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The use of binary support vector machines (SVMs) in multi-classification is addressed in this paper. Mar-
gins associated to the bi-classifiers, since they depend on the geometrical disposition of the classes being
separated, are, in general, of various magnitudes. In order to overcome this scaling problem, a normali-
zation process should be applied on the SVMs’ outputs. Thus, a new normalization approach is presented
based on the convex hulls that contain the classes to be separated. Furthermore, a theoretical study is
developed which justifies the proposed approach, and an interpretation is provided. An empirical study
is also carried out to compare this normalization with others found in the literature.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

SVMs are learning machines which implement the structural
risk minimization inductive principle to obtain good generalization
on a limited number of learning patterns (Vapnik, 1998). This the-
ory was developed on the basis of a separable binary classification
problem where the optimization criterion is the width of the mar-
gin with ¢,-norm' between the positive and negative examples. An
SVM with a large margin separating two classes has a small VC
dimension, which provides good generalization performance, as it
has been demonstrated in several applications (Cristianini and
Shawe-Taylor, 2000).

The extension of binary classification to multi-classification is
an on-going research issue (Mayoraz and Alpaydin, 1999; Angulo
et al., 2006; Wang et al., 2008). Although some joint SVM methods
exist, the binary ad hoc methods of K one-versus-rest (1-v-r) or
K(K — 1)/2 one-versus-one SVMs for the solution of the multi-class
problem still prevail due, in general, to their good performance and
manageable optimization.

In standard SVM formulation, the output scale is determined
such that outputs for the support vectors are *1. Therefore, a
direct comparison of the output of different SVMs working on
a multi-classification problem is inadequate because scaling
varies for each machine considered. Some kind of normalization
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is therefore crucial for the comparison of outputs of different
SVMs.

The usual procedure to circumvent this scaling problem is the
direct comparison of the real-valued outputs for each machine. It
is argued in this work, however, that the scaling problem cannot
be circumvented but must be tackled by considering some kind
of normalization. Those available in the literature are analyzed,
and a new output normalization method is proposed based on
the convex hulls that contain the classes to be separated. More pre-
cisely, the proposed normalization is based on the problem of find-
ing the nearest point between reduced convex hulls. Furthermore,
the reliability of the standard SVM is taken into account in order to
carry out the normalization.

The remainder of this paper is arranged as follows: Section 2
presents the standard SVM approach. Section 3 puts forward two
output-normalization schemes based on different criteria, and
the proposed normalization is developed. An experiment is carried
out in Section 4 in order to show the accuracy rate of several nor-
malization processes. Finally, conclusions are drawn.

2. Standard SVM approach

Let Z={z}{, ={(X1,Y1),---, (Xn,y,)} be a training set, with
X; € X as the input space and y; € Y = {01, 60,} = {+1, -1} the out-
put space. Let ¢ : X — F be a feature mapping with a dot product
denoted by (-, -). A linear classifier f,,(x) = (x,w) + b is sought in F,
with b € R. Outputs are obtained in the form h,,(x) = sign(fu(x)).

For the standard primal SVM 2-norm formulation (Vapnik,
1998), the optimization problem becomes
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. 1
MiNyerpen 5 [IWI* +CD &
i (1)
st.yi(x,w)+b)+&>1, §>0,z€2

where C is the regularization term and ¢&; are slack variables. The
solution can be written as

w= ZOCiini (2)

where o; are Lagrange multipliers for the dual problem of (1).
Furthermore,

2 =0 3)
0<o<C, i=1,...,n (4)
Gy (X, W) +b) —1+&)=0 i=1,....,n (5)

A vector ¥x; is called a support vector (SV) when «; # 0. Term b is cal-
culated a posteriori (Gonzalez-Abril et al., 2008). The classifier can
be written as

(%) =D _euyi{xix) + b (6)

Note that if o;" and o; are multipliers associated to the vectors
of Zo)={(,y;) € Z,y;=+1} and Z_) = {(x;,y;) € Z,y; =1},
respectively, then 3,017 = 37,00 > 0, since otherwise w = 0.

