filter-based methods were designed to handle different kinds of moving objects.
The authors of the static approach were interested in improving the disparity values of

1We assume that vt, ψ̇t ∈ R. A positive (negative) velocity indicates a forward (backwards) movement.
A positive (negative) ψ̇t represent a right (left) turn.
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Figure 3: Assumed motion model. The ego vehicle describes a circular motion between
time instances t−1 and t. At time t−1, the ego-vehicle is situated at point O. At time t,
it has moved following the circle determined by point C and radius r. Both parameters
are calculated from the yaw and speed rate.

static objects with respect to the ground present in the scene. The dynamic approach
was designed to improve the calculated disparity values of objects moving longitudinally
away from the ego-vehicle. We aim at enhancing both methods by adding data from the
disparity spatial domain.

We merge the temporal and spatial information by means of a Kalman filter. For
simplicity we use an iconic Kalman filter [22], i.e. we define an individual Kalman filter
for each pixel under consideration. At each iteration we obtain an improved disparity
value for each pixel using both spatial and temporal information. In order to do so, it
is necessary to consider the motion of the 3-dimensional points that define the pixels
in the reference image from the input stereo pair. Each pixel in the reference image
that represents a non occluded point will be tracked as the image sequence advances in
time and as long as is still visible in the current frame. This is done by considering the
ego-motion and the disparity rate [29].

Let P be a 3-dimensional point in the field of view of the recording stereo camera
for at least two frames. We denote with p the projection of P on every frame in the
sequence where it remains within the field of view of the stereo camera. Besides knowing
that its position on the image plane is actually different due to ego-motion or possible
independent motion of P , the disparity value assigned to p is also expected to change
through the sequence. In other words we do not consider p as a position in the image
plane but as the pixel where P is projected in the image plane across the sequence.

Let
N (p) = {p, p1, p2} (12)

be a neighbourhood of p. The generalisation for larger neighbourhoods is straightforward.
Consider the dynamic system defined at time t by the state vector xt and the transition
matrix A, given by

xt =
(
d, d1, d2, ḋ

)T (13)
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and

A =


α β1 β2 ∆
0 1 0 ∆
0 0 1 ∆
0 0 0 1

 (14)

where d, d1, d2 are the computed disparity values of the pixels p, p1, p2, respectively,
generated at time t − 1. The value ḋ is the disparity rate that introduces into the
Kalman filter the change in disparity of a tracked pixel from one frame to the next one.
Parameters α, β1 and β2 control the interaction of disparity values at pixels p, p1, and p2,
respectively. Parameter ∆ denotes the constant elapsed time between two consecutive
frames. We assume that the noise vector v associated to the system is Gaussian with
zero mean and standard deviation σd for all disparity values and σḋ for disparity rate.

Measurement data from the current disparity map is not available for the disparity
rate. However, it contains the disparity values of all the involved pixels defining N (p)
from the disparity map calculated at time t. Therefore, the dimension of the measurement
vector yt equals to three, and the matrix H is given by

H =

 1 0 0 0
0 1 0 0
0 0 1 0

 (15)

The noise vector w associated with the measurements taken from the system is as-
sumed to be the same for all of its coordinates: Gaussian with zero mean and with a
standard deviation σv.

To start the filtering process, we need to define the initial state and the initial covari-
ance matrix. The initial state is defined using the disparity values of p and its neighbours
calculated with a given stereo algorithm at time t = 0. The disparity rate is set to be
zero. The initial covariance matrix is defined by

P0|0 =


σ2

d σdd1 σdd2 σdḋ

σdd1 σd2
1

σd1d2 σd1ḋ

σdd2 σd1d2 σd2
2

σd2ḋ

σdḋ σd1ḋ σd2ḋ σḋ2

 (16)

where, for example, σdḋ = σd ·σḋ. Recall that we assumed that all the calculated disparity
values have the same variance. The values used in the experiments (to define P0|0) are
specified in Section 5.

Once the filter has been initialised, we can start the iterative process. Assume that we
have already calculated t−1 steps and that xt−1|t−1 is available. After the prediction step
at time t, the first three coordinates of xt|t−1 contain information about a neighbourhood
of the disparity map calculated at time t− 1. In this case it is a 2-neighbourhood.

We incorporate information from the disparity map generated at time t via the mea-
surement vector yt and just before the update step in the filtering process. In order to
do this, we need to calculate the coordinates of the projection of P (i.e. the coordinates
of p) in the reference image at time t. As we are are assuming that the ego-vehicle and
the objects is the scene are not static, we need to consider the visible movement of the
3-dimensional point P between t − 1 and t. This is done by calculating the relative
motion of P with respect to the ego-vehicle, and this takes two steps.
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First, the motion induced by the disparity rate is incorporated into P . This motion
is longitudinally away from the ego-vehicle and in the same direction. Thus, only the
longitudinal coordinate will be modified, i.e. a uniform rectilineal motion, see Equa-
tion (8). Second, the positional change induced by the ego-motion is considered. We use
only speed and yaw rate, as described in Equation (11), and assume that they are free
of noise.

