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ABSTRACT 

This paper proposes a novel algorithm for multi-focus thermal image fusion. The algorithm is based 

on local activity analysis and advanced pre-selection of images into fusion process. The algorithm 

improves the object temperature measurement error up to 5ºC. The proposed algorithm is evaluated 

by half total error rate, root mean squared error, cross correlation and visual inspection. To the best 

of our knowledge, this is the first work devoted to multi-focus thermal image fusion. For testing of 

proposed algorithm we acquire six thermal image set with objects at different focal depth. 

1. Introduction 
In an image only those objects within the depth of field of the camera are focused, while other 

objects are blurred. To obtain an image with every object in focus, we usually need to fuse the 

images taken from the same view point under different focal settings. 

The aim of image fusion is to integrate complementary and redundant information from multiple 

images to create a composite that contains a “better“ description of the scene than any of the 

individual source images [Huang et Jing 2007], [Eltoukhy2003]. The image fusion can be also assumed 

as an approach for de-noising of images [Cosmin2012] 

Image fusion plays important roles in many different fields such as remote sensing, biomedical 

imaging, computer vision and defense system. While this topic has been carefully studied in the 

visible range (300-700 nm), to be best of our knowledge there is no work with thermal spectrum 

range (3-14 μm). 

Nowadays, there are several different approaches for multi-focus, image fusion visible range. Mainly, 

they are divided into two groups according to the domain in which they work. [Shutao 2011] One 

group works in the spatial domain and computes focus in particular parts of the image directly from 

the source data. [Shutao 2008] The other group works in transform domain, usually wavelet, 

curvelet, contourlet, fourier or pyramid transform. [Shutao 2011][Denipote 2008] In the first case, 

focus rate is often measured using first or second derivative. In case of first derivative, gradient value 

is computed in each pixel second derivative is computed by Laplacian, or their modifications. In 

[Huang et Jing 2007], [Madhavi 2011] and [Shutao 2011] focus rate is also called activity level. When 

it is computed, images have to be combined. To compute a particular pixel of final image, only a pixel 

from the best focused image in this point can be copied. But a more common way is to weight  this 

point in every image according to the activity level. The resulting point is a weighted average [Blum 
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2005]. There are also certain advanced methods that use  neural networks [huang2007][li2002] or a 

multiscale approach [liu2001][zhang1999]. 

 

1.1 Measurement of quality of image fusion 
In this paper, we present several experiments that point out the blurring effect on accuracy of 

temperature as measured in thermal images;  and,  we propose an algorithm for image fusion that 

alleviates the temperature errors due to blurring. 

There are subjective and objective measures for fusion quality evaluation. Objective methods are 

more common because of their low computational burden [Shutao 2011]. These methods are divided 

into two groups. One group needs a reference image, which is usually not present, while the other 

group does not need one. In thermal imaging it is usually impossible to directly acquire a reference 

image due to the small focal length of thermal cameras. Therefore, for evaluation purposes we have 

to manually create a reference image. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 1: (a) One image from image set, where more distant bulb is focused. (b) one image from 
image set, where closer bulb is focused. (c) manually-fused image – both bulbs are focused. (d) 

image fused from all 96 images, (e) image fused from reduced number of images (glare around the 
bulb is lower). 

 

In this paper, all image sets contain two objects in two different distances, so they are focused in 

different images (see Fig. 1 (a) and (b)). In testing datasets, both objects are situated in the scene so 

that they are not overlapping. This restriction was defined only to simplify the creation of a reference 

image. However, ,   for further utilization,  the objects can be arbitrarily overlapped. The reference 

image is created manually from two input images (each one contains the best-focused first or second 

object). Because both objects are not overlapped the reference image (e.g. Fig. 1 (c)) is created by a 
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subjective selection of focused pixels from the second image (e.g. left bulb from Fig. 1 (b)) and their 

incorporation into first image (e.g. Fig. 1 (a)). 