3. Normalization of the SVM outputs

There are several alternatives, further to that which considers
the signed output, which tackle the scaling problem when compar-
ing the output of different SVMs. Let us consider the two most used
approaches:

MS normalization: This normalization, which is called MS (for
‘Mayoraz scheme’), was introduced in (Mayoraz and Alpaydin,
1999). It is obtained by dividing the classifier f from (6) by the
norm of the solution vector w, that is, the scalar factor is
M — rwy- Hence, the new classifier is f*(x) = 3 f(x). This approach
presents a geometrical interpretation since the norm of the normal
vector of the classifiers fM is one.

SRM normalization: An approach, called SRM (static reliability
measure), was given in (Liu and Zhang, 2005). It takes into account
the value of the objective function of (1). 2f =exp{—(Q|w|’
+C>"¢&)/(Cn)} is considered as the scalar factor in this approach
Hence, the normalized classifier is rewritten in the form
FRe0) = A (x).

The main concept behind both the normalization procedures
above, MS and SRM, is the same: since the classifier with a smaller
|lw||, which corresponds to a larger margin, is considered to be
more accurate in generalization, then le and /%, as reliability mea-
sures, should be larger. Nevertheless, there is not theoretical result
which provides a good explanation for these scalar factors.

A new normalization procedure, denoted by CH (convex hull), is
introduced here, and is based on the location of the nearest point
between the reduced convex hulls of Z,, and Z_, (Bennett and
Bredensteiner, 2000; Bredensteiner and Bennett, 1999). The geo-
metrical interpretation for this point between convex hulls can
be seen in (Bredensteiner and Bennett, 1999).

Let us develop this normalization. The solution for (1) can be
written Gonzalez et al., 2006 as w = iw*, b = ib", for 1 =30/
and w* = Y uix; — > 7%, with {u;} and {v;} as the solution of
the dual problem

min HZu Xi — Zv]x,
Zu,» = ZT/] = 1,
i J

Zj € Z(_)

>0
—

~

=

0<u;,y <

Zi € Z(+)

From (6), the classifier can be written as

(x) =1 <Zu (x;, X) — Zv;(xj,x> + b*) (8)
i J

The / value is such that the margin between the reduced convex
hull of Z4),RZ) = {>uix;, S ui=1, 0<u; < 7 zi€ 2}, and
Z,RZ = {Zjvjxj, Sivi=1,0< 9<%,z € 2}, is non-zero.
In this form, the optimization problem (7) is prevented from col-
lapsing into a trivial solution.

Note that a large value for Z involves small reduced convex hulls
Rz, and RZ_,, and hence the number of support vectors in the
solution w will be high. Since 7,017 = 37,04 = 4, the 2 value can
be interpreted from (7) as the strength that support vectors must
attain in order to obtain good accuracy in generalization.

A different expression for 4 can be obtained from the constraints
in the optimization problem (1). From (5), if o; # 0, then
¥Vi({x;,w) + b) — 1 + & = 0, and by considering (2) and (3),

O Zaz y1 xh +b)71+él)

= <Zociy,~xi, W> +b> oy =Y i+ > wg
i i i i
= wow) +0 - ot = Yo + Y oug = |wiF -2+ Y oug
i j i i

Therefore,

-] (|w||2 ¥ Zm) ©)

Note that if the problem (1) is separable then, from (9), i =1 lw| 1%,
since ¢; = 0 for all i.

Let NEV =#{0o;, o # 0} (the number of SVs for the positive
class), N V) = #{o;, o7 # 0} (the number of SVs for the negative
class), and NSV N7, +NS , (the total number of SVs). From (4),
A= Zl i < NSX)‘ A= Zz i C NS and 21%9 = c Z él
Hence, lower and upper bounds for the value of /1 can be given:

1 . 1 .
5 Iw|* < 2 < min {c NG CNT 5 (|w||2 +C- Zq) }
1

Finally, by applying min {NfX>,NfY> <IN%, a different and more
manageable upper bound can be obtained:

Table 1
Characteristics of the selected data sets.