Once the position of p in frame t is known, we calculate the measurement vector yt

from the disparity map at time t. This measurement vector can now be used to calculate
the Kalman gain and the updated state, so that the next iteration at time t can be
performed. From the design of our system [see Equation (2)], disparity information from
pixels adjacent to p at time t is included in the measurement vector. To avoid noisy states
in both steps of the Kalman process, we follow the validation rules suggested in [29].

We just described how to merge data from the temporal and spatial disparity domain
into the dynamic approach. For adding temporal information to the static approach it
is necessary to remove the disparity rate term from the state vector as the objects are
not “moving away” and modify accordingly the rest of the dynamic system presented in
Equations (13) and (14).

5. Experiments

For testing the proposed method, we perform a set of experiments where we ex-
pect to detect changes in performance for the static [2] or dynamic [29] approach when
incorporating information from the spatial domain.

5.1. Data Set
As experimental data set, we use the Sequence 1 from the Set 2 of the [5] website

as introduced in [30]. It is a long (100 frames) 12-bit per pixel computer generated
stereo-sequence representing a driving scenario with available stereo ground truth. The
virtual ego-vehicle drives straight through the entire sequence. Thus, we keep a constant
yaw rate equal to zero. We set the speed at 6.99 m/s, calculated from the available
stereo-ground truth assuming a frame rate of 25 frames per second.

As stated in Section 4, the dynamic method was designed to improve the calculated
disparity values from objects moving away but in the same driving direction as the ego-
vehicle. We segmented in the test sequence a vehicle whose movement fulfilled such

Figure 4: Sample images altered with the chosen real-world effects. From left to right,
a stereo pair with maximum brightness difference, an image with added Gaussian noise
and a blurred image.
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requirements. For the experiments using the static method we segmented a static vehicle
(from frame 46 till frame 100) with respect to the ground. In Figure 2 left, the green
vehicle is moving away from the ego vehicle, while the static vehicle is highlighted in blue
in the middle image.

Computer generated images do not have the multiple biases found in real-world im-
agery, e.g. multiple light sources, non-Lambertian [12] surfaces, lighting artefacts [31] or
camera misalignment in multi-camera systems. To make our experiments more realistic,
we selected three different real-world effects (we call it noise from now on) to alter the
stereo pairs: additive Gaussian white-noise, Gaussian blurring, and a constant additive
intensity change.

Let S denote the set of stereo pairs from the test sequence. All the functionals used
to incorporate noise into the elements of S are functions of the form

F:S → IS (17)

where IS denotes a set of digital images (of the same VGA dimensions) and bit-depth
as in the images in S. The particular way how each functional defines a new image is
described in the paragraphs below.

Constant Additive Intensity : Differences in intensity values between the two cameras in
a stereo-vision system is a common issue in real-world imagery. For driver-assistance
systems, this is even more obvious as unexpected shadows, reflections, difference in the
gain of the recording cameras and so forth, might affect one camera and not the other.

We simulate the possible difference in brightness by a simple addition of a constant
value to the intensity of the pixels in one of the images of a stereo pair. Given It ∈ S,
t ∈ [1, 100] ∈ N, the additive intensity functional Fi defines the image Fi(It) ∈ IS such
that

Fi(It)(p) =

 It(p) + c, if It(p) + c ∈ [Gmin, Gmax]
Gmin, if It(p) + c < Gmin

Gmax if It(p) + c > Gmax

(18)

where c ∈ Z; Gmin and Gmax denote the minimum and maximum intensity values of the
input images. We use different values of c for each image of the stereo pair depending
on t. We chose to have maximum brightness differences at the start and at end of the
sequence with no difference at all at the middle of it (i.e. c = 0 for both images of the
stereo pair at t = 50). The values of c used to generate Fi(S) are defined according to
the formulas presented in the first two rows (from top to bottom) of Table 1. The first
two images from the left of Figure 4 are the stereo pair at t = 1, when c = −98 for the
image on the left and c = 98 for the image on the right. Note the differences between of
the histograms of the images.

Gaussian White-Noise: Small amounts of Gaussian noise [14] are present in real-world
imagery. It can be added to the images by a low-quality sensor in the cameras (this is
more evident in images grabbed in dark environments). However, the level of noise has
been decreasing over time as sensor technology improves.

