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Abstract

Spectral clustering methods meet more and more success in machine learning
community thanks to their ability to cluster data points of any complex shapes.
The problem of clustering is adressed in terms of finding an embedding space
in which the projected data are linearly separable by a classical clustering algo-
rithm such as K-means algorithm. Often, spectral algorithm performances are
significantly improved by incorporating prior knowledge in their design, and sev-
eral techniques have been developed for this purpose. In this paper, we describe
and compare some recent linear and non-linear projection algorithms integrating
instance-level constraints ("must-link” and “cannot-link”) and applied for data
clustering. We outline a K-way spectral clustering algorithm able to integrate pair-
wise relationships between the data samples. We formulate the objective function
as a combination of the original spectral clustering criterion and the penalization
term based on the instance constraints. The optimization problem is solved as a

standard eigensystem of a signed Laplacian matrix. The relevance of the proposed
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algorithm is highlighted using six UCI benchmarks and two public face databases.
Keywords: Graph embedding, Spectral clustering, Pairwise constraints, Signed

Laplacian.

1. Introduction

In many real-world applications, we are dealing with the problem of clustering
of high dimensional databases for which we have little prior knowledge. Cluster-
ing aims to group data sharing similar properties to their respective categories.
It was shown that, the introduction of domain knowledge in the clustering algo-
rithms, may greatly improve their performances. Domain knowledge is generally
provided in two forms: class labels (Chapelle et al., 2006) or instance constraints
(Basu et al., 2008). Labelling data is a hard and long task for human experts while
pairwise relationship between data is easier since it consists in simply indicating
if two instances are similar (must-link) or dissimilar (cannot-link) (Wagstaff and
Cardie, 2002).

Recently, spectral methods, based on graph concepts, have been developed for
dimension reduction and data clustering (Saul et al., 2006; Shortreed and Meila,
2005; Von Luxburg, 2007). They meet more and more success in machine learning
community thanks to their theoretical foundations and their practical applications.
The problem of data clustering is considered in terms of finding an embedding
space in which the projected data are linearly separable by a classical K-means al-
gorithm. The data are represented in a graph where each vertex is associated with a
data sample and the weighted edges encode the relationship between the underly-
ing data. Usually, the embedding space is obtained by Laplacian Eigenmaps. This

is carried out by selecting the eigenvectors of the graph Laplacian. Each eigen-
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vector corresponds to non-linear projection of the data set. The performances
of spectral algorithms depend on the way they integrate the data constraints in
their design: (a) integration of constraints in the affinity matrix, (b) integration of
constraints in the optimization criterion (De Bie et al., 2004; Basu et al., 2008;
Wang and Davidson, 2010; Wang et al., 2012). Note that the graph built using
instance constraints may contain negatively weighted edges associated to cannot-
link constraints. In this situation, the obtained graph is called signed graph and
its associated Laplacian matrix is called signed Laplacian matrix (Kunegis et al.,
2010).

In this paper, we present and compare recent methods for data projection and
clustering, using pairwise relationships, in terms of spectral theory. Among the
spectral methods developed in the literature, some include the clustering step in
their algorithms (spectral clustering) and others are used for dimension reduction
(spectral embedding) (Saul et al., 2006). The latter can be easily used for data
clustering by applying a classical K-means algorithm on the projected data. We
briefly review the classical principal component analysis (PCA) and the locality
preserving projection LPP (He and Niyogi, 2002) as well as their constrained
variant. We develop a constrained spectral embedding algorithm for K-way data
clustering. The embedding obtained by our approach is closer to the constrained
Laplacian Eigenmaps (Chen et al., 2010). The algorithm optimizes an objective
function which is a combination of standard spectral clustering criterion and the
penalization term based on the instance constraints. The optimization problem

is solved as a standard eigensystem of a signed Laplacian matrix. We show the
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relevance of the algorithm on many UCI' benchmark datasets and two well-known
face databases?.

The paper is organized as follows. Section 2 presents some basic graph nota-
tions used for spectral methods. Section 3 describes two constrained linear projec-
tion methods: PCA and LPP methods. Spectral clustering approaches integrating
implicitly and explicitly the pairwise constraints are presented in Section 4. Sec-
tion 5 describes the proposed constrained K-way spectral clustering algorithm.
Section 6 presents some performance study of the proposed algorithm using six
UCI datasets and two public face databases. Finally, Section 7 shows some dis-

cussions and concluding remarks.