Methods for fusion quality evaluation were chosen from [Madhavi 2011] [Blum 2005] [Chen 2005] 

[Eskoliciou1995]. A few methods requiring reference image were used in this work and those are the 

following 

1. The correlation (CC) 

 𝐶𝐶 =
2∙∑ ∑ 𝑅(𝑖,𝑗)𝐹(𝑖,𝑗)𝑀

𝑗=1
𝑁
𝑖=1

∑ ∑ 𝑅(𝑖,𝑗)2𝑀
𝑗=1

𝑁
𝑖=1  + ∑ ∑ 𝐹(𝑖,𝑗)2𝑀

𝑗=1
𝑁
𝑖=1

, (1) 

where N, M denote the size of image, R and F are the reference and fused image, 

respectively. 

2. The Root Mean Square Error (RMSE) 

 RMSE = √
1

𝑁𝑀
∑ ∑ |𝑅(𝑖, 𝑗) −  𝐹(𝑖, 𝑗)|2𝑀

𝑗=1
𝑁
𝑖=1 , (2) 

where N, M are the size of image. 

3. The Mean Absolute Error (MAE) 

 𝑀𝐴𝐸 =
1

𝑁
∑ |𝑓𝑖 − 𝑦𝑖|𝑁

𝑖=1 , (3) 

where fi is predicted and yi is computed value. 

2. Materials and methods 

2.1 Blurring effect on temperature measurement accuracy 
Image blurring in visible images provides a degradation of the quality of the image. Edges do not appear 

sharp and the objects lose their details and their identification is more difficult. The absolute value of 

a single pixel in a visible image is related to the object itself as well as the illumination. When comparing 

two images with the same relative value between neighboring pixels the  different absolute value   is 

interpreted as an increase of uniform illumination.  Within a reasonable range, this does not affect the 

ability to interpret the image content. 

In thermal images the thermal camera acquires an absolute temperature value, which is related to the 

object itself and it is not related to the illumination of the scene, which is irrelevant. Therefore, the 

absolute value of the pixel is important   as it correlates to measured temperature of the object. 

Thermal cameras provide accurate measurements when the object is focused. The problem appears 

when there are different objects at different focal distances. For the sake of simplicity we will consider 

that there are only two objects and both objects are at the same temperature. However, it is 

straightforward to generalize for higher numbers of objects and/or different temperatures. 

Considering a scene that contains two objects at different focal distances and with the same 

temperature (T), we have to choose between focusing the image for the object 1 or the object 2. When 

focusing the camera for object one (more distant bulb in Figure  (a)) the temperature 𝑇𝑜𝑏𝑗𝑒𝑐𝑡1 will be 

measured accurately but temperature 𝑇𝑜𝑏𝑗𝑒𝑐𝑡2 will be measured with error 

 𝑇𝑜𝑏𝑗𝑒𝑐𝑡1 = 𝑇, 𝑇𝑜𝑏𝑗𝑒𝑐𝑡2 = 𝑇 + 𝑒𝑟𝑟𝑜𝑟1. (4) 
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When focusing the camera for object two (closer bulb in Figure  (b)), the situation is similar – one 

temperature is measured with error and second is measured precisely. 

 𝑇𝑜𝑏𝑗𝑒𝑐𝑡1 = 𝑇 + 𝑒𝑟𝑟𝑜𝑟2, 𝑇𝑜𝑏𝑗𝑒𝑐𝑡2 = 𝑇. (5) 

 

The ideal situation would be to obtain the correct temperature on both objects simultaneously but this 

is not possible without using a multi-focus image fusion. In this case, we expect that the total error in 

the fused image will be smaller than for each of the input images alone, being each of these images 

the acquisition at one focal distance. 

Thus, for this two objects problem we will define the half total error as: 

 𝐻𝑇𝐸 = (𝑒𝑟𝑟𝑜𝑟1 + 𝑒𝑟𝑟𝑜𝑟2) 2⁄ . (6) 

 

A desirable property of a multi-focus fused image is 𝐻𝑇𝐸 ≅ 0, and of course, smaller value than HTE 

of each of the fused images. 

2.2 Proposed algorithm 
Multi-focus image fusion is a process that combines multiple images captured with different depth of 

field into a single image. A Block diagram of multi-focus fusion is depicted in Figure . The Multi-focus 

image fusion process starts with analysis of input images and ends with the combination of these 

images into a single image. This combined image is more focused than each of the input images alone. 