We vary the level of Gaussian noise from low to very high. We add to the pixel values
of the images in S random Gaussian (normal distributed) white noise N(µ, σ) with a
mean µ = 0 and a varying standard deviation σ.
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Functional Image Variable Frame t
t ∈ [1, 50] t ∈ [51, 100]

Fi
Reference

c
2t− 100

Match 100− 2t

Fg
Reference

σ
t 0

Match t 101− t

Fb
Reference

k
2t− 1 0

Match 2t− 1 201− 2t

Table 1: Parametrization of three different noise functionals used in the experiments.
Fi,Fg and Fb denote additive brightness, additive Gaussian and Gaussian blurring func-
tionals, respectively.

The additive Gaussian functional Fg, given It ∈ S, defines the image Fg(It) such that

Fg(It)(p) =

 It(p) +N(µ, σ), if It(p) +N(µ, σ) ∈ [Gmin, Gmax]
Gmin, if It(p) +N(µ, σ) < Gmin

Gmax if It(p) +N(µ, σ) > Gmax

(19)

The value of σ is a function of the frame number t. In the first half of the sequence,
we add the same level of noise to both images of the stereo pair. The value of σ increases
from 1 to 50. For the second half of the sequence we only add noise to the match image.
The values of σ used on the experiments are defined according to the formulas presented
in the third and fourth row (from top to bottom) of Table 1. The second image from the
right of Figure 4 shows the right image of the stereo pair at t = 51 using N(µ, 50).

Gaussian Blur : Blurring can occur in real-world images due to foggy or rainy environ-
ments. Also, a minor blurring can be caused by out-of-focus camera(s). We approximate
this bias effect with a Gaussian blurring convolution, as known from scale space [7].

Given an image It ∈ S, the Gaussian blur functional Fb(It) defines the image

Fb(It) = It ∗G(k) (20)

where G(k) represents a k × k Gaussian smoothing kernel [3] and ∗ the convolution
operator. In the first half of the sequence Fb(S), both images of the stereo pair are
blurred with the same value of k which increases from 1 to 99, while in the second half of
the sequence, only the match image is affected with a decreasing amount of noise (from
99 to 1).

The right-most image of Figure 4 depicts the reference image from the stereo pair at
t = 17. Both images in the stereo pair were modified using Fb with k = 33. All the
possible values of k can be calculated using the formulas presented in the last two rows
(from top to bottom) in Table 1.

We use the terms original, intensity altered, blurred, and Gauss to identify S, Fi(S),
Fg(S), and Fb(S).
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BPM GCM SGM
dMax sMax λd iter lev λ1 λ2 thres. K c1 c2

AD 100 500 0.3
7 6

4.2 1.4 1 7
30 150CEN 75 600 0.6 3 1 1 5

EPE 33 200 0.225 2.6 0.86 16 4.33

Table 2: Parameters for the three versions of stereo algorithms used in this paper. BPM
(SGM) uses identical values of iter (c1) and lev (c2) for all the three cost functions.

5.2. Stereo-Vision Algorithms
Binocular stereo-vision algorithms compare a pair of images of the same scene and

match the corresponding pixels. When a couple of corresponding pixels has been iden-
tified, it is possible to calculate the coordinates of the “source” 3-dimensional point
without having any prior knowledge of its position. (The importance of stereo analysis
for driver-assistance systems is discussed, for example, in [19, 26].)

For the experiments to be reported in this paper, we selected three dense stereo-
analysis algorithms based on techniques that had shown a good performance in previous
studies [23, 24]. We use two (potentially) global [27] and one semi-global [13] algorithm.
We test all of them with three different cost functions. Each cost function, see Section 5.3,
considers different local features in the images when matching pixels.

Belief Propagation Matching (BPM): We use a max-product iterative belief-propagation
algorithm as presented in [6]. This algorithm uses a truncation parameter for both, the
data and the smoothness term. The smoothness term is a truncated everywhere-smooth
quadratic function [27], which allows to obtain a smooth disparity map but without
penalising depth discontinuities too much.

To speed up the matching process, a hierarchical approach (i.e. a coarse-to-fine
approach) is considered, such that the passing of messages in a 4-adjacency grid is more
efficient even with a reduced number of iterations. The original source code in [6] was
modified so that we could use different types of cost functions and 12-bit stereo pairs
as input images. The truncation parameters for the data (dMax) and the smoothness
(sMax) terms, the weighting factor for the data term (λd), the number of iterations
(iteration), and number of levels (level) of the followed hierarchical approach are shown
in Table 2.

Graph Cut Matching (GCM): We use the graph cut-based algorithm presented in [4]. For
minimising the energy function, a randomly initialised disparity map is considered as a
weighted graph. The optimum disparity map is then calculated using the α-expansion
method [20].