Data set Patterns Classes Features Data per classes

Iris 150 3 4 All 50
Tae 151 3 5 49, 50, 52
Wine 178 3 13 59, 71, 48
Glass 214 6 9 70,76,17,13, 9, 29
Thyroid 215 3 5 150, 35, 30
Ecoli 330 6 8 141, 77, 52, 35,20,5
Dermat 358 6 34 111, 60, 71, 48, 48, 20
Vowel 990 11 11 All 90
Segment 2310 7 19 All 330




346 L. Gonzalez-Abril et al./ Pattern Recognition Letters 34 (2013) 344-348

Table 2
Results of the experiment where the best mean accuracy rates, its standard deviation and C-parameter are presented.
Data set®N ss MS SRM CH
Iris®®10 94.85 +0.537 (2'9) 91.72 £0.722 (2%) 95.48 +0.524 (21%) 96.96 -+ 0.446 (2)
Tae*1° 48.05+1.223 (2%) 46.75 £ 1.169 (2%) 48.05 +£1.223 (22) 48.08 £ 1.214 (22)
Wine31° 97.94+0322 (27 97.89 +0.330 (2°) 97.93+£0.324 (271 97.71+0.354 (2°1)
Glass®*'° 57.86 +1.102 (2%) 54.57 +1.140 (2?) 58.10 + 1.080 (2%) 58.18 +1.108 (2°)
Thyroid**' 96.11 + 0.448 (2°) 95.21 +0.467 (2°) 95.92 +0.456 (2'°) 96.19 + 0.402 (2°)
E. coli®>® 85.59+0.485 (271) 8575 +0.454 (271) 85.70 4 0.480 (271) 85.53+0.461 (271)
Dermat®>® 96.40 +0.192 (2°) 97.10 +0.210 (2°) 96.53 +0.192 (2°) 96.99 +0.210 (2%)
Vowel'%? 54.81+0.270 (2°) 44.07 +0.300 (2°) 54.79 +0.268 (2°) 54.58 +0.284 (2°)
Segment” 89.64 +0.174 (2%) 90.21+0.117 (2%) 89.73 +0.169 (2%) 91.22+0.115 (2%)
Table 3
The value of C is given a priori in the problem (1), therefore, as p-Value and sample size m in hypothesis tests.
aforementioned, a large value for / results in a high number of sup-
SV ocr s L. Data set SS vs MS MS vs CH SSvs CH m
port vectors N°”. Similarly, looking into the lower bound, a small va- -
lue for 1 implies that the margin separating 2, and 2,2, is lris 0.0000 0.0000 0.0000 7500
w? Tae 0.1090 0.1028 0.9771 7500
large. Hence, the solution will provide good generalization perfor- Wine 0.8297 0.4029 02931 8500
mance as well as being smooth (small VC-dimension), and therefore Glass 0.0002 0.0000 07180 6300
. e . . . Thyroid 0.0126 0.0065 0.8168 6300
its reliability is better than for a sharp solution () value is high). Ecoli 07727 06895 09118 8250
Hence, the proposed approach will consider A" =1lasthe scalar Dermat 0.0083 0.6574 0.0278 8875
factor. The classifier f(x) = 2*'f(x) is considered, that i is, from (8), Vowel 0.0000 0.0000 0.0989 9900
Segment 0.0064 0.0000 0.0000 41200

FH(x) Zu X X) = Y v (x;,x) + b’
J

Unlike the previously considered normalization procedures, the f
function has a specific meaning from the solution of a dual problem
(7) plus a bias. This normalization agrees with Bayesian arguments
advocating that smoother solutions should be given higher-valued
weights.