Often the number of images that enter the fusion process is very high and some of them do not contain 

any useful information because there are completely blurred. Therefore we propose the method for 

reducing the number of images. This image pre-selection process also reduces the computational 

burden of the algorithm. 

We try to compare two approaches. One is simple image fusion performed directly with all input 

images; the second one contains automatic reduction of images entering into the image combination 

(Figure ). Since totally blurred images generate noise into the fused image, the performance of the 

fusion process decreases if fusion is performed directly with all images. 

This whole fusion system is described in next sections, and consists of the following steps: 

1. Measurement of the activity level   

2. selection of the best images for fusion, 

3. combination of the selected images. 
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Figure 2: Block diagram of the proposed fusion (with reduction of input images) 

 

In our image sets, there are 96 images in each image set and each image is captured with different 

focus positions of a thermal camera (some of them are depicted in Figure  (a) – (d)).  Some images 

contain sharp objects, but many of them are completely blurred. This shows the importance of the 

reduction of input images.  

 

Activity level (AL) measuring 

In our previous paper [Faundez 2011] we compared some approaches for image focus measuring but 

they were used for whole image. In this work we will use a local measure, because we want to combine 

different parts of different images on a local basis. According to results presented in [Faundez 2011], 

the energy of Laplacian has been selected to compare information content in particular parts of 

images. 

First of all, the information content in local parts of images must be computed. In [Huang et Jing 2007], 

[Madhavi 2011], [Shutao 2011], this information content is called “Activity Level” (AL). This AL is a 

measure of information in every pixel of each image. The activity level can be computed in different 

ways.  

The energy of Laplacian in point (𝑥, 𝑦) can be computed according to formula 

 EOL(𝑥, 𝑦) = (𝑓𝑥𝑥 + 𝑓𝑦𝑦)
2

, (7) 

where: 

(𝑓𝑥𝑥 + 𝑓𝑦𝑦) = −𝐼(𝑥 − 1, 𝑦 − 1) − 4𝐼(𝑥 − 1, 𝑦) − 𝐼(𝑥 − 1, 𝑦 + 1) − 4𝐼(𝑥, 𝑦 − 1) + 20𝐼(𝑥, 𝑦)

− 4𝐼(𝑥, 𝑦 + 1) − 𝐼(𝑥 + 1, 𝑦 − 1) − 4𝐼(𝑥 + 1, 𝑦) − 𝐼(𝑥 + 1, 𝑦 + 1). 

 

The activity level measure 𝑚(𝑥, 𝑦) in point (𝑥, 𝑦) can be computed from EOL(𝑥, 𝑦) [Subbarao and 

Tyan, 1998]. It is computed as average value of EOL in certain neighborhood multiplied by variance in 

the same neighborhood. 

 𝑚(𝑥, 𝑦) = EOL(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∙ σ(𝑥,𝑦)2
, (8) 

where EOL(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the averaged value of EOL in neighborhood of pixel (x, y) of size 𝑤  
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 EOL(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
1

𝑤 ∙ 𝑤
∑ ∑ (EOL(𝑖, 𝑗)),

𝑦+w/2

𝑗=𝑦−w/2

𝑥+w/2

𝑖=𝑥−w/2

 (9) 

 

and σ(𝑥, 𝑦)2 is variance in the same neighborhood  

 σ(𝑥, 𝑦)2 =
∑ ∑ (EOL(𝑖, 𝑗) − EOL(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝑦+w/2
𝑗=𝑦−w/2

𝑥+w/2
𝑖=𝑥−w/2

w ∙ w
. (10) 

With this equation, activity level can be computed in all pixels of all images. In further computation, 

these values of activity level are weights that are used for combining input images. Examples of activity 

level matrices are depicted in Figure .  Before the combination of images, it is suitable to select a subset 

of images entering to fusion process.  

 
(a) 

 
(e) 

 
(b) 

 
(f) 

 
(c) 

 
(g) 
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(d) 

 
(h) 

Figure 3: Figures (a) – (d) depicts selected thermal images form the bulb dataset. Corresponding 
activity levels are depicted in figures (e) – (h). 