The implementation of this algorithm uses the binary Potts model as smoothness term
to make sure that a global minimum is reached [20]. The values of the three parameters
required for defining the Potts model (λ1, λ2 and the threshold) and the weighting factor
for the cost function (K) are summarised in Table 2.

As with the GCM algorithm, we modified the original algorithm so that a wider range
of cost functions could be used, as well as 12-bit stereo pairs could be used as input data.
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Semi-Global Matching (SGM): We use the implementation presented in [11] of the semi-
global matching algorithm proposed in [13]. A matching strategy followed by BPM
or GCM can be characterised as being potentially global (but practically limited by
the number of iterations). SGM limits its search space to a predefined set of paths to
obtain an optimum disparity value with respect to this selected search space. We use
the common configuration that considers an eight-path configuration, in contrast to the
initially suggested sixteen-path configuration.

For each path in the search space, an energy function is minimised using a recursive
dynamic programming approach. The smoothness term penalises small disparity changes
of neighbouring pixels with a rather low penalty c1 to allow slanted surfaces. A second
higher penalty c2 is applied for larger disparity changes. The second penalty is indepen-
dent of the actual disparity change in order to preserve depth discontinuities [10]. The
selected values for c1 and c2 are specified in Table 2.

5.3. Cost Functions
Three cost functions are considered for our experiments. Each one of them analyses

different characteristics of the stereo input images to calculate the costs of assigning a
certain disparity value to a given pixel. Two of them, the census and the gradient-based
ones, have been highlighted as being robust in outdoor environments, see [10, 11]. The
third one is the sum of absolute differences, which, in contrast to the other two, strongly
depends on the photometric consistency between the images of the stereo pairs.

Consider d ∈ N as a possible disparity value between the reference Ir and match Im
image from a given stereo pair. Let pr = (xr, yr)T ∈ Ir and pm = (xr − d, yr)T ∈ Im.

Census Transform (CEN): The census cost function [32] calculates the cost of assigning
the disparity d to pr by analysing the Hamming distance between the signature vectors
of pr and pm. Its use supports robustness of a stereo matcher against common types of
noise found in real-world images [10].

Given an arbitrary image I and a neighbourhood N (p) of p ∈ I; the ith coordinate,
i = 1, . . . , |N (p)| − 1, of the signature vector of p is defined as

Sg(p)i = δp
(
p′
)

(21)

where p′ ∈ N (p) \ {p}, and

δp
(
p′
)

=
{

0, if I(p) 6= I(p′)
1 otherwise (22)

The order in which the coordinates of the signature vectors are arranged is irrelevant, but
has to be consistent. The comparison of the signature vectors is made coordinate-wise
using the Hamming metric. Thus, the cost defined by the census transform of assigning
the disparity d to the pixel pr is given by

CN(pr, d) =
|N (pr)|−1∑

i=1

{
0, if Sg(pr)i = Sg(pm)i

1 otherwise (23)

Following [11], we use a 9×3 neighbourhood as it favours a stronger data contribution
along the epipolar line.
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Gradient-Based Cost Function (EPE): The selected gradient-based cost function [16]
analyses the L1-distance between the end-points of the gradient vectors of pr and pm.
This cost function is expected to have a good performance when using real-world data [10].

The cost of assigning the disparity d to the pixel pr ∈ Ir is given by

EP(pr, d) =
∣∣∣(∂x(pr), ∂y(pr)

)
−
(
∂x(pm), ∂y(pm)

)∣∣∣
1

(24)

where ∂∗ denotes a discrete partial derivative calculated using forward differences. Sym-
bol | · |1 denotes the L1-norm.

Sum of Absolute Differences (EPE): The sum-of-absolute-differences is an intensity-based
similarity measure. It is known for its poor performance when it comes to real-world
stereo sequences [31] as the photometric consistency assumption is commonly violated in
those data. The cost of assigning the disparity d to the pixel pr given a neighbourhood
N (pr), is given by

SD(pr, d) =
1

|N (pr)|
∑

p′∈N (pr)

∣∣Ir(p′)− Im(q′)
∣∣ (25)

where, if p′ = (x′, y′)T then q′ = (x′ − d, y′)T and thus q′ ∈ N (pm). For the experiments
we use the 8-neighbourhood. Observe that |N (pr)| denotes the cardinality of the neigh-
bourhood N (pr); however, the | · | symbol in the argument of the addition denotes the
absolute value function.

We do not discuss the relationship between the performance of the stereo algorithms
and the type of noise used to modify the sequences. See [23] for an evaluation procedure
for stereo algorithms using computer generated images altered with real-world effects.

We use the abbreviations BPM-∗, GCM-∗ or SGM-∗, where ∗ denotes CEN, EPE, or
SAD, to denote a stereo-configuration defined by a stereo-matcher using a specific cost
function.

