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The use of binary support vector machines (SVMs) in multi-classification is addressed in this paper. Mar-
gins associated to the bi-classifiers, since they depend on the geometrical disposition of the classes being
separated, are, in general, of various magnitudes. In order to overcome this scaling problem, a normali-
zation process should be applied on the SVMs’ outputs. Thus, a new normalization approach is presented
based on the convex hulls that contain the classes to be separated. Furthermore, a theoretical study is
developed which justifies the proposed approach, and an interpretation is provided. An empirical study
is also carried out to compare this normalization with others found in the literature.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

SVMs are learning machines which implement the structural
risk minimization inductive principle to obtain good generalization
on a limited number of learning patterns (Vapnik, 1998). This the-
ory was developed on the basis of a separable binary classification
problem where the optimization criterion is the width of the mar-
gin with ‘2-norm1 between the positive and negative examples. An
SVM with a large margin separating two classes has a small VC
dimension, which provides good generalization performance, as it
has been demonstrated in several applications (Cristianini and
Shawe-Taylor, 2000).

The extension of binary classification to multi-classification is
an on-going research issue (Mayoraz and Alpaydin, 1999; Angulo
et al., 2006; Wang et al., 2008). Although some joint SVM methods
exist, the binary ad hoc methods of K one-versus-rest (1-v-r) or
K(K � 1)/2 one-versus-one SVMs for the solution of the multi-class
problem still prevail due, in general, to their good performance and
manageable optimization.

In standard SVM formulation, the output scale is determined
such that outputs for the support vectors are ±1. Therefore, a
direct comparison of the output of different SVMs working on
a multi-classification problem is inadequate because scaling
varies for each machine considered. Some kind of normalization
ll rights reserved.
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2011).
is therefore crucial for the comparison of outputs of different
SVMs.

The usual procedure to circumvent this scaling problem is the
direct comparison of the real-valued outputs for each machine. It
is argued in this work, however, that the scaling problem cannot
be circumvented but must be tackled by considering some kind
of normalization. Those available in the literature are analyzed,
and a new output normalization method is proposed based on
the convex hulls that contain the classes to be separated. More pre-
cisely, the proposed normalization is based on the problem of find-
ing the nearest point between reduced convex hulls. Furthermore,
the reliability of the standard SVM is taken into account in order to
carry out the normalization.

The remainder of this paper is arranged as follows: Section 2
presents the standard SVM approach. Section 3 puts forward two
output-normalization schemes based on different criteria, and
the proposed normalization is developed. An experiment is carried
out in Section 4 in order to show the accuracy rate of several nor-
malization processes. Finally, conclusions are drawn.
2. Standard SVM approach

Let Z ¼ zif gn
i¼1 ¼ ðx1; y1Þ; . . . ; ðxn; ynÞf g be a training set, with

xi 2 X as the input space and yi 2 Y ¼ h1; h2f g ¼ þ1;�1f g the out-
put space. Let / : X ! F be a feature mapping with a dot product
denoted by h�; �i. A linear classifier fwðxÞ ¼ hx;wi þ b is sought in F ,
with b 2 R. Outputs are obtained in the form hwðxÞ ¼ signðfwðxÞÞ.

For the standard primal SVM 2-norm formulation (Vapnik,
1998), the optimization problem becomes
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minw2F ;b2R
1
2
kwk2 þ C

X
i

ni

s:t: yi hxi;wi þ bð Þ þ ni P 1; ni P 0; zi 2 Z
ð1Þ

where C is the regularization term and ni are slack variables. The
solution can be written as
w ¼
X

i

aiyixi ð2Þ

where ai are Lagrange multipliers for the dual problem of (1).
Furthermore,
X
i

aiyi ¼ 0 ð3Þ

0 6 ai 6 C; i ¼ 1; . . . ;n ð4Þ
aiðyi hxi;wi þ bð Þ � 1þ niÞ ¼ 0 i ¼ 1; . . . ; n ð5Þ

A vector xi is called a support vector (SV) when ai – 0. Term b is cal-
culated a posteriori (Gonzalez-Abril et al., 2008). The classifier can
be written as
f ðxÞ ¼
X

i

aiyihxi; xi þ b ð6Þ

Note that if aþi and a�j are multipliers associated to the vectors
of ZðþÞ ¼ ðxi; yiÞ 2 Z; yi ¼ þ1f g and Zð�Þ ¼ ðxj; yjÞ 2 Z; yj ¼ �1

� �
,

respectively, then
P

ia
þ
i ¼

P
ja�j > 0, since otherwise w ¼ 0.
Table 1
Characteristics of the selected data sets.