Selection of the best images for fusion 

AL is computed for each input image. Then the maximum of activity level in each image is found 

according to  

 𝑚𝑖,max = max
𝑥,𝑦

(𝑚𝑖(𝑥, 𝑦)), (11) 

where 𝑚𝑖(𝑥, 𝑦) is AL in i-th image.  

In blurred images, the activity level and also its maximum are very small. The dependency of maximal 

value of activity level on the image number can be plotted into a graph. Figure  (a) shows this 

situation for image set 3, which contains two bulbs at different focal distances. 

The selection of suitable images for fusion is straightforward. The algorithm finds all peaks and takes 

into account only images that are around these peaks. The appropriate number of selected images 

around each peak was found experimentally. The algorithm was tested with different setup and 

according to RMSE the most suitable number of images around each peak was selected. The 

dependence of RMSE on number of images taken into account around each peak is depicted in Figure  

(b). One can see that the most suitable number of images selected around each peak is 4.  

 
(a) 

 
(b) 

Figure 4: (a) Dependency of maximal value of activity level versus image number for image set 3. 
The peaks are highlighted with a straight bar. (b) Dependency of RMSE on the number of images 

selected around each peak. 
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Combination of input images 

For the combination of input images, a simple method based on “pixel-level weighted averaging” is 

employed. The activity level is used as the weighting for combining images. For the correct 

combination of images,  the sum of weights in each pixel has to be 1. Thus  the weights have to be 

normalized in the following way: 

 𝑚𝑖′(𝑥, 𝑦) =
𝑚𝑖(𝑥,𝑦)

∑ 𝑚𝑖(𝑥,𝑦)𝑁
𝑖=1

. (12) 

 

Then, the linear combination of input images can be expressed with the equation for the fused image: 

 𝐼f(𝑥, 𝑦) = ∑ 𝑚𝑖′(𝑥, 𝑦) ∙ 𝐼𝑖(𝑥, 𝑦)𝑁
𝑖=1 , (13) 

 

where 𝐼f(𝑥, 𝑦) is the fused image and 𝐼𝑖(𝑥, 𝑦) are the input images. 

3. Results 
In this section we present the experimental results obtained with the database described in section 2. 

We compare the method with proposed block “reduce number of images” (see Figure ) and the 

method without this block (simple case of linear fusion). For evaluation the measurement of HTE, 

RMSE, cross correlation and visual comparison have been used. Some of these evaluation methods 

require reference image, thus “manually fused image” has been constructed. This was not difficult 

because in testing image sets here,  there are only two objects in two different depths. 

3.1 Database 
In order to develop a thermal image fusion system we require a database of thermal images. These 

images should contain several objects at different distances. However, thermal cameras do not 

provide the several million pixels resolution provided by visible ones. Thus, we will deal with the 

resolution 320x240 px. 

We used a thermographic camera TESTO 882-3 equipped with an uncooled detector and a spectral 

sensitivity range from 8 to 14 μm. It has a removable German optic lens with these main features:  

 image resolution: 320 x 240 px, 

 spectral sensitivity: 8 to 14m, 

 thermal sensitivity (NETD) <0.06  ºC at 30 ºC, 

 geometric resolution (IFOV): 1,7 mrad, 

 detector type: silicon microbolometer uncooled, temperature stabilized.  

 FOV: 32x23; focal distance: 15mm; fixed aperture: f/0,95 

The database consists of six image sets. In each set, the camera acquires one image of the scene at 

each lens position.  In our case we have manually moved the lens in 1 mm steps, which provides a 

total of 96 positions. Thus, each set consists of 96 different images of the one scene. For this 

purpose, we have attached a millimeter tape to the objective. We also used a stable tripod in order 
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to acquire the same scene for each scene position and a dimmer to fix the bulb current. This is the 

same as in previous paper [Faundez 2011] although there we used a TESTO 880-3 thermal camera 

that provides lower resolution (160x120) and  sensitivity (NETD < 0.1 ºC). 