5.4. Evaluation Methodology
We use three different neighbourhoods to define the experimental spatio-temporal

configurations. We are interested to find out whether the size of the neighbourhood
could affect the results of the filtering. The used spatio-temporal configurations are:
spatial-2 defined using the south and north neighbours, spatial-4 defined using the 4-
neighbourhood, and spatial-8 defined using the 8-neighbourhood. Note that the larger
the neighbourhood, the larger the dimensions of the vectors and matrices used to define
the Kalman filter.

We compare the results of the spatio-temporal approaches with those obtained when
considering information only from the temporal domain. We refer to the temporal anal-
ysis as Temporal. In general, the experiments showed that the spatial-n approaches with
n = 2, 4 or 8 generate better results than Temporal.

On average, it took 0.18 s to process one frame using the Temporal approach. Spatial-
2 required an average of 0.39 s to process each frame of the experimental sequence, while
the computational time required for spatial-4 and spatial-8 was of 0.50 s and 0.84 s
respectively.
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To evaluate the post-processed disparity maps, we use the approach proposed in [29].
Given a filtered disparity map, we compute the average of all the values in the object of
interest. Let I be an arbitrary image. Let P denote the power-set operator. The average
is defined as the function

Av: P(Ω)→ R+ (26)

such that
Av(Ωe) =

1
|Ωe|

∑
p∈Ωe

I(p) (27)

where Ωe denotes the image domain of I. In our case, Ωe is the set of pixels defining
either a moving object for the dynamic method, or a static object for the static method.
We use as reference the average values computed from the available ground truth and
the raw disparity maps calculated with any of the algorithms before being filtered. In
the plots and tables presented in Section 5.6, we denote the average values from the raw
disparity maps as Raw, and as GT for those calculated with the ground truth data.

5.5. Kalman Filter Parametrization
The parameters to initialise the Kalman filter for the dynamic method are as follows

(for n = 2, and analogously for larger neighbourhoods): the initial state was filled up
with data from the disparity map calculated for the first available stereo pair, except for
the disparity rate term, which was set to zero.

For the matrix A [see Equation (14)], let α = 0.8, β1 = β2 = 0.1. With this values we
aim to give a heavier weight to the disparity value of the pixel under analysis. Also, this
combination of values has reported to us good results in a previous study [23]. Assuming
a frame rate of 25 frames per second, we set ∆t = 0.04.

The entries of the covariance matrix P0|0 [see Equation (16]) were initialised with
the following values: σ2

d∗
= 0.3, assuming a non-perfect disparity map, σd∗d∗ = 0.5, a

relatively large value to represent a strong correlation between the pixel under analysis
and its neighbours, and σd∗ḋ

= 0.0001, to show a weak correlation between the disparity
values and the disparity rate. d∗ represents either d, d1, or d2.

Finally, we use σḋ2 = 1, a relatively large value to express a high uncertainty in the
initial disparity rate.

The parameter initialisation for the static method is analogous. It is only necessary
to remove the terms where the disparity rate is involved and modify the corresponding
matrices accordingly.

5.6. Results and Discussion
Results for each of the sequence are summarised in tables. Numbers in each table rep-

resent the average deviation from the ground truth for the entire sequence. We highlight
those numbers (using a light-blue shading) being the lowest average deviation among the
three configurations, for each matcher. When two or more filtering approaches reported
the same number, we choose to highlight that one which requires less computation time
(i.e., which is using a smaller neighbourhood). Using bold font we also highlight the
results for Temporal as we aim to emphasise that the use of the spatio-temporal data
improved most of the times the results compared with the method which used only data
from the temporal domain.
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Figure 5: Two sets of raw and spatial-2 filtered results using the colour coding shown
in the right image of Figure 2. For each set, the left vehicle corresponds to raw while
the right vehicle was encoded using the filtered results. The left set was generated with
GC-SAD using the original sequence. The right set was generated with SGM-SAD using
the intensity altered sequence.

For the original sequence, all the stereo-vision configurations, using either the dynamic
or static approach, reported better results when we used data from the spatio-temporal
domains than when we only used data from the temporal one. For spatial-2 and spatial-4,
the disparity values were closer [with respect to the index defined in Equation (27)] to
the ground truth values than those obtained with Temporal. The spatial-8 configuration
was only better than Temporal for the static approach.

For the modified sequences, and for some of the stereo-vision configurations, the
filtering process degraded the already low-quality raw-disparity maps. The more data
from the spatial domain were incorporated, the worse the obtained results. However,
in general, the spatial-2 and spatial-4 filtering configuration improved the quality of the
disparity maps obtained with Temporal. Spatial-8, once again, only improved the results
when using the static approach.