2. Basic notations of spectral methods

In this section, we present some basic notations used in the graph formalism

(Von Luxburg, 2007).

o X ={x1,...,x;...,xy} is a dataset of N instances, x; € R, i=1,...,N;

o G(V,E,W) is a weighted graph associated with X: V' = {vy,...,v;,...,vx}
1s the set of vertices corresponding to the N instances; £ is the set of edges
and W is the weight matrix indicating the affinity or closeness of pairwise

instances x;, x; where w;; > 0 and w;; = w;;

e D is the degree matrix of graph G. D is a diagonal matrix where d;; =

29’:1 wi; is the degree of the vertice v;.

Thttp://archive.ics.uci.edu/ml/
Zhttp://www.cad.zju.edu.cn/home/dengcai/Data/FaceData html/
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Spectral methods consider the K-way clustering problem as a K-way graph-
cut into K non-empty groups denoted by {V1,...,V4,...,Vk} such as U{le Vi=V
and Vy NV, =0,k # [

e Volume of a set Vy: vol (Vi) = X,cp, dii:

e Similarity within cluster Vi: Cut Vi, Vi) = X,,cp;, Xy, e, Wi

e Similarity between V', and its complement V: Cut(Vi, Vi) = X,,e1, 27 Wi
Let ux = (u1k, ..., ti, ..., uy;)! be the indicator vector of Vj:

1 ifv; €V,
Uik = (1)
0 ifVl' ¢ Vk.

Using u, the above graph characteristics can be defined more consistently:

vol (V) = ul Duy, 2)
Cut(Vi, Vi) = uj Wy, 3)
Cut(Vi, Vi) = ul (D — W)y = ul Luy. (4)
where:
L=D-W, (5)

is called graph Laplacian matrix. L is symmetric and positive semi-definite.

Usually, in addition to unlabeled dataset, we have some kind of knowledge
known as instance-level constraints: two instances are similar and their vertices
“must be linked” or dissimilar and therefore the corresponding vertices “cannot

be linked™:
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e the set of must-links is defined by: M = {(x;,x;)| x; and x; are similar}.
e the set of cannot-links is defined by: C = {(x;,x;)| x; and x; are dissimilar}.

In the context of spectral theory, must-link and cannot-link graphs are built
from the pairwise constraints. Usually, the edges of must-link graph have positive
weights while the edges of cannot-link graph may have negative weights. There-
fore, the graph associated to the unlabelled data and pairwise constraints may
contain negative weights. It is called signed graph and its associated Laplacian
matrix is called signed Laplacian matrix: L = D — W where d; = Zﬁf:] lwij| is the
degree of the vertex v;.

In the next section, we present two existing methods for dimensionality reduc-
tion based on pairwise constraints: the constrained principal component analysis

and the constrained locality preserving projection.

3. Constrained linear projection approaches

In many domains, we often deal with high dimensional datasets. However, all
dimensions are not necessary and reducing the input space to a lower space will
make the clustering problem not only computationally easier, but also allow to
discover the data structure. The performances of projection methods are highly
conditioned by the way they integrate the instance-level constraints in their de-
sign. In the sequel, we will briefly describe two existing constrained projection
techniques based on the classical principal component analysis (PCA) and the

more recent locality preserving projection (LPP) (He and Niyogi, 2002).
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3.1. Constrained principal component analysis

PCA method performs dimensionality reduction by projecting the input data
onto a lower dimensional space spanned by the largest eigenvectors of the data
covariance matrix. The problem is to find a linear function between the input data

space and the projected data space of the form:

y= aTx, witha'a = 1, (6)

which maximizes the objective criterion:
1Y 5
Jpca = NZO’i_m) : (7
i=1
where m = %Zﬁ‘le v;. Equation (7) can also be written as:
1 2
Jeca = 5 20i—y)%
N* 45
1
Jrcd = Y (a'xi—a'x))%. (8)
iJ
The solution a is the eigenvector associated with the largest eigenvalue of the

data covariance matrix. Therefore, the PCA space is spanned by the top eigenvec-

tors in which the data are best spread.