Data set Patterns Classes Features Data per classes

Iris 150 3 4 All 50
Tae 151 3 5 49, 50, 52
Wine 178 3 13 59, 71, 48
Glass 214 6 9 70, 76, 17, 13, 9, 29
Thyroid 215 3 5 150, 35, 30
Ecoli 330 6 8 141, 77, 52, 35,20,5
Dermat 358 6 34 111, 60, 71, 48, 48, 20
Vowel 990 11 11 All 90
Segment 2310 7 19 All 330
3. Normalization of the SVM outputs

There are several alternatives, further to that which considers
the signed output, which tackle the scaling problem when compar-
ing the output of different SVMs. Let us consider the two most used
approaches:

MS normalization: This normalization, which is called MS (for
‘Mayoraz scheme’), was introduced in (Mayoraz and Alpaydin,
1999). It is obtained by dividing the classifier f from (6) by the
norm of the solution vector w, that is, the scalar factor is
kM ¼ 1

kwk. Hence, the new classifier is f MðxÞ ¼ 1
kwk f ðxÞ. This approach

presents a geometrical interpretation since the norm of the normal
vector of the classifiers f M is one.

SRM normalization: An approach, called SRM (static reliability
measure), was given in (Liu and Zhang, 2005). It takes into account
the value of the objective function of (1). kR ¼ expf�ð12 kwk

2

þC
P

niÞ=ðCnÞg is considered as the scalar factor in this approach.
Hence, the normalized classifier is rewritten in the form
f RðxÞ ¼ kRf ðxÞ.

The main concept behind both the normalization procedures
above, MS and SRM, is the same: since the classifier with a smaller
kwk, which corresponds to a larger margin, is considered to be
more accurate in generalization, then 1

kwk and kR, as reliability mea-
sures, should be larger. Nevertheless, there is not theoretical result
which provides a good explanation for these scalar factors.

A new normalization procedure, denoted by CH (convex hull), is
introduced here, and is based on the location of the nearest point
between the reduced convex hulls of ZðþÞ and Zð�Þ (Bennett and
Bredensteiner, 2000; Bredensteiner and Bennett, 1999). The geo-
metrical interpretation for this point between convex hulls can
be seen in (Bredensteiner and Bennett, 1999).

Let us develop this normalization. The solution for (1) can be
written González et al., 2006 as w ¼ kw�; b ¼ kb�, for k ¼

P
ia
þ
i

and w� ¼
P

iu
�
i xi �

P
jv�j xj, with u�i

� �
and fv�j g as the solution of

the dual problem
min
u;v

1
2

X
i

uixi �
X

j

v jxj

�����
�����

2

s:t:
X

i

ui ¼
X

j

v j ¼ 1; 0 6 ui; v j 6
C
k

zi 2 ZðþÞ; zj 2 Zð�Þ

ð7Þ

From (6), the classifier can be written as

f ðxÞ ¼ k
X

i

u�i hxi; xi �
X

j

v�j hxj; xi þ b�
 !

ð8Þ

The k value is such that the margin between the reduced convex
hull of ZðþÞ;RZðþÞ ¼ f

P
iuixi;

P
iui ¼ 1; 0 6 ui 6

C
k ; zi 2 ZðþÞg, and

Zð�Þ;RZð�Þ ¼ f
P

jv jxj;
P

iv j ¼ 1; 0 6 v j 6
C
k ; zj 2 Zð�Þg, is non-zero.

In this form, the optimization problem (7) is prevented from col-
lapsing into a trivial solution.

Note that a large value for k involves small reduced convex hulls
RZðþÞ and RZð�Þ, and hence the number of support vectors in the
solution w will be high. Since

P
ia
þ
i ¼

P
ja�j ¼ k, the k value can

be interpreted from (7) as the strength that support vectors must
attain in order to obtain good accuracy in generalization.

A different expression for k can be obtained from the constraints
in the optimization problem (1). From (5), if ai – 0, then
yi hxi;wi þ bð Þ � 1þ ni ¼ 0, and by considering (2) and (3),

0 ¼
X

i

aiðyi hxi;wi þ bð Þ � 1þ niÞ

¼
X

i

aiyixi;w

* +
þ b
X

i

aiyi �
X

i

ai þ
X

i

aini

¼ hw;wi þ 0�
X

i

aþi �
X

j

a�j þ
X

i

aini ¼ kwk2 � 2kþ
X

i

aini

Therefore,

k ¼ 1
2
kwk2 þ

X
i

aini

 !
ð9Þ

Note that if the problem (1) is separable then, from (9), k ¼ 1
2 kwk

2,
since ni ¼ 0 for all i.

