
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

http://dx.doi.org/10.1016/j.patrec.2013.03.001

http://hdl.handle.net/10251/40332

Elsevier

Villegas, M.; Paredes Palacios, R. (2013). On improving robustness of LDA and SRDA by
using tangent vectors. Pattern Recognition Letters. 34(9):1094-1100.
doi:10.1016/j.patrec.2013.03.001.



On Improving Robustness of LDA and SRDA by

Using Tangent Vectors

Mauricio Villegas∗ and Roberto Paredes

Institut Tecnològic d’Informàtica
Universitat Politècnica de València

Camí de Vera s/n, 46022 València, Spain
{mvillegas,rparedes}@iti.upv.es

Abstract

In the area of pattern recognition, it is common for few training sam-

ples to be available with respect to the dimensionality of the represen-

tation space; this is known as the curse of dimensionality. This problem

can be alleviated by using a dimensionality reduction approach, which

overcomes the curse relatively well. Moreover, supervised dimensionality

reduction techniques generally provide better recognition performance;

however, several of these tend to suffer from the curse when applied di-

rectly to high-dimensional spaces. We propose to overcome this problem

by incorporating additional information to supervised subspace learning

techniques using what is known as tangent vectors. This additional in-

formation accounts for the possible differences that the sample data can

suffer. In fact, this can be seen as a way to model the unseen data and

make better use of the scarce training samples. In this paper, methods for

incorporating tangent vector information are described for one classical

technique (LDA) and one state-of-the-art technique (SRDA). Experimen-

tal results confirm that this additional information improves performance

and robustness to known transformations.
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1. Introduction

In the area of pattern recognition, it is common for few training sam-

ples to be available with respect to the dimensionality of the representa-

tion space; this is known as the curse of dimensionality (Bellman, 1961). To

handle this problem, it has become popular to use dimensionality reduc-

tion (also known as subspace learning) as a preprocessing step. However,

several dimensionality reduction techniques also struggle due to the lack

of samples, or in other words, they are also affected by the curse. In

these cases, a tandem strategy is often used by applying a more robust

technique as an initial step. This strategy, though less useful from the

discriminative point of view, reduces the dimensionality down to a more

appropriate size for the subsequent discriminative dimensionality reduc-

tion. The most well-known tandem is PCA+LDA (Yang and Yang, 2003;

Yang et al., 2005), i.e., where Principal Component Analysis is performed

over the original representation space and afterwards Linear Discriminant

Analysis (Fukunaga, 1990) is applied. Note that PCA is an unsupervised

technique, whereas LDA is supervised, which is crucial since the use of

a supervised technique generally helps to boost the recognition perfor-

mance considerably.

The motivation for this paper was to improve supervised subspace

learning techniques so that they are able to cope with scarce data in high-

dimensional feature spaces. Even though a tandem strategy overcomes

the curse of dimensionality for the less robust supervised subspace learn-

ing techniques, it would clearly be more desirable for these techniques to

work well in high-dimensional spaces, up to the point of not necessarily

requiring a previous dimensionality reduction. This goal is addressed in

this paper by considering the known transformations that a sample can

exhibit which do not modify the class membership. In fact, we can con-

sider that these known transformations model the unseen samples (as if

increasing the training set), thereby overcoming the curse of dimensional-

ity. Consider for instance the rotations and displacements of facial images

due to imperfect alignments. Even though these variations are expected

to appear, it is known that they do not change the identity of the person
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appearing in the image. One method to account for the possible combi-

nations of these base transformations is the tangent distance (Simard et al.,

1993); however, it is only applicable to distance-based classifiers. In this

work only the tangent vectors are used as a way to obtain more information

from the training set, without imposing any restrictions on the classifier.

Related to this paper, Schölkopf et al. (1997) and Mika et al. (1999) use

the tangent vectors to improve Support Vector kernels and make them

somewhat invariant to the tangent vector transformations.

The paper addresses two supervised techniques: the first is the clas-

sic LDA (including the PCA+LDA variant), and the second is the state-

of-the-art Spectral Regression Discriminant Analysis (SRDA) (Cai et al.,

2008; Chen et al., 2009). In the literature, there are many other meth-

ods that could be considered (see for instance Burges (2005) and van der

Maaten and Postma (2009) for a review of some of them). Nevertheless,

the techniques we have chosen are known to perform well and illustrate

an idea which could be applied to other methods in future works.