The constrained PCA (cPCA) takes into consideration the instance-level con-
straints sets M and C. Indeed, the main idea is to look for a direction a such as
the projected points y; = a’ x; (a’ a = 1) satisfies PCA criterion in Equation (8) as
well as the instance-level constraints (Zhang et al., 2007). The constrained PCA

criterion is defined by:



1 1
Jepca =Jpca+ el Y (a'xi—a'x;)? - arl Y (a'xi—a'x)? (9)
| | (xix;)eC | | (xix;)eM

J/ J/

' Vv
cannot-link constraints must-link constraints

w7 with |C| and | M| are the cardinals of constraint sets C and M respectively.

o
3

118 Equation (9) can also be written as:
1 -
Jepca EE(aTxi —aij)zwij, (10)
l‘]
1e  With:

%—l—ﬁ if(x,',Xj)GC,

Wi = ]\%—ﬁ if (xi,x;) € M, (11)
% else.

120 The development of Equation (10) leads to:

Jepca =Y, (aTxivT/,»jx,-Ta — aTxﬂI/,»ijT-a)
i,J
Jopca = a' X(D—W)X'a. (12)

2 where D € RV is the diagonal degree matrix of 1¥/.

122 The constrained optimization criterion of Equation 12 is:
Jepca=a' XLX a, st.a’a=1. (13)
123 The ¢cPCA projection space is obtained from the top eigenvectors of the eigen-
124 System:
XLXTa = ha. (14)

125 Where Z = [) — W
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(Zhang et al., 2007) used a semi-supervised dimensionality reduction method
(SSDR) which introduces penalty terms o and 3 in order to balance “’cannot-link™
and “must-link™ contributions in the optimization criterion (Equation 9). It is easy
to show that, oo = B = 0 lead to a classical PCA criterion. In their experiments,
the authors proposed to choose oo = 1 and 3 > 1 in order to favour the “must-link”
constraints. In (Davidson, 2009; Tang and Zhong, 2007), only pairwise constraints

are used to guide the dimensionality reduction for clustering.

3.2. Constrained locality preserving projection

The locality preserving projection (denoted LPP) is a dimensionality reduction
method recently used in the literature (He and Niyogi, 2002). LPP constructs the
affinity matrix /7 using a Gaussian kernel:

kgl
e 20 if x; (respectively x;) i1s among the

Wij = nearest neighbors of x; (respectively x;), (15)

0 otherwise.

with © is a scale parameter. Note that there are several ways for setting the affinity
matrix . LPP criterion is defined by:
JLPP:Z(GTXI‘—CITX]‘)2M/,‘]‘, s.t. al XDXTa=1. (16)
L]
In the objective function Jz pp, the penalty contribution w;; is high if neighbor-
ing points x; and x; are projected far apart. Therefore, minimizing J; pp attempts

T

to ensure that if x; and x; are close theny; = a" x; and y; = al'x ; are close as well.

A compact form of J;pp using the Laplacian matrix is given by:
Jipp=a' XLX"a, s.t. a’ XDXTa=1. (17)

9



143 The LPP projection space 1s obtained from the eigenvectors associated with

14« the smallest eigenvalues of the generalized eigensystem:
XLX"a=2XDX"a. (18)

145 The constrained locality preserving projection method (denoted cLPP) inte-
s grates the constraints sets in the objective criterion (Cevikalp and Verbeek, 2008;

; Yuetal., 2010):

1

N

1

N

Japp=Jrpp+ Y, (d'xi—ad'x))*— Y (a'xi—ad'x;)*. (19)
(x;x;)eM (xix/)eC

must-link constraints cannot-link constraints

1 Equation (19) can also be written as:

'S
3

Japp = X(a'xi—a'x;) My, (20)
Lj
19 With:
wij+1 if (xi,x;) € M,
Wij=qw;—1  if (x;,x;) € C, (21)
Wij else.
150 The constrained optimizati(;n criterion can be written using the Laplacian ma-
151 trix:
Jupp=a' XLX"a, s.t. a’ XDXTa=1. (22)

w2 where L=D—W.

153 The cLPP algorithm attempts to preserve the locality of data and to satisfy the
15« space-level constraints at the same time.

155 In the context of clustering, cPCA and cLPP are usually followed by a K-
1 means algorithm. In (Zheng et al., 2004), the concept of locality preservation is

157 used for data clustering.

10
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4. Constrained spectral clustering approaches

In the literature, a number of algorithms have been proposed in order to in-
corporate instance-level constraints into spectral clustering. They can be grouped

into two categories:

e direct integration of pairwise constraints in the affinity matrix (Kamvar et

al., 2003; Xu et al., 2005).

e integration of pairwise constraints in the optimization criterion (Wang and

Davidson, 2010; Wang et al., 2012).