In Figure 5 we show two sets of raw (left vehicle) and spatial-2 (right vehicle) filtered
results using the colour coding depicted in the right image of Figure 2. For the two
sets, spatial-2 (and also spatial-4) managed to discard noisy measurements generating
more homogeneous results than those obtained with raw and Temporal. The left set
corresponds to the segmented static vehicle (i.e. for the static approach) when using the
original sequence and GC-SAD. The evaluation index reported 12.23 and 5.58 for raw
and for spatial-2, respectively. The ground truth value for this frame was of 5.3. See
the top left chart in Figure 6 for the results over the entire sequence for this particular
configuration.

The right set corresponds to the dynamic approach using the intensity-altered se-
quence and SGM-SAD. The evaluation index in this case reported 47.55 for raw, and
42.95 for spatial-2. The ground-truth value equals to 3.0. Extremely bad initial results
made it impossible to generate useful disparity data after the filtering. However, spatial-2
(and also spatial-4) reported better results than raw and Temporal. The results for the
entire sequence for this configuration are depicted on the top-right chart of Figure 6. Note
that in all of the plots shown in this figure, we chose not to show the graph representing
the spatial-4 results, as it is almost identical to that obtained with spatial-2.

Dynamic Approach

For all the sequences, the stereo-configurations showed a consistent behaviour after
the filtering process. When compared with the other filtering approaches, Spatial-8 got
the worst results. In some cases, it even generated worse results than those obtained
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Figure 6: Sample plots of obtained results. Top left : GCM-SAD results for the original
sequence using the static approach. Top right : SGM-SAD results for the intensity-
altered sequence using the dynamic approach. Bottom left : BPM-SAD results for the
Gauss sequence using the dynamic approach. Bottom right : GCM-SAD results for the
Gauss sequence using the dynamic approach.

with raw. As expected, a large neighbourhood degraded the final filtered disparity value.
Spatial-2 and -4 performed almost identically. They showed a better performance than
Temporal or raw in most of the cases.

The improvements obtained for the original sequence were quite minor due to the
fact that the original disparity maps were quite close to the ground truth values. For two
of the stereo-configurations (SGM-CEN and SGM-SAD), the filtering process degraded
a bit the original results. However, for all of the stereo-configurations, spatial-2 and
-4 generated better results than Temporal. The results for the original sequences are
summarised in Table 3. Also, see the top-left chart in Figure 6 for the results of GCM-
SAD across the whole sequence. Note how the filtering process damped correctly the
noisy raw disparity data.

The results obtained for the intensity-altered sequence were similar to those of the
original sequence for stereo-configurations defined using CEN and EPE. These two cost
functions have been reported as robust against this common real-world effect [10]. How-
ever, as depicted in Table 4, a small degradation could be detected in the raw results.
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BPM GCM SGM
CEN EPE SAD CEN EPE SAD CEN EPE SAD

Spatial-2 0.15 0.13 0.17 0.25 0.62 1.46 0.31 0.18 0.17
Spatial-4 0.15 0.13 0.17 0.25 0.62 1.68 0.30 0.20 0.15
Spatial-8 3.81 3.85 4.13 3.46 3.48 4.84 3.23 3.02 3.27
Temporal 0.27 0.24 0.29 0.37 0.69 1.47 0.35 0.52 0.42
Raw 0.23 0.27 0.35 0.25 0.78 2.43 0.27 0.44 0.12

Table 3: Average deviation from the ground truth for the three stereo algorithms using
the dynamic approach. We highlight (using light-blue shading) the lowest average devia-
tion from the ground truth for every stereo-vision algorithm and, using bold font, we also
highlight the results for Temporal for an easier comparison between the spatio-temporal
and the temporal approaches.

Spatial-2 and -4 improved the Temporal and raw results for almost all of the stereo-
configurations. The configurations defined with SAD generated disparity maps that were
near to useless data. For example, the deviation from the ground truth was larger than
for GCM-SAD 85 disparity units. The filtering procedures improved the results, but they
were still “quite far away” from the ground truth vales.

For the blurred sequence we observed that Temporal was the outperforming technique
in 7 out of 9 stereo-configurations. An explanation for this is that the blurring effect
caused that the raw disparity maps were also blurred. Therefore, the information con-
tained in the spatial domain would become less reliable. However, spatial-2 and spatial-4
generated better results than all of those obtained with raw.