The contributions of the paper are the following. First, we reformulate

LDA so that it is expressed in terms of the covariance matrix, which can

be better estimated by using tangent vectors (see Section 3.1). This mod-

ification helps to overcome the singularity problems that LDA has when

there are few training samples, improves recognition performance, and

also increases the robustness of the learned subspace to known transfor-

mations. Second, we present a method to incorporate the tangent vector

information in SRDA that keeps the characteristic of being solvable by

systems of linear equations, thus continuing to be efficient for learning

(see Section 3.2). Also, the recognition performance improves and the

robustness of the learned subspaces to known transformations increases.

Finally, in Section 4, we present empirical results that confirm the benefits

when using the proposed modifications.

2. Preliminaries and Overview of the Tangent Vectors

Suppose we have a point x ∈ R
D generated from an underlying dis-

tribution, and that the possible transformations or manifold of x is given

by t̂(x, α), a function which depends on a parameter vector α ∈ R
L with

the characteristic that t̂(x, 0) = x. The dimensionality of α is essentially
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the degrees of freedom of possible variations that x can have. In real ap-

plications, the manifold t̂(x, α) is highly non-linear; however, for values

close to α = 0, it can be reasonable to approximate it by a linear subspace.

This can also be interpreted as representing the manifold by its Taylor se-

ries expansion evaluated at α = 0, and discarding the second and higher

order terms (Simard et al., 1998), i.e.,

t̂(x, α) = t̂(x, 0) +
L

∑
l=0

αl
∂t̂(x, α)

∂αl
+ . . .

∣

∣

∣

∣

∣

α=0

(1)

≈ t(x, α) = x +
L

∑
l=0

αlvl . (2)

The partial derivatives vl = ∂t̂/∂αl are known as the tangent vectors, since

they are tangent to the transformation manifold t̂ at point x.

The concept of the tangent vector approximation is illustrated in Fig-

ure 1 for a single direction of variability. As can be observed, the ap-

proximation can be quite good for small values of ‖α‖; however, as the

norm ‖α‖ increases, the deviation from the true manifold t̂ is expected to

increase.

When comparing two points, as a similarity measure between them,

it would be ideal to use the minimum distance between their respective

transformation manifolds. As an approximation to this, one can use the

minimum distance between the subspaces spanned by the tangent vec-

tors (Simard et al., 1998), which is known as the tangent distance (TD). The

single-sided tangent distance considers only one of the tangent subspaces

and has the advantage of being more efficient to compute (Dahmen et al.,

2001). From a classification perspective, the tangent subspace can either

be for the reference (RTD) or the observation (OTD).

2.1. Estimation of Tangent Vectors

There are several methods to estimate the tangent vectors, although,

unfortunately, there is no general way to estimate them for every task.

The most intuitive method is to use the difference between the sample

and its transformation as tangent vectors. However, this method can only

be used if it is possible to generate a transformation of a sample. The most

well-known method of estimating tangent vectors is the one proposed
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t̂(x, α)

t(x, α) = x + ∑
L
l=1 αlvl

≈ t̂(x, α) for small ‖α‖

vl
x

αl=0

αl=−1

αl=1

−8 ◦ −2 ◦ 0 ◦ +2 ◦ +8 ◦

α=−2.8 α=−0.7 x α=+0.7 α=+2.8 v

Figure 1: Top: An illustration of the linear approximation of transformations by means
of tangent vectors. Bottom: An example of an image rotated at various angles and the
corresponding rotation approximations using a tangent vector.

by Simard et al. (1998). This method is only applicable to image based

problems, having been employed successfully to model the following:

scaling, rotation, vertical and horizontal translation, parallel and diagonal

hyperbolic transformations, and trace thickening.

There are other methods that try to estimate the tangent vectors from

the training set, instead of adding some prior knowledge. One method of

this type is presented in Keysers et al. (2004), which is based on maximum

likelihood estimation. Another method is to use the difference between a

sample and its nearest neighbors from the same class as tangent vectors.

The methods of Simard and the nearest neighbors were used in the ex-

periments. However, as discussed in Section 3 and empirically observed,

the latter is less useful since it does not provide as much additional infor-

mation and it does not help to overcome the singularity problems.