In the following, we briefly describe the spectral clustering approach.

4.1. Spectral clustering

Spectral clustering method (SC) is usually used in its normalized form (Meila
and Shi, 2000; Ng et al., 2002; Shi and Malik, 2000; Shortreed and Meila, 2005,
Von Luxburg, 2007). The goal is to use the graph-cut in order to partition the data
into K clusters. The objective function of spectral clustering is to find a vector u

which minimizes the following criterion:

Jsc = 3 (ui —uj)wij, (23)
i,j
which can be written as:
Jsc =u’ Lu, (24)

under the constraints: #’ Du = 1and Du_ 1 where u is the relaxed cluster indicator
vector (i.e, the components of u can have real values). For simplicity of notation,

we substitute u by D2z and the Equation becomes:
Je=z"rz, st 2Tz=1. (25)

11
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where £ = D~2LD~? is the normalized Laplacian matrix.

The problem solution is given by:
Lz =)z, (26)

The spectral space associated to the K smallest positive eigenvalues is similar
to the one obtained by the Laplacian eigenmap developed in (Belkin and Niyogi,
2002).

4.2. Integration of constraints in the affinity matrix

In (Kamvar et al., 2003), the authors adapt the spectral clustering algorithm to
constrained classification problem: spectral learning algorithm (SL). They incor-

porate pairwise constraints into the affinity matrix:

;

0 if(x,x)) €C,

Wip =19 +1 if (xi,xj) € M, (27)

wi;  otherwise.
\

The spectral learning algorithm proceeds just as any other standard spectral
clustering algorithm. However, the main weakness of this algorithm is that it
implicitly encodes the constraints by modifying the graph Laplacian matrix. A
more natural approach is to preserve the original graph Laplacian and to explicitly

encode the constraints.

4.3. Integration of constraints in the optimization criterion

In (Wang and Davidson, 2010), the authors combine spectral clustering and
pairwise constraints criteria in a flexible manner. The flexible constrained spectral

clustering (FCSC) preserves the original graph Laplacian matrix and explicitly

12
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encodes the constraints. FCSC is solved by a generalized eigenvalue system. This
approach includes a user-specified parameter oo which serves as a tradeoff factor
between the structure defined by the graph Laplacian and that by the constraint
matrix.

The FCSC algorithm is detailed with K = 2 (Wang and Davidson, 2010). The

constraints matrix is defined by:

-1 if (x,x;) € C,
qij =4 +1 if (x;,x;) € M, (28)

0 else.

In order to measure how well the constraints are satisfied by the cluster assign-
ment, Wang and Davidson used:
uTQu = 2uiujqij. (29)
[7j
where u € {—1,+1}" is the cluster indicator vector.

The problem is then formulated as a constrained optimization problem, letting

z=D>uand On :D’%QD’%:
- T T 1
arg min z* Lz, s.t. 20 Qpz > 0, 2 2 = vol(G), = # D21, (30)

where vol(G) = 2?’:1 d;i. Recently, the authors generalized the above bipartition
method to a K-way constrained clustering by selecting not only the first, but the
top-K generalized eigenvectors corresponding to positive eigenvalues (Wang et

al,, 2012).

13
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S. Constrained spectral clustering

In this section, we develop our constrained spectral clustering algorithm (de-

noted cSC). Here, the objective function J.gc consists in the combination of the

classical spectral clustering criterion (Jsc) and a penalization term based on the

instance constraints (J-q,):

Jesc = YJsc+ (1 =7)Jcar,

€2y

The regularization coefficient y has to be adjusted in order to balance the contri-

bution of Jsc and J 4., where:
Jsc = Z(u, — uj)zw,-j = uTLu7
l-7].

and

JC{M:_ 2 (u,-—uj)2+ 2 (u,-—uj) .

(xix;)€C (xix;)eM

Jar can be written as:

Jear = 2 (ui—u;)’qiy,
iJ
with:
-1 if (x,x;) € C,
qij =4 +1 if (xl-,xj) € M,

0 else.

We can rewrite J -4, as:

Joar = ul Lou,
where Lo 1s the Laplacian matrix of constraints graph:
Lo=Dgp—0,

14

2

(32)

(33)

(34)

(35)

(36)

(37)
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with Dy 1s the degree matrix of constraints graph.