Let NSV
ðþÞ ¼ # aþi ; a

þ
i – 0

� �
(the number of SVs for the positive

class), NSV
ð�Þ ¼ # a�i ; a�i – 0

� �
(the number of SVs for the negative

class), and NSV ¼ NSV
ðþÞ þ NSV

ð�Þ (the total number of SVs). From (4),
k ¼

P
ia
þ
i 6 C � NSV

ðþÞ, k ¼
P

ia�i 6 C � NSV
ð�Þ, and

P
iaini 6 C �

P
ini.

Hence, lower and upper bounds for the value of k can be given:

1
2
kwk2

6 k 6 min C � NSV
ðþÞ; C � NSV

ð�Þ;
1
2
kwk2 þ C �

X
i

ni

 !( )

Finally, by applying min NSV
ðþÞ;N

SV
ð�Þ

n o
6

1
2 NSV , a different and more

manageable upper bound can be obtained:

1
2
kwk2

6 k 6
C
2

NSV



Table 2
Results of the experiment where the best mean accuracy rates, its standard deviation and C-parameter are presented.

Data setR,N SS MS SRM CH

Iris50,10
94:85� 0:537 ð210Þ 91:72� 0:722 ð22Þ 95:48� 0:524 ð210Þ 96:96� 0:446 ð21Þ

Tae50,10
48:05� 1:223 ð22Þ 46:75� 1:169 ð22Þ 48:05� 1:223 ð22Þ 48:08� 1:214 ð22Þ

Wine50,10
97:94� 0:322 ð2�1Þ 97:89� 0:330 ð20Þ 97:93� 0:324 ð2�1Þ 97:71� 0:354 ð2�1Þ

Glass30,10
57:86� 1:102 ð23Þ 54:57� 1:140 ð22Þ 58:10� 1:080 ð23Þ 58:18� 1:108 ð23Þ

Thyroid30,10
96:11� 0:448 ð29Þ 95:21� 0:467 ð23Þ 95:92� 0:456 ð210Þ 96:19� 0:402 ð25Þ

E. coli25,5
85:59� 0:485 ð2�1Þ 85:75� 0:454 ð2�1Þ 85:70� 0:480 ð2�1Þ 85:53� 0:461 ð2�1Þ

Dermat25,5
96:40� 0:192 ð20Þ 97:10� 0:210 ð23Þ 96:53� 0:192 ð20Þ 96:99� 0:210 ð23Þ

Vowel10,2
54:81� 0:270 ð20Þ 44:07� 0:300 ð20Þ 54:79� 0:268 ð20Þ 54:58� 0:284 ð20Þ

Segment⁄ 89:64� 0:174 ð23Þ 90:21� 0:117 ð23Þ 89:73� 0:169 ð23Þ 91:22� 0:115 ð23Þ

Table 3
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p-Value and sample size m in hypothesis tests.

Data set SS vs MS MS vs CH SS vs CH m

Iris 0.0000 0:0000 0.0000 7500
Tae 0:1090 0:1028 0:9771 7500
Wine 0:8297 0:4029 0:2931 8500
Glass 0:0002 0:0000 0:7180 6300
Thyroid 0:0126 0:0065 0:8168 6300
Ecoli 0:7727 0:6895 0:9118 8250
Dermat 0.0083 0:6574 0.0278 8875
Vowel 0:0000 0:0000 0:0989 9900
Segment 0.0064 0:0000 0.0000 41200
The value of C is given a priori in the problem (1), therefore, as
aforementioned, a large value for k results in a high number of sup-
port vectors NSV . Similarly, looking into the lower bound, a small va-
lue for k implies that the margin separating ZðþÞ and Zð�Þ; 2

kwk2, is

large. Hence, the solution will provide good generalization perfor-
mance as well as being smooth (small VC-dimension), and therefore
its reliability is better than for a sharp solution (k value is high).

Hence, the proposed approach will consider kCH ¼ 1
k as the scalar

factor. The classifier f CHðxÞ ¼ kCHf ðxÞ is considered, that is, from (8),

f CHðxÞ ¼
X

i

u�i hxi; xi �
X

j

v�j hxj; xi þ b�

Unlike the previously considered normalization procedures, the f CH

function has a specific meaning from the solution of a dual problem
(7) plus a bias. This normalization agrees with Bayesian arguments
advocating that smoother solutions should be given higher-valued
weights.