The schemes used for multiclassification represent a typical
illustration of the problem where the comparison of the output
of different SVMs is carried out. Thus, in the following section, a
study on the use of the proposed normalization procedure when
the 1-v-r SVM scheme is used for multiclassification, is presented
since this is the most widely used implementation (Rifkin and
Klautau, 2004).

4. Normalization in the 1-v-r SVM scheme

Let {61,...,0k} be a set of possible labels with K > 2 and
Zr = {(x,¥;) : ¥; = 6k} In the 1-v-r SVM scheme, in a first decom-
position phase, K binary classifiers are trained to generate func-
tions fj(x) = (w;,x) + b;, 1 <j <K, by separating training vectors
Z; with label 0 from the rest of the training vectors 2\ Z; (j-v-r
SVM). In the reconstruction phase, the label distribution generated
by the trained machines is considered through a merging scheme.

Amap ®: X — {0y,...,0¢} is defined from the set of classifiers
F={fi(x) }Kf1 such that, given a input vector x, it assigns a label as
follows (non normalization or standard scheme - SS):

O%(x) = arg max fi(X) (10)

It is demonstrated below that by means of experimental results
and a statistical study, the use of a normalization process for this
multiclassification problem is straightforward and sufficient.
Firstly, it will be defined:

MS normalzzatlon The classifiers are fM( ) ”W“f,( ), and the

CH normallzatlon The cla551ﬁers are fC“( X) =

/ljc”fj(x). and the
decision function is (H)C”( X) = argmaxj_i__ g fC (%)

Itis worth noting thatif K = 2, then (10) and the three normaliza-
tion approaches provide the same solution since there are only two j-
v-r SVM functions, f; (x) (1-v-2 SVM) and f5 (x) = —f; (x) (2-v-1 SVM).

Note that fi(x), f(x), ff(x) and f#(x) can be interpreted as the
similarity score for the 6; class (Crammer and Singer, 2001), and the
class of x is therefore assigned to that of the classifiers with the
highest score. Hence, the normalization process is very useful when
SVMs are used in order to give a score for the different classes.

5. Experimental results and statistical study

The comparison between normalization and non-normalization
is conducted on nine widely used data sets from UCI Repository.?
The experiment was carried out by following a similar experimental
framework to that used in (Angulo et al., 2006) as suggested in (Hsu
and Lin, 2002). Hence, the training data are normalized in order to
avoid problems with outliers. The test data is normalized accord-
ingly. The selected data sets are: Iris Plants, Teaching assistant eval-
uation, Wine Recognition Data, Glass Identification Database,
Thyroid Disease, Protein Localization Sites (E. coli), Dermatology, Vo-
wel Recognition Data, and Image Segmentation. A summary of the
characteristics of these data sets is shown in Table 1.

Performance for the 1-v-r SVM, in the form of accuracy rate, is eval-
uated on models using the linear kernel which is chosen as a baseline
for the empirical evaluation, and C is explored on a one-dimensional
7297 210] .

The criteria employed to estimate the generalized accuracy is
the N-fold cross-validation on the whole set of training data.? This
procedure is repeated R times, according to the size of the data set, in
order to ensure good statistical behavior.

The best cross-validation mean rate for the values of C, its
standard deviation, and the value of the optimal parameter C are
reported in Table 2 for the SS, MS,SRM and CH schemes.