Using Equations (32) and (36), Equation (31) becomes:

Jesc = u" (Y.L+(1=y).Lo)u=u Lescu. (38)
where:
Lesc = Desc —Wesc, (39)
with:
Desc =¥.D+ (1-%).Dg, (40)
and
Wese =y W +(1-7).0. (41)

The constrained spectral space is obtained from the eigenvectors of the Lapla-
cian matrix Lesc =YL+ (1 —7)Lo.

Note that the eigenvalues of L.g- may have negative sign due to the negative
edges weights of cannot-links constraints. In order to overcome this limitation,

we use the signed Laplacian matrix defined by (Kunegis et al., 2010):
Lesc = Desc — Wescs (42)

where Dsc is the signed degree matrix given by:

N
desc(i,i) =Y, [wesc(i. j)] (43)
=

Note that the signed Laplacian matrix is semi-definite positive. By substituting

—=L . . .
u by D gz to relax the discreteness condition, Equation (38) becomes:

Jesc =z Lescz, (44)

15
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where Lgc is the normalized signed Laplacian matrix defined as L.gc = l_)?sczcgcﬁgc.

The constrained spectral space is obtained from the K lowest eigenvectors of Lgc.

It is interesting to know that, in case K = 2, the retained solution is the second
smallest eigenvector. Indeed, the first vector (z1) is constant and represents a
trivial solution for A = 0. The final partition is then obtained by partitioning the
projected data thanks to the sign of values in z;.

In case K > 2, we maintain the usage of K eigenvectors, considering that the
constant vector z; = (1,...,1)” has no impact on the obtained spectral subspace.
These K eigenvectors are then used in order to cluster the data thanks to the K-
means algorithm. Input instances are assigned to their corresponding clusters ob-
tained in the constrained spectral space.

In (De Bie et al., 2004), the authors proposed a softly constrained spectral clus-
tering using a regularization term similar to the one of equation (31). In this work,
the constraint matrix is used in order to constrain the projection of data according
to their labels. However, the constraints matrix used in multiclass learning do not
include the cannot link constraints.

In the context of kernel machines, Alzate and Suykens (Alzate and Suykens,
2009, 2010, 2012) revised the spectral clustering in terms of weighted kernel PCA
using the least square support vector machines developed by (Suykens and Van-
dewalle, 1999). Indeed, Alzate et al. present interesting weighted kernel PCA
approaches to deal with the framework of spectral clustering. Furthermore, in
(Alzate and Suykens, 2009) the authors formulate weighted kernel PCA with pair-
wise constraints which leads to a constrained spectral algorithm. Their contribu-
tion is of upmost importance since it integrates, using the kernel concept, the

out-of-sample extension in a natural way allowing model selection and general-

16
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1zation capabilities. However, the regularization term of cannot-link constraints is
chosen much smaller than the regularization term of must-link constraints in order
to avoid negative entries in the equivalent kernel matrix due to rank-1 downdates.
The constrained spectral clustering approach, presented in our paper, does not
require positive eigenvalues of the graph Laplacian and can deal with negative
eigenvalues, which may occur due to cannot-link constraints. Moreover, the regu-
larization coefficient in equation (31), weights the contribution of spectral cluster-
ing and must-link and cannot-link constraints. It can take any value in its interval.
Thus, our approach can be applied using only pairwise constraints (regularization
coefficient = 0) without the use of unlabelled data. Note that, for a regularization
term equal to 1, we obtain the classical spectral clustering. It should be noted that,
our approach is closer to Constrained Laplacian Eigenmap (Chen et al., 2010)
while that of (Alzate and Suykens, 2009) is derived from kernel PCA and there-
fore, the out of sample is obtained naturally. We stress the fact that the objective
of our presented work is the use constrained spectral clustering without seeking a

solution for the out-of-sample problem.

6. Experiments

We propose to compare our constrained spectral clustering algorithms with
cPCA (Zhang et al., 2007), cLPP (Cevikalp and Verbeek, 2008), SL (Kamvar et
al.,2003) and FCSC (Wang and Davidson, 2010) algorithms described in Sections
3 and 4.

6.1. UCI databases

In this section, we evaluate the performances of the proposed constrained spec-

tral clustering (cSC) algorithm and compare it with the presented algorithms on

17
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six UCI databases ("Hepatitis”, “lonospehere”, “Wine”, "Dermatology”, ”Glass”
and “Ecoli”). These databases were chosen because they represent data of differ-
ent sizes and different densities. Table 1 summarizes the characteristics of each
database.