We have acquired six image sets: 

1. Image set 1 (Figure 5 (a)): scene is made up of mobile phone and RS-232 interface in different 

distances and homogenous heat absorbing background. Distance between camera and the 

first object is 35 cm and its temperature is 41.2 °C. The distance between objects is 40 cm for 

all images sets. The maximum temperature of the second object is 32.9 °C. 

2. Images set 2 (Figure  (b)): scene is made up of mobile phone and RS-232 interface in different 

distances and homogenous heat absorbing background. Distance between camera and the 

first object is only 15 cm and its temperature is 39.4 °C. The maximum temperature of the 

second object is 55.9 °C. 

3. Image set 3 (Figure  (c), selected images are depicted in Figure  (a) – (d)): scene is made up of 

two bulbs in different distances and non-homogenous background (partially black and 

partially white). The bulbs are acquired with a view to the holders. Distance between camera 

and the first object is 30 cm as in all bulb image sets. The temperature of 1st bulb is 51.7 °C 

and 2nd is 50.4 °C. 

4. Image set 4 (Figure  (d)): scene is made up of two bulbs in different distances and 

homogenous white background. The bulbs are acquired with a view to the holders. The 

temperature of the first  bulb is 43.3 °C and 2nd is 41.3 °C.  

5. Image set 5 (Figure  (e)): scene is made up of two bulbs in different distances and 

homogenous white background. The bulbs are acquired without a view to the holders. The 

temperature of the first bulb is 57.0 °C and 2nd is 53.6 °C.  

6. Image set 6(Figure  (f)): scene is made up of two bulbs in different distances and 

homogenous heat absorbing black background. The bulbs are acquired with a view to the 

holders. The temperature of the first bulb is 57.9 °C and 2nd is 54.7 °C.  

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

 
(f) 

Figure 5: One image of each image set. Image from image set 1 (a), image set 2 (b), image set 3 (c), 
image set 4 (d), image set 5 (e), and image set 6 (f). 

 

 

3.2 Measure of HTE 
This measurement is based on the fact, that in a case when thermal camera is not focused on the 

object, the temperature of the object is measured with error. For this evaluation, two images (each 

focused on one object (see Figure  (a), (b))) has been selected. In Figure  (a), where the camera is 

focused on the more distant object, the temperature of this far object is measured precisely (measured 

in point B), but the temperature of the closer object (measured in point A) is measured with error 𝑒A. 

At this point the average error 𝐻𝑇𝐸1 =
𝑒A+0

2
 can be measured. Inverse situation is shown in   Figure  

(b), where the average error can be computed as  𝐻𝑇𝐸2 =
𝑒D+0

2
  , because of the temperature of the 

far object (point D) is measured with error 𝑒D.  

Similar error can be measured in the fused image (Figure  (c)). In this situation, both temperatures in 

the fused image are slightly inaccurate (points E, F in Figure  (c)), but thanks to fusion, these errors 

are not so significant.  Let 𝑒F be the error of the far object and 𝑒E error of the near object. Since two 

methods are compared in this article – without and with the reduction of number of input images, 

two result images exist and the average error for both of them is  computed as 𝐻𝑇𝐸3 =
𝑒E+𝑒F

2
 

and 𝐻𝑇𝐸4 =
𝑒E′+𝑒F′

2
, respectively. 

These errors, 𝐻𝑇𝐸1, 𝐻𝑇𝐸2, 𝐻𝑇𝐸3, 𝐻𝑇𝐸4, can be measured automatically for each image set. The 

absolute values of these errors are summarized in Figure 1 (a). The statistic parameters (the sample 

minimum, lower quartile, median, upper quartile and sample maximum) of these errors can be seen 

in so-called box plot in Figure 1 (b).  It can be observed that errors 𝐻𝑇𝐸1, 𝐻𝑇𝐸2 are significant. This is 

due to the inaccuracy that comes from bad focus of the camera. Thanks to fusion, the HTE error is 

lower and moreover if the image number reduction is done, the HTE is even lower (represented in 

Figure 1 (a) and Figure 1 (b) as HTE4).  