It is interesting to note that the best overall performing configuration was defined
using the simple SAD cost function. BPM-SAD defined a quite robust configuration
against this kind of noise. The results for this sequences are summarised in Table 5

For the Gauss sequence, the spatio-temporal approaches performed better than Tem-
poral in 4 out of 9 stereo-configurations, but were always improving the raw results. As
with the blurred sequence, BPM-SAD was the best performing configuration. Compare
the plots in the lower row in Figure 6, where we depict the BPM-SAD results (left) and
GCM-SAD. Even given that spatial-2 and Temporal improve the results by more than 5

BPM GCM SGM
CEN EPE SAD CEN EPE SAD CEN EPE SAD

Spatial-2 0.18 0.17 16.39 0.29 2.51 81.26 0.98 5.12 26.48
Spatial-4 0.17 0.16 16.40 0.28 3.25 81.04 0.92 5.41 26.78
Spatial-8 4.18 3.96 25.09 3.42 6.37 109.88 4.10 8.16 42.06
Temporal 0.36 0.27 16.03 0.41 2.79 82.36 1.18 5.13 27.12
Raw 0.31 0.29 16.41 0.22 4.53 85.55 1.56 8.24 33.09

Table 4: Intensity altered sequence results for the dynamic approach. The layout is that
of Table 3
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BPM GCM SGM
CEN EPE SAD CEN EPE SAD CEN EPE SAD

Spatial-2 2.65 1.41 0.66 5.38 18.09 12.77 12.18 12.12 18.46
Spatial-4 2.66 1.43 0.70 5.29 18.11 14.22 12.39 12.39 18.49
Spatial-8 6.18 1.98 2.83 6.79 18.64 20.00 23.23 20.65 19.75
Temporal 2.68 1.26 0.53 5.06 18.07 13.15 12.94 11.79 18.42
Raw 3.07 1.80 1.26 5.97 18.40 15.77 16.55 16.17 18.52

Table 5: Blurred sequence results for the dynamic approach. The layout is that of Table 3

disparity units, this data is still too much biased. The results generated for this sequence
are summarised in Table 6.

Static Approach

In general, as with the dynamic approach, the spatial-2 and spatial-4 methods re-
ported better results than Temporal and raw. The main difference (with respect to the
dynamic methods) is that for some stereo-configuration in all of the sequences, spatial-8
outperformed Temporal, raw, and the other spatio-temporal methods.

For the original sequence, the raw results were deviated from the ground truth less
than 0.25 disparity units for the majority of the stereo-configurations. Thus, the im-
provement reported from the filtering approaches was marginal and, for some stereo-
configurations, it was even worse than that of the raw disparity maps. The exceptions
were GCM-SAD and SGM-EPE whose raw results obtained the worst evaluation index.
All the spatio-temporal approaches improved by more than 50% compared to the indices
reported by raw, as visible in Table 7. See also the top-left chart in Figure 6 for results
generated using GCM-SAD. Note that the disparity jumps were correctly damped by the
filtering approaches.

Interestingly, for all the filtering techniques, the BPM configurations reported worse
results than those reported by the raw disparity maps. There were almost no noisy
disparity values to be filtered out. It is interesting to note that Temporal and spatial-8
introduced a large amount of noise. Spatial-2 and -4 reported almost the same index as
the raw results.

The results for the intensity altered sequence were similar to those of the original
sequence for the configurations defined by the CEN and EPE cost functions. The raw

BPM GCM SGM
CEN EPE SAD CEN EPE SAD CEN EPE SAD

Spatial-2 2.54 2.24 0.98 3.00 17.63 15.80 2.21 34.81 11.19
Spatial-4 2.67 3.25 0.99 2.90 19.70 19.03 2.34 35.36 11.21
Spatial-8 2.94 3.03 2.26 3.16 23.97 29.29 2.25 42.50 11.50
Temporal 2.32 2.28 1.01 3.06 16.25 15.54 2.29 34.13 11.17
Raw 2.82 4.62 1.33 3.06 23.45 22.50 2.25 40.44 11.23

Table 6: Gauss sequence results for the dynamic approach. The layout is that of Table 3
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BPM GCM SGM
CEN EPE SAD CEN EPE SAD CEN EPE SAD

Spatial-2 0.10 0.11 0.13 0.19 0.34 0.35 0.13 0.11 0.14
Spatial-4 0.10 0.11 0.13 0.19 0.33 0.36 0.16 0.11 0.13
Spatial-8 0.20 0.22 0.20 0.22 0.24 0.45 0.09 0.20 0.19
Temporal 0.22 0.24 0.23 0.25 0.37 0.55 0.18 0.32 0.28
Raw 0.09 0.11 0.13 0.22 0.42 2.94 0.19 1.05 0.25

Table 7: Original sequence results for the static approach. The layout is that of Table 3

BPM GCM SGM
CEN EPE SAD CEN EPE SAD CEN EPE SAD

Spatial-2 0.10 0.11 23.24 0.18 3.65 67.48 0.17 4.51 28.71
Spatial-4 0.10 0.11 23.34 0.19 3.67 67.48 0.17 4.52 28.72
Spatial-8 0.10 0.11 23.34 0.18 3.72 67.37 0.19 4.53 28.74
Temporal 0.10 0.11 23.36 0.19 3.70 67.47 0.20 4.49 28.67
Raw 0.11 0.12 23.38 0.21 3.66 67.44 0.18 4.56 28.80

Table 8: Intensity altered sequence results for the static approach. The layout is that of
Table 3.

results for the SAD cost functions were more than 20 disparity units deviated from GT,
as depicted in Table 8. The filtering process managed to improve “a bit” the noisy
measurements with at least one spatio-temporal approach outperforming Temporal.