In our experiments, we evaluate the performances of the several clustering al-
gorithms described in the Sections 3, 4 and 5. For linear methods (cPCA and
cLPP) we used 95% of the total variance which made the maximum dimension
for each dataset as follows: Hepatitis (3), lonosphere (24), Wine (2), Dermatol-
ogy (3), Glass (5) and Ecoli (5). For non linear methods, we adopted the classi-
cal strategy by keeping the first K eigenvectors as projection coordinates. In our
experiments, cPCA and cLPP are followed by K-means algorithm for data clus-
tering 1n the projection space. For cLPP, we set the number of neighbors to 10.
For FCSC, the parameter measuring the constraints satisfaction and denoted by o
is set to 0.5 X Amaxvol(G) (Wang and Davidson, 2010). Moreover, the projected
data are normalized to have unit-length. For our ¢SC, we simply set the balancing
parameter Yto 0.5.

The affinity matrix terms are of Gaussian form with a scale parameter 6> equal
to the average of the variances of database features. The generation procedure of
pairwise constraints is as follows: we randomly select pairs of instances from the
dataset and create “must-link” or “cannot-link” constraints depending on whether
the two instances belong or not to the same class. We iterate this scheme and
enrich the generated constraint sets from 0% constraints (unlabelled data) to 20%
constraints. The performances of algorithms are averaged over 10 repetitions of
the constraints generation process.

Each clustering algorithm generates cluster label for each data instance and the

18
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Table 1: UCI datasets used for experiments.

Nb. Objects | Nb. Features | Nb. Classes (K)
Hepatitis 80 19 2
Ionosphere 351 34 2
Wine 178 13 3
Dermatology 366 34 6
Glass 214 9 6
Ecoli 336 7 8

clustering performance of the algorithm is evaluated by comparing the generated
class label and the ground-truth label. Given a data point x;, let 12,- be the obtained
cluster label and &; the ground-truth label respectively. The agreement between the
algorithm decision and the ground-truth is measured by 8(k;, map(k;)) (Carpaneto
and Toth, 1980):

A 1 ifk= map(l:tl-),
O(kiymap(k;)) = (45)

0 otherwise.
In order to evaluate the performance of the presented spectral algorithms, we
propose to use two criteria: the Accuracy and the Rand Index (Rand, 1971).
The Accuracy criterion is defined by:

N 8(ki,map(k;))

Accuracy = N ,

(46)
i=1

The Rand Index is given by:

Rand Tndex — number of correct def:i'sions' @7
number of total decisions
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A decision is considered correct if the proposed clustering obtained by an algo-
rithm agrees with the target clustering. More specifically, a decision is considered
as correct if: two instances are in the same cluster and the algorithm partitioned
them into a same cluster, or they are in different clusters and partitioned into dif-
ferent clusters. Rand Index values ranges from 0 to 1.

Figure 1 shows the Accuracy of the spectral algorithms depending on the con-
straints rates applied on the six UCI datasets. In multiclass problems, FCSC is not
represented because it does not allow to obtain a feasible solution with the fixed
value of 6. We can see that ¢SC algorithm outperforms all algorithms followed
by SL algorithm. Moreover, for all databases (K = 2 and K > 2), their accuracies
increase as the constraints rates increase. Globally, cPCA and cLPP produce the
worst performances, specifically for the "Wine” database.

Figure 2 summarizes the Rand Index of the six spectral algorithms according
to the constraints rates applied on the six databases. It is easy to see that cSC
algorithm outperforms all other methods, followed by SL algorithm. Moreover,
their Rand Indices increase as the constraints rates increase. The Rand Index of
SC has a constant value since it does not depend on the constraints rates. ¢SC
obtains the better Rand Indices which can be explained by the fact that, unlike
SL algorithm, ¢SC takes into account the spatial position of data (w;;) and their
constraints (—1,+1). Finally, Rand Indices of cPCA and cLPP which are linear
projection algorithms are lower than the Rand Indices of constrained non-linear

projection algorithms.

6.2. ORL and Yale Face databases

We compare the performances of the proposed algorithm with that of the pre-

sented algorithms on two well-known databases used in face recognition domain:
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Figure 1: Average Accuracy according to the constraints rates, on UCI datasets.

e “Yale Face database” contains 165 grayscale images of 15 individuals. There

343

344 are 11 images per subject, one per different facial expression or configura-
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Figure 2: Average Rand Index according to the constraints rates, on UCI datasets.
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e “ORL database” contains 10 different images of each of 40 distinct subjects.
For some subjects, the images were taken at different times, varying the

lighting, facial expressions and facial details.