It is important to observe that the inaccuracies in temperature measurement for blurred objects can 

be as high as 5ºC. While this error can be neglected for some industrial applications, it can be 

considerable for biometric recognition of people, thermal isolation analysis, etc. 
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3.3 Visual comparison (bulb image-set) 
If the image is fused without a proposed block for reduction of images, one can see the glare (Figure  

(d) around bulbs which is generated by the redundant images. Conversely, when the proposed block 

is used, the glare is reduced (Figure 1 (e)) and the fusion is clearer and more precise. 

 

3.4 RMSE computed for a whole image 
We have also evaluated the proposed algorithm using the Root Mean Squared Error (RMSE). The RMSE 

is computed between the manually fused image and the image fused with algorithm. The results for 

different image sets and for both cases (without image reduction vs. with image reduction) are 

summarized in Tab. 1. These values are statistically processed and depicted in a form of boxplot in 

Figure 1 (c). We can observe that the proposed method with image number reduction provides smaller 

errors than the combination of all the images. 

Tab. 1: RMSE measured for all available image sets. 

Image set number RMSE computed between 
fused image (full number 
of images used) and 
manually fused image 

RMSE computed between 
fused image (reduced 
number of images used) 
and manually fused image  

1 0.2202 0.1803 
2 0.2764     0.2583 
3 0.3014     0.1999 
4 0.1488     0.1342 
5 0.4491     0.2648 
6 0.4438     0.3307 

 

 

3.5 Cross correlation (CC) for a whole image 
Similarly to RMSE, the cross correlation (CC) is computed for the whole image. Figure 1 (d) shows the 

statistical values for all the datasets.  

3.6 Comparison of fused image against all images entering into the 

fusion process  
Values of RMSE and CC between fused image and each image entering into the fusion can be 

measured. These values are plotted in Figure 1 (e) and Figure 1 (f). One can see that the RMSE is the 

smallest in the case where one of the objects is focused. For the comparison, there are plotted lines 

that show RMSE computed for result images (without vs. with image selection) in Figure 1 (e). 

Similarly Figure 1 (f) shows CC.  One can see that CC in fused image is significantly higher than CC 

computed between each input image and fused image.   
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(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 1: (a) Absolute values of HTE in particular image set. (b) Statistic values of HTE errors 
computed in whole databases. Statistical values of RMSE (c) and CC (d) for different fusion 

methods (performed with all images or with reduced number of images). Solid curve – RMSE (e) or 
CC (f) computed between i-th image in image set and manually fused image. Dashed line (for 

comparison) – RMSE (e) or CC (f) measured between image fused without image number reduction 
and manually fused image. Dotted line (for comparison) – RMSE (e) or CC (f) measured between 

image fused with proposed method and manually fused image. 
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Conclusions 

In this paper we have proposed a method for an image fusion in the thermal spectrum. Moreover, we 

have proposed its improvement through  a pre-selection of images entering into the fusion process. 

The quality of the proposed pre-selection method has been verified by measurements of these quality 

and error parameters: half total error (HTE), root mean squared error (RMSE), and cross correlation 

(CC). The results of fusion with proposed pre-selection are compared with a standard fusion method. 

Achieved results are described in detail in section 3. The smaller values of error parameters (HTE and 

RMSE) represent the higher quality of fusion. The pre-selection decreases the average HTE value 

(averaged in acquired image sets) from 0.326 [°C] to 0.271 [°C]. Also the average RMSE value decreases 

from 0.31 to 0.22. For example in the fifth dataset, the reduction of RMSE is about 42%. Vice-versa for 

the cross correlation parameter where the higher value indicates the higher quality of fusion. Thanks 

to proposed image pre-selection the CC increases from 0.999962 to 0.999980. All performed 

measurements prove that proposed fusion method and its improvement significantly decreases the 

temperature errors. 

For testing purposes the database of thermal images has been acquired using thermal camera TESTO 

882-3. The database consists of six image sets of complex objects with different temperatures and in 

different distances from the thermal camera. Each image set consist of 96 images manually acquired 

with different focus.  