The schemes used for multiclassification represent a typical
illustration of the problem where the comparison of the output
of different SVMs is carried out. Thus, in the following section, a
study on the use of the proposed normalization procedure when
the 1-v-r SVM scheme is used for multiclassification, is presented
since this is the most widely used implementation (Rifkin and
Klautau, 2004).
2 Available at http://www.ics.uci.edu/�mlearn/MLRepository.html.
3 Except for the Segment data set, where the whole data is randomly partitioned 20
mes by stratified sampling into a training set (with 250 instances) and a test set.
4. Normalization in the 1-v-r SVM scheme

Let h1; . . . ; hKf g be a set of possible labels with K P 2 and
Zk ¼ fðxi; yiÞ : yi ¼ hkg. In the 1-v-r SVM scheme, in a first decom-
position phase, K binary classifiers are trained to generate func-
tions fjðxÞ ¼ hwj; xi þ bj; 1 6 j 6 K , by separating training vectors
Zj with label hj from the rest of the training vectors Z n Zj (j-v-r
SVM). In the reconstruction phase, the label distribution generated
by the trained machines is considered through a merging scheme.

A map H : X ! h1; . . . ; hKf g is defined from the set of classifiers
F ¼ fjðxÞ

� �K
j¼1 such that, given a input vector x, it assigns a label as

follows (non-normalization or standard scheme – SS):

HSSðxÞ ¼ arg max
j¼1;...;K

fjðxÞ ð10Þ

It is demonstrated below that by means of experimental results
and a statistical study, the use of a normalization process for this
multiclassification problem is straightforward and sufficient.
Firstly, it will be defined:

MS normalization: The classifiers are f M
j ðxÞ ¼ 1

kwjk
fjðxÞ, and the

decision function is HMðxÞ ¼ arg maxj¼1;...;K f M
j ðxÞ.

SRM normalization: The classifiers, f R
j ðxÞ ¼ kR

j fjðxÞ, and the deci-
sion function, HRðxÞ ¼ arg maxj¼1;...;K f R

j ðxÞ, are considered.
CH normalization: The classifiers are f CH

j ðxÞ ¼ kCH
j fjðxÞ, and the

decision function is HCHðxÞ ¼ arg maxj¼1;...;K f CH
j ðxÞ.
It is worth noting that if K ¼ 2, then (10) and the three normaliza-
tion approaches provide the same solution since there are only two j-
v-r SVM functions, f1ðxÞ (1-v-2 SVM) and f2ðxÞ ¼ �f1ðxÞ (2-v-1 SVM).

Note that fjðxÞ; f M
j ðxÞ; f R

j ðxÞ and f CH
j ðxÞ can be interpreted as the

similarity score for the hj class (Crammer and Singer, 2001), and the
class of x is therefore assigned to that of the classifiers with the
highest score. Hence, the normalization process is very useful when
SVMs are used in order to give a score for the different classes.
5. Experimental results and statistical study

The comparison between normalization and non-normalization
is conducted on nine widely used data sets from UCI Repository.2

The experiment was carried out by following a similar experimental
framework to that used in (Angulo et al., 2006) as suggested in (Hsu
and Lin, 2002). Hence, the training data are normalized in order to
avoid problems with outliers. The test data is normalized accord-
ingly. The selected data sets are: Iris Plants, Teaching assistant eval-
uation, Wine Recognition Data, Glass Identification Database,
Thyroid Disease, Protein Localization Sites (E. coli), Dermatology, Vo-
wel Recognition Data, and Image Segmentation. A summary of the
characteristics of these data sets is shown in Table 1.

Performance for the 1-v-r SVM, in the form of accuracy rate, is eval-
uated on models using the linear kernel which is chosen as a baseline
for the empirical evaluation, and C is explored on a one-dimensional

grid with the following values: C ¼ 2�3;2�2; . . . ;29;210
h i

.

The criteria employed to estimate the generalized accuracy is
the N-fold cross-validation on the whole set of training data.3 This
procedure is repeated R times, according to the size of the data set, in
order to ensure good statistical behavior.

The best cross-validation mean rate for the values of C, its
standard deviation, and the value of the optimal parameter C are
reported in Table 2 for the SS;MS; SRM and CH schemes.
ti
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Table 4
Results of the experiment where the best mean accuracy rates, its standard deviation and C-parameter are presented for a polinomial kernel of degree 2.