5



3. Tangent Vectors in Subspace Learning

3.1. Tangent Vectors in LDA

The objective of LDA is that the obtained subspace should discrim-

inate the classes well. To this end, LDA simultaneously maximizes the

distances between the class centers (between-class scatter matrix) and

minimizes the distances within each class (within-class scatter matrix).

It is straightforward to reformulate LDA so that it is stated in terms of

the covariance matrix Σx and a normalized between-class scatter matrix

Σµ. The objective function is then

B̂ = arg max
B

Tr(B
T

ΣµB)

Tr(B
T

ΣxB)
. (3)

The solution of the LDA objective (3) is the following generalized eigen-

value decomposition

ΣµB = ΣxBΛ , (4)

with Λ being a diagonal matrix of generalized eigenvalues and the columns

of B being the generalized eigenvectors.

By having a solution of LDA in terms of the covariance matrix, for a

given dataset X = {x1, . . . , xN}, we are able to use a better empirical es-

timation for Σx that considers tangent vectors (Keysers et al., 2004) given

by

ΣX∪V =ΣX + ΣV (5)

=ΣX +
1

L

L

∑
l=1

γ2
l

|Vl|
∑

∀vl∈Vl

vlv
T

l , (6)

where ΣX is the usual estimation of the covariance matrix and Vl is the set

that includes all of the tangent vectors of type l. The weights γ1, . . . , γL

account for the importance of each tangent vector type depending on the

distributions p(α1), . . . , p(αL); however, in practice, these are parameters

that need to be estimated. A good rule of thumb is to set them equal for

all tangent types and to sample them so that Tr(ΣV ) is a certain fraction

of Tr(ΣX ). This improved version of LDA will be referred to as TLDA.1

1Matlab/Octave implementations available at http://mvillegas.info/research
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A better estimation for Σµ is not obtained since it is reasonable to

assume that the distributions p(α1), . . . , p(αL) are symmetric, a case in

which the tangent vectors cancel out. Intuitively, this makes sense because

the tangent vectors give information about how a sample might vary and

not about the other classes.

One of the shorthands of classical LDA is that if the dimensionality

of the vectors is higher than the number of training samples, then ΣX

is singular and therefore there is no unique solution to the generalized

eigenvalue problem. With the new estimation of Σx, if the tangent vectors

are linearly independent from the training samples (which is the case for

Simard’s method), the rank goes from N for ΣX to N(L + 1) for ΣX∪V ,

which can drastically reduce the number of samples that are necessary to

avoid singularities. Thus, for LDA, the estimation (6) of Σx provides for

LDA a way to take better advantage of the limited training data, normally

avoiding a singularity and making the solution more robust to the known

class-invariant transformations. This is observed in the experimental re-

sults.

A popular method to overcome the singularity problem in classical

LDA is to previously reduce dimensionality by means of PCA. Since PCA

is also based on the estimation of the covariance matrix, it can also be im-

proved by including tangent vector information, i.e., TPCA. Even though

TLDA overcomes the singularity problem, TLDA combined with a previ-

ous reduction by TPCA gives very good performance as can be observed

in the experiments section.

The computational complexity of the method basically depends on the

tangent vector estimation technique. In the case of Simard’s method, the

computation of the tangent vectors are O(KDN) with K ≪ D being the

size of the convolution kernel. In comparison to the complexity of the

eigenvalue decomposition, this additional cost is not significant.

3.2. Tangent Vectors in SRDA

SRDA is similar to LDA. In fact, the starting optimization criterion is

the same as LDA and, thus, the solution is given by Equation (4). How-

ever, to make the computation fast, SRDA avoids the need to do an eigen-

value decomposition. Observe that Equation (4) can be rewritten as

X̄WX̄
T

B = X̄X̄
T

BΛ , (7)
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where X̄ ∈ R
D×N is the centered data matrix ordered by classes, i.e.,

X̄ = [x
1,1
− µ, . . . , x

C,NC
− µ], and W ∈ R

N×N is a matrix composed mostly

of zeros, having the matrices W c ∈ R
Nc×Nc for c = 1, . . . , C along the

diagonal, in which the elements of W c are all equal to N−1
c , with Nc

being the number of samples of class c.