Table 2 summarizes the characteristics of each database. The affinity matrix
terms are of Gaussian form with a scale parameter 6> computed in a local way
(Zelnik-Manor and Perona, 2004). The experimental protocol used is the same
as in Section 6.1. For linear methods (cPCA and cLPP) we used 95% of the
total variance which made the maximum dimension for each dataset as follows:
Yale Face (71) and ORL (115). For non linear methods, we adopted the classical

strategy by keeping the first K eigenvectors as projection coordinates.

Table 2: Other datasets used for experiments.

Nb. Objects | Nb. Features | Nb. Classes (K)
Yale Face 165 1024 15
ORL 400 1024 40

cPCA

20 40 60 80 100 0 20 40 60 80 100
% of constraints % of constraints

Yale Face (K = 15) ORL (K =40)

Figure 3: Average Accuracy according to the constraints rates, on other datasets.
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Figure 4: Average Rand Index according to the constraints rates, on other datasets.

Figure 3 and 4 show respectively the Accuracy and the Rand Index of the spec-
tral algorithms according to the constraints rates, applied on the two databases. As
for UCI datasets, when the number of constraints is low, it is easy to see that cSC
algorithm outperforms all algorithms, followed by SL algorithm. Moreover, for
this two examples, Rand Indices and Accuracies of the linear projection algo-
rithms (cPCA and cLPP) are lower than the performance scores obtained by the
classical spectral clustering even with 20% of constraints. When the percentage
of constraints is high, SL algorithm obtains the best scores. One possible expla-
nation is that, in our experiments, the chosen y was arbitrarily set to 0.5, so that

label information was not fully exploited in the global criterion.

7. Discussions and conclusions

In this work, we presented recent linear and non-linear projection algorithms
integrating constraints and applied for data clustering. PCA and LPP are linear
dimension reduction methods. They find linear relationship between input data

space and output projection space. PCA approach is sensitive to global data dis-
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persion, while LPP is sensitive to local data variation. Constrained PCA (cPCA)
and constrained LPP (cLPP) inherit the same properties of PCA and LPP meth-
ods. However, contrary to cPCA, the cLPP encourages nearby data input to be
projected to nearby outputs, and penalizes neighboring points if they are projected
far apart.

It would be important to note that, the main step in spectral clustering method
is to project the data in a non linear manner and therefore the resulting spectral
space is similar to the one obtained by Laplacian eigenmap method (Belkin and
Niyogi, 2002). Indeed, spectral clustering and LPP methods optimize the same
objective function. However, unlike SC, the LPP method finds a linear relation-
ship between input data space and output projected data space. Thus, the proposed
method and cLPP methods inherit the same properties of SC and LPP methods.

Spectral clustering approaches encode instance-level constraints implicitly in
the affinity matrix (Kamvar et al., 2003) or explicitly in the optimization criterion
(Wang and Davidson, 2010). The main weakness of the spectral learning is that
it implicitly encodes “must-link” and “cannot-link™ constraints by modifying the
Laplacian matrix. A more natural approach is to preserve the original Laplacian
matrix and to explicitly encode the constraints in the optimization criterion.

(Wang et al., 2012) proposed a smart approach which combines spectral clus-
tering and pairwise constraints in a flexible manner. Their FCSC algorithm allows
the violation of some constraints by introducing a lower-bound of satisfied con-
straints in the optimization criterion. However, the associated Laplacian matrix
may contain negative eigenvalues and lead sometimes to no solution.

In this work, we proposed an efficient constrained spectral clustering algo-

rithm which balances the unlabelled data contribution with the pairwise relation-
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ships and compared its performance to the recent constrained clustering algo-
rithms. Many UCI benchmark databases and face recognition databases (ORL
and Yale Face datasets) have been used to demonstrate the relevance of the pro-
posed algorithm compared to the most known algorithms.

In our experiments, the constraints have been randomly generated based on
labelled data. However, it may happen that some generated constraints are re-
dundant or inconsistent which may deteriorate the performance of classification
algorithms (Davidson et al., 2006). Therefore, the constraints should be generated

in an intelligent manner, and guided by a human expert.
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