For the blurred sequence, for all the configurations, at least one of the spatio-temporal
approaches reported better results than those obtained using Temporal. Interestingly,
for the SGM configurations, spatial-8 was the spatio-temporal approach that obtained
the better results. It is also interesting to note the large difference between the results
generated with dynamic and static approaches using SGM-EPE. For the static approach,
the deviation from the ground truth was 3 times smaller than that obtained with the
dynamic approach. Compare Tables 5 and 9.

For the Gauss sequence, the spatio-temporal approaches performed better than Tem-
poral in 7 out of 9 of the stereo-configurations. It is interesting to note that the BPM and
the GCM-CEN configurations were “quite robust” against this type of noise. Although
the average deviation of raw maps was less than 1 disparity unit, the spatio-temporal
approaches managed to improve the evaluation index when using GCM-CEN.

The poor performance of SGM-EPE is also remarkable. The average deviation for
this configuration was of about 41 disparity units. Post-processing approaches did not
manage to improve the results, which could be an expected result for such a bad kind of
initial data. Note that similar results were obtained with this stereo-configuration when
using the static approach. The results for this sequence are summarised in Table 10
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BPM GCM SGM
CEN EPE SAD CEN EPE SAD CEN EPE SAD

Spatial-2 2.89 2.31 3.16 2.58 3.20 16.55 26.53 5.71 16.22
Spatial-4 2.90 2.31 3.16 2.58 3.20 16.55 26.57 5.72 16.27
Spatial-8 2.90 2.32 3.14 2.60 3.22 16.52 26.52 5.69 16.17
Temporal 2.91 2.32 3.16 2.60 3.23 16.57 26.54 5.69 16.22
Raw 2.90 2.31 3.18 2.60 3.24 16.64 26.64 5.80 16.40

Table 9: Blurred sequence results for the static approach. The layout is that of Table 3

BPM GCM SGM
CEN EPE SAD CEN EPE SAD CEN EPE SAD

Spatial-2 0.39 0.67 0.42 0.68 23.16 21.20 5.08 41.43 19.17
Spatial-4 0.39 0.67 0.42 0.68 23.17 21.25 5.09 41.46 19.23
Spatial-8 0.40 0.69 0.44 0.69 23.14 21.29 5.14 41.53 19.39
Temporal 0.41 0.68 0.42 0.71 23.19 21.23 5.04 41.53 19.14
Raw 0.39 0.65 0.42 0.71 23.00 21.09 5.05 41.29 19.10

Table 10: Gauss sequence results for the static approach. The layout is that of Table 3

6. Conclusions

In this paper we discuss a method for post-processing disparity maps generated by
stereo-vision algorithms. The idea was to merge information from the spatial and tem-
poral domains using iconic Kalman filters and the available ego-motion data from the
ego-vehicle. We aimed at improving previously reported post-processing methods where
only data from the temporal domain was used.

The results obtained in the performed experiments, where three different stereo al-
gorithms where tested using four long synthetic sequences, showed that the inclusion
of spatial information does have a positive impact on the improvement of the disparity
measurements. For the dynamic filtering approaches, if the neighbourhood defining the
spatio-temporal technique is kept small, then results are better than for cases where
filtering only uses data from the temporal domain. It seems that, as expected, larger
neighbourhoods tend to degrade the filtering process. For the static approaches, all
the spatio-temporal filtering techniques reported better results than those obtained with
Temporal. For a few stereo-configurations, spatial-8 reported the best results.

Not all the filtering methods reported better measurements than those from the raw
disparity data. The stereo-configurations generated fairly accurate disparity maps when
using synthetic data as input. However, for those stereo-configurations that generated
noisy disparity maps, the proposed techniques managed to improve the disparity mea-
surements at a better measurable rate. The used modified (i.e. noisy) sequences indicate
also that the proposed approach is potentially useful to improve disparity maps gener-
ated for real-world data. However, we also noticed that when filtering is initialised with
highly inaccurate disparity maps, the proposed post-processing approach is unlikely to
improve disparity estimation.
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