Data setR,N SS MS SRM CH

Iris50,10
97:07� 0:398 ð20Þ 96:97� 0:410 ð21Þ 97:07� 0:398 ð20Þ 97:37� 0:394 ð21Þ

Tae50,10
58:71� 1:339 ð26Þ 59:11� 1:385 ð26Þ 58:58� 1:337 ð26Þ 58:84� 1:342 ð26Þ

Wine50,10
96:90� 0:364 ð2�2Þ 96:82� 0:370 ð2�2Þ 96:90� 0:364 ð2�2Þ 97:18� 0:358 ð2�2Þ

Glass30,10
68:08� 0:909 ð23Þ 69:66� 0:869 ð25Þ 68:85� 0:912 ð23Þ 70:05� 0:942 ð24Þ

Thyroid30,10
97:40� 0:290 ð20Þ 97:34� 0:297 ð2�1Þ 97:40� 0:290 ð20Þ 97:44� 0:300 ð20Þ

Ecoli25,5
84:83� 0:476 ð2�2Þ 84:93� 0:455 ð20Þ 87:75� 0:456 ð2�2Þ 84:77� 0:438 ð2�1Þ

Dermat25,5
95:61� 0:177 ð23Þ 95:47� 0:177 ð23Þ 95:61� 0:177 ð23Þ 95:44� 0:190 ð23Þ

Vowel10,2
86:72� 0:191 ð21Þ 86:67� 0:218 ð21Þ 86:81� 0:192 ð21Þ 88:89� 0:205 ð21Þ

Segment 90:79� 0:101 ð2�1Þ 91:62� 0:105 ð20Þ 90:79� 0:101 ð2�1Þ 91:97� 0:109 ð2�1Þ

Table 5
Results of the experiment where the best mean accuracy rates, its standard deviation and C-parameter are presented for a polynomial kernel of degree 3.

Data setR,N SS MS SRM CH

Iris50,10
97:07� 0:425 ð2�1Þ 97:20� 0:417 ð2�1Þ 97:07� 0:425 ð2�1Þ 97:22� 0:417 ð2�1Þ

Tae50,10
56:40� 1:216 ð2�1Þ 56:80� 1:204 ð2�1Þ 56:71� 1:219 ð2�1Þ 56:93� 1:204 ð2�1Þ

Wine50,10
96:47� 0:408 ð2�2Þ 96:08� 0:433 ð2�2Þ 96:47� 0:408 ð2�2Þ 96:08� 0:433 ð2�2Þ

Glass30,10
68:56� 0:951 ð22Þ 69:81� 0:904 ð22Þ 68:75� 0:951 ð22Þ 70:15� 0:946 ð22Þ

Thyroid30,10
96:25� 0:405 ð20Þ 96:22� 0:397 ð20Þ 96:24� 0:405 ð20Þ 96:22� 0:421 ð20Þ

Ecoli25,5
83:13� 0:460 ð2�2Þ 83:09� 0:442 ð2�2Þ 83:19� 0:448 ð2�2Þ 83:27� 0:409 ð2�2Þ

Dermat25,5
95:04� 0:230 ð24Þ 94:10� 0:250 ð24Þ 95:02� 0:230 ð24Þ 94:31� 0:246 ð24Þ

Vowel10,2
89:27� 0:210 ð20Þ 91:29� 0:170 ð20Þ 89:27� 0:210 ð20Þ 91:31� 0:179 ð20Þ

Segment 90:75� 0:121 ð20Þ 91:76� 0:114 ð20Þ 90:76� 0:120 ð20Þ 92:26� 0:104 ð20Þ

Table 6
Results of the experiment where the best mean accuracy rates, C-parameter and r-parameter are presented.

Data setR,N SS MS SRM CH

Iris50,10
96:27� 0:520 ð22;21Þ 96:13� 0:512 ð22;21Þ 96:26� 0:520 ð22;21Þ 96:31� 0:520 ð22;21Þ

Tae50,10
60:40� 1:221ð26;2�1Þ 60:71� 1:223 ð26;2�1Þ 60:30� 1:217 ð26;2�1Þ 60:63� 1:201 ð26;2�1Þ

Wine50,10
98:51� 0:282ð25;21Þ 98:54� 0:271 ð25;21Þ 98:51� 0:282 ð25;21Þ 98:55� 0:271ð25;21Þ

Glass30,10
74:61� 1:040 ð25;20Þ 74:44� 1:028 ð24;20Þ 74:10� 1:037 ð24;20Þ 74:53� 1:074 ð25;20Þ