grid with the following values: C = {2’3, 272

2 Available at http://www.ics.uci.edu/~mlearn/MLRepository.html.
3 Except for the Segment data set, where the whole data is randomly partitioned 20
times by stratified sampling into a training set (with 250 instances) and a test set.
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Table 4
Results of the experiment where the best mean accuracy rates, its standard deviation and C-parameter are presented for a polinomial kernel of degree 2.
Data set®N Ss MS SRM CH
Iris®®10 97.07 +£0.398 (2°) 96.97 £0.410 (21 97.07 +£0.398 (2°) 97.37+0.394 (21
Tae*1° 58.71 +1.339 (25) 59.11 + 1.385 (2°) 58.58 +1.337 (25) 58.84 + 1.342 (25)
Wine®*1° 96.90 + 0.364 (2*2) 96.82 +0.370 (22 96.90 + 0.364 (272) 97.18 + 0.358 (272)
Glass®*1° 68.08 + 0.909 (2°) 69.66 + 0.869 (2°) 68.85+0.912 (2%) 70.05 +0.942 (2*)
Thyroid**'® 97.40 +0.290 (2°) 97.34+0.297 (27" 97.40 £ 0.290 (2°) 97.44 + 0.300 (2°)
Ecoli*>® 84.83 +0.476 (27%) 84.93 +0.455 (2°) 87.75 +0.456 (272) 84.77 +0.438 (271
Dermat?®® 95.61+0.177 (2°) 95.47 +0.177 (2°) 95.61+0.177 (2%) 95.44 +0.190 (2%)
Vowel'%? 86.72+0.191 (2') 86.67 +0.218 (2') 86.81+0.192 (2') 88.89 +0.205 (2')
Segment 90.79 +0.101 (271) 91.62 +0.105 (2°) 90.79+0.101 271) 91.97 +0.109 271)
Table 5
Results of the experiment where the best mean accuracy rates, its standard deviation and C-parameter are presented for a polynomial kernel of degree 3.
Data set® SS MS SRM CH
Iris>*1° 97.07 £0.425 (27 1) 97.20+£0.417 (271) 97.07 £0.425 (271) 97.22+0417 (271)
Tae%010 56.40+ 1216 (2°1) 56.80+1.204 (2°") 56.7141.219 (27) 56931204 27
Wine>10 96.47 + 0.408 (2°2) 96.08 +0.433 (272 96.47 +0.408 (22) 96.08 +0.433 (272)
Glass®*'° 68.56 + 0.951 (22) 69.81 + 0.904 (22) 68.75 +0.951 (22) 70.15 + 0.946 (22)
Thyroid®*'® 96.25 + 0.405 (2°) 96.22 +£0.397 (2°) 96.24 + 0.405 (2°) 96.22 +0.421 (2°)
Ecoli*>? 83.13 + 0.460 (272) 83.09 + 0.442 (272 83.19+0.448 (272) 83.27 +0.409 (272)
Dermat®>® 95.04 +0.230 (2*) 94.10+0.250 (2%) 95.02 +0.230 (2%) 94.31+0.246 (2%)
Vowel'0? 89.27+0.210 (2°) 91.29+0.170 (2°) 89.27+£0.210 (2°) 91.31+0.179 (2°)
Segment 90.75+0.121 (2°) 91.76 £0.114 (2°) 90.76 +0.120 (2°) 92.26+0.104 (2°)
Table 6
Results of the experiment where the best mean accuracy rates, C-parameter and g-parameter are presented.
Data set®N Ss MS SRM CH
Iris>*1° 96.27 +0.520 (22,21) 96.13+0.512 (22,2) 96.26 +0.520 (22,2) 96.31+0.520 (22,2)
Tae10 60.40+1221(2°.2 ") 60.71+1223 (2°.2°) 6030+1217 (2°.2°") 60.63:+1.201 (2°,27)
Wine®*1° 98.51 +0.282(2%,2) 98.54 £0.271 (2°,2") 98.51 4 0.282 (2°,2") 98,55 + 0.271(2°,2")
Glass*1° 74.61+1.040 (2°,2°) 74.44 +1.028 (24,2°) 74.10+1.037 (24,2°) 74.53 +1.074 (25, 20)
Thyroid®*!° 97.27 +0.349(2%,2") 97.43+0.328 (2°,2 1) 97.27 +0.349 (2°,2) 97.37+0.360 (2°,2")
Ecoli*>® 86.60 + 0.410 (23,2") 86.59 +0.350 (23,21) 86.56 +0.395(23,2") 86.54 +0.358 (23,21)
Dermat*>® 96.65 £ 0.145 (24,2") 96.63 = 0.144(2*,2%) 96.59 + 0.150(2%,21) 96.66 + 0.145 (2*,2)
Vowel'%? 95.24 +0.250 (2°,2%) 94.6 +0.2845 (27,21) 94.60 + 0.216 (2°,2°) 95.30 + 0.220 (27,2%)
Segment 90.06 + 0.176 (23,22) 89.85 +0.165 (23,2?) 90.07 +0.175 (23,2?) 90.54 + 0.146(23,2%)