The results prove that a multi-focus image fusion can alleviate the errors in temperature 

measurements. This has been checked using the acquired datasets. The quantitative parameters,   HTE 

, RMSE, and CC were measured and, in addition,  human inspection was performed. 
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3.1 APPENDIX 
Just as in visible image acquisition systems, an optical system capable of focusing all rays of light from 

a point in the object plane to the same point in the focal plane is desired. The same goal is also 

desired when dealing with thermal imagers in order to get clear and focused images in thermal 

infrared spectrum. However, all kind of lens aberrations as well as deviations due to   diffraction, 

drastically reduce the capability to focus the image of interest.  

Chromatic aberration, as the most critical aberration aspect when dealing with broadband spectrum 

images (which is the case of MWIR and LWIR thermal images) will be described below  followed by 

the description of a diffraction effect. The problem becomes more difficult to solve when more than 

one object ,located at different distances in the scene, requires to be brought into focus   due to the 

constraints in depth of field design. 
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Chromatic aberration.  

Chromatic aberration [Jac00] is an undesirable optical effect that promotes the inability of the lens 

to focus all the colors (different wavelengths) at the same focal point. This effect is due to the spread 

dispersion phenomenon concerning the refractive index variation with wavelength. Normal lens 

show normal dispersion, that is, the index of refraction n, decreases with increasing wavelength. 

Thus, the light beam with longer wavelength is refracted less than the shorter wavelength one. This 

behavior produces a set of different focal points. 

 
In any case, the correction tasks in the visible spectrum are reasonable to achieve due to the short 

range of wavelengths to deal with. This is not the case in the MWIR and LWIR operating ranges, 

where thermal IR sensors measure simultaneously over broadband wavelength. Thus, while the 

change is 400nm between the violet and red end of the EM spectrum, in   both the MWIR and LWIR 

spectra the wavelength ranges are 2000nm and 6000nm, respectively. Another challenging problem 

is the coupling between large wavelength and low refractive index. To promote the required 

refraction to deviate and to accuratelyconverge    any infrared light comprised in the range, an IR 

transparent material with high refraction index is required for the design of lenses that might not 

otherwise be possible [Gre07]. 

 
Diffraction Effect 
Diffraction is an optical effect, which can limit the total resolution of any image acquisition process. 

Usually, light propagates in straight lines through air. However, this behavior is valid only when the 

wavelength of the light is much smaller than the size of the structure   through which it passes. For 

smaller structures, such a gap or a small hole, which is the case of camera's aperture, light beams will 

suffer from a diffraction effect caused by a slight bending of light when it passes through such 

singular structures [conrad2]. 

 
Due to this effect, any image formed by a perfect optical lens of a point of light, do not correspond to 

a point, but to a circle called Airy disc, and determines maximum blur allowable by the optical 

system. Furthermore, the diameter of this circle will be used to define the theoretical maximum 

spatial resolution of the sensor and will be given by the following expression [Noah 2004]: 

 

 𝑑 = 2,44𝜆
𝜈

𝐷
 (14) 

 

where  is the light wavelength,  is the distance from the image to the lens and D is the effective 

aperture diameter. This equation can be generalized to Eq. 2 when the system is working slightly far 

off the minimum focal distance, and   N being the lens f number[Noah 2004]:  

 
 𝑑 = 2,44𝜆𝑁 (15) 
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Typical available pixel sizes for MWIR and LWIR range from 20 to 502, while less than 22 may be 

found for visible spectrum. 

This restriction seriously determines a closely related parameter called depth of field (DOF) - the 

range of distance that appears acceptably sharp in the resulting image. The DOF depends on three 

main parameters: aperture (f number), focus distance and focal length. [conrad1][conrad2] 

Assuming a diffraction limited system, the DOF can be expressed as follows:  

 

 𝐷𝑂𝐹 =
𝐷2

4𝜆
 (16) 

 

 
The DOF is function only of the aperture diameter and the wavelength. According to the equation 

above, the DOF decreases when wavelength increases. This is the main difference between VIS and IR 

acquisition systems and uncovers why thermal imagers may not focus all planes of the acquired 

scene. 

This assertion leads us to carry out the following proposed approach in an attempt to provide a novel 

solution to the described problem.  
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