Thyroid30,10
97:27� 0:349ð25;21Þ 97:43� 0:328 ð25;21Þ 97:27� 0:349 ð25;21Þ 97:37� 0:360 ð25;21Þ

Ecoli25,5
86:60� 0:410 ð23;21Þ 86:59� 0:350 ð23;21Þ 86:56� 0:395ð23;21Þ 86:54� 0:358 ð23;21Þ

Dermat25,5
96:65� 0:145 ð24;21Þ 96:63� 0:144ð24;20Þ 96:59� 0:150ð24;21Þ 96:66� 0:145 ð24;21Þ

Vowel10,2
95:24� 0:250 ð23;20Þ 94:6� 0:2845 ð27;21Þ 94:60� 0:216 ð25;20Þ 95:30� 0:220 ð27;22Þ

Segment 90:06� 0:176 ð23;22Þ 89:85� 0:165 ð23;22Þ 90:07� 0:175 ð23;22Þ 90:54� 0:146ð23;22Þ
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Some conclusions can be drawn from the experimentation
carried out:

� The accuracy rate attained for the CH normalization is the best
in 5 of the 9 data sets (see Table 2). Furthermore, there are no
statistically significant differences between the accuracy rates
of the CH normalization and the best obtained accuracy rates
(see Table 3), when it is not the winner.
� The accuracy rate attained for the standard approach is improved

in 7 of the 9 data sets using some kind of normalization.
� The MS normalization is the best option in two cases. Never-

theless, its results have been very poor for another two cases
(Glass and Vowel). This is due to the fact that only the value
of kwjk is taken into account in the scalar factor and, in these
cases, the value of C

P
ni is high due to the errors (low accu-

racy rate).
� The computational cost in each normalization is small since the

norm of the normal vector (MS), the value of the decision func-
tion (SRM) and the sum of the Lagrange multipliers (CH) are
usually all calculated in the optimization problem. However, if
these values were not calculated directly then the complexity
would be OðnÞ.
Hypothesis tests have been carried out in order to test whether
there are statistically significant differences between the accuracy
rates. Note that the SRM approach is omitted since its mean accu-
racy rates are not the best in any data set.

Let Xi ¼ 0 be assigned when the i machine provides an error for
the pattern xi, and Xi ¼ 1 otherwise. Hence, Xi follows a Bernoulli
distribution, Xi � BðpiÞ, where pi is the probability that the i ma-
chine assigns a correct class for a new input. Given two machines,
by testing H0 : pi ¼ pj versus H1 : pi – pj, the statistic is

Z ¼
ffiffi
n
p
ðXi�XjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xið1�XiÞþXjð1�XjÞ
p � Nð0;1Þ, where Xi and Xj are the mean sample

of size n of the Xi and Xj variables, respectively. The p-value for
each hypothesis test is given in Table 3.

From Table 3, it can be observed that the normalization proce-
dure has significantly improved the accuracy rate in Iris, Dermatol-
ogy and Segment data sets with respect to the standard scheme,
since all p-values are less than 2.78%.

As an important result, the accuracy rate for the CH normal-
ization is significantly better than the accuracy rate for the SS
schemes in 3 out of the 9 data sets. Furthermore, there are
no statistically significant differences between the accuracy
rates between these two approaches in the rest of the data sets.
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As aforementioned, a conclusion is that if the accuracy rate in a
data set is small then the MS normalization must not be considered
since its scalar factor fails to take the errors into account.

The same conclusions obtained from the experimentation with
the linear kernel are derived when nonlinear kernels are employed.
Thus, three experiments with polynomial kernels (degrees two and
three) and the RBF kernel are carried out, similarly to the linear
kernel, whose results are provided in Tables 4–6.
6. Conclusions

Output normalization is an absolutely necessary procedure for
the comparison of outputs from different SVMs, since scaling varies
for each machine considered.

Note that in the experimentation, the training and test data are
normalized in order to prevent problems with outliers. Hence, the
argument defended in this paper is that the output must also be
normalized.

The CH normalization process is a good alternative since

� It has a rigorous theoretical foundation based on the reliability
of the classifier.
� It follows Bayesian arguments advocating that smoother solu-

tions should be given higher-valued weights.
� It has been empirically demonstrated that the accuracy rate of

this normalization process is significantly better than the accu-
racy rate of the non-normalization in some data sets. No statis-
tically significant differences between the accuracy rates of
these two approaches exist in the rest of the data sets.
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