Some conclusions can be drawn from the experimentation
carried out:

e The accuracy rate attained for the CH normalization is the best
in 5 of the 9 data sets (see Table 2). Furthermore, there are no
statistically significant differences between the accuracy rates
of the CH normalization and the best obtained accuracy rates
(see Table 3), when it is not the winner.

e The accuracy rate attained for the standard approach is improved
in 7 of the 9 data sets using some kind of normalization.

e The MS normalization is the best option in two cases. Never-
theless, its results have been very poor for another two cases
(Glass and Vowel). This is due to the fact that only the value
of ||wj|| is taken into account in the scalar factor and, in these
cases, the value of CY" ¢; is high due to the errors (low accu-
racy rate).

e The computational cost in each normalization is small since the
norm of the normal vector (MS), the value of the decision func-
tion (SRM) and the sum of the Lagrange multipliers (CH) are
usually all calculated in the optimization problem. However, if
these values were not calculated directly then the complexity
would be O(n).

Hypothesis tests have been carried out in order to test whether
there are statistically significant differences between the accuracy
rates. Note that the SRM approach is omitted since its mean accu-
racy rates are not the best in any data set.

Let X; = 0 be assigned when the i machine provides an error for
the pattern x;, and X; = 1 otherwise. Hence, X; follows a Bernoulli
distribution, X; ~ B(p;), where p; is the probability that the i ma-
chine assigns a correct class for a new input. Given two machines,
by testing Ho:p;=p; versus H;:p;#p;, the statistic is

Vi (X X))

Z=—7222279 _ ~ N(0,1), where X; and X; are the mean sample

Xi(1-X)+X;(1-X;)
of size n of the X; and X; variables, respectively. The p-value for
each hypothesis test is given in Table 3.

From Table 3, it can be observed that the normalization proce-
dure has significantly improved the accuracy rate in Iris, Dermatol-
ogy and Segment data sets with respect to the standard scheme,
since all p-values are less than 2.78%.

As an important result, the accuracy rate for the CH normal-
ization is significantly better than the accuracy rate for the SS
schemes in 3 out of the 9 data sets. Furthermore, there are
no statistically significant differences between the accuracy
rates between these two approaches in the rest of the data sets.
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As aforementioned, a conclusion is that if the accuracy rate in a
data set is small then the MS normalization must not be considered
since its scalar factor fails to take the errors into account.

The same conclusions obtained from the experimentation with
the linear kernel are derived when nonlinear kernels are employed.
Thus, three experiments with polynomial kernels (degrees two and
three) and the RBF kernel are carried out, similarly to the linear
kernel, whose results are provided in Tables 4-6.

6. Conclusions

Output normalization is an absolutely necessary procedure for
the comparison of outputs from different SVMs, since scaling varies
for each machine considered.

Note that in the experimentation, the training and test data are
normalized in order to prevent problems with outliers. Hence, the
argument defended in this paper is that the output must also be
normalized.

The CH normalization process is a good alternative since

o It has a rigorous theoretical foundation based on the reliability
of the classifier.

o [t follows Bayesian arguments advocating that smoother solu-
tions should be given higher-valued weights.

o It has been empirically demonstrated that the accuracy rate of
this normalization process is significantly better than the accu-
racy rate of the non-normalization in some data sets. No statis-
tically significant differences between the accuracy rates of
these two approaches exist in the rest of the data sets.
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