As presented in Cai et al. (2008), the problem in Equation (4) can

be tackled by solving the system of linear equations Y = X̄
T

B, where

Y ∈ R
N×C−1 is a matrix whose columns are C − 1 eigenvectors of W

which are orthogonal to the vector of ones. Matrix W has exactly C

nonzero eigenvalues all equal to one, and obtaining a set of eigenvectors

is trivial. In fact, for each class c, there is an eigenvector with elements

equal to N−1/2
c in the positions of the samples of class c and zeros for all

other elements. Therefore, finding Y reduces to orthogonalize these trivial

eigenvectors with respect to the vector of ones. However, the system Y =

X̄
T

B may not have a solution, so it was proposed to find the B that best

fits the equation in a regularized least squares sense. The optimization

function of SRDA is then given by

B̂ = arg min
B

Tr

[

(X̄
T

B − Y)T(X̄
T

B − Y) + ρB
T

B

]

, (8)

where ρ is the regularization parameter.

Incorporating the tangent vectors into SRDA cannot be done in the

same way as for LDA (Section 3.1), since SRDA does not directly use the

covariance matrix. Furthermore, the modification should be done in such

a way that the problem can still be solved as systems of linear equations,

thus retaining the advantages of SRDA. Using matrix notation, Equation

(6) can be written as

ΣX∪V =
1

|X |
X̄X̄

T +
γ2

|V|
VX V

T

X , (9)

where the columns of matrix VX ∈ R
D×NL are all the tangent vectors

of the training samples in X . With a few manipulations, it can be shown

that, when including the tangent vectors, the generalized eigenvalue prob-

lem can be expressed as

ZW
′
Z
T

B = ZZ
T

BΛ , (10)
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where Z = [X̄ γVX ], and the new weight matrix is the same as W , but

W
′ is padded with NL rows and columns of zeros at the bottom and on

the right. The eigenvalues of W
′ are also only C all equal to one, and

the eigenvectors are the same as for W , but padded with NL zeros at the

bottom. The final optimization function for SRDA including the tangent

vector information is then given by

B̂ = arg min
B

Tr

[

(Z
T

B − Y
′)T(Z

T
B − Y

′) + ρB
T

B

]

, (11)

where the columns of matrix Y
′ are C − 1 eigenvectors of W

′ which are

orthogonal to the vector composed of ones for the first N elements and

zeros for the remaining NL.

The optimization function for the Tangent Vector SRDA (TSRDA)1 is

basically the same as for the original SRDA. The computational complex-

ity increases by the computation of the tangent vectors, and the linear

systems increase in number of equations, but with the same number of

unknowns. Thus, it continues to be a very efficient algorithm.

4. Experiments

The proposed approaches have been assessed with three facial image

recognition tasks: gender recognition, expression recognition, and identi-

fication.2 Although only image problems were considered, the same ap-

proach can be applied in other tasks as long as the known transformations

can be represented as tangent vectors. The gender dataset that we used

is composed of 1892 samples of 32 × 40 pixel images and the objective

for this dataset is to determine the gender, male or female (Villegas and

Paredes, 2011). The expressions dataset is composed of 1929 samples of

32× 32 pixel images obtained from the databases: Cohn-Kanade (Kanade

et al., 2000) (using the emotion labels from Buenaposada et al. (2008)),

AR (Martinez and Benavente, 1998), and JAFFE (Lyons et al., Dec 1999).

The objective for this dataset is to classify the facial expression as one

of 7 possibilities: a neutral expression, a person screaming, or one of

the six basic emotions (Donato et al., Oct 1999). The performances for

2Datasets available at http://mvillegas.info/research
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both datasets were estimated using a 5-fold cross-validation. Finally, for

face identification, the dataset and evaluation protocol were the same as

in Zhao et al. (2007), although with an image size of 32 × 40. A special

characteristic of this dataset is that the 116 subjects used for the subspace

learning are different from the 200 subjects used in the testing phase (10

images per subject). Therefore, the goal for this dataset is to learn a sub-

space that is suitable for face identification in general.

Since the objective of the experimentation was to compare the sub-

space learning methods with and without the tangent vector information,

we kept the feature set and classifier constant. A k-NN classifier with the

Euclidean distance in the learned subspace was used on all tasks; how-

ever, for the face identification task, the tangent distances were also tested,

applying the same learned projection on the tangents. This shows that the

tangent distances can also be applied in a discriminative subspace, which

can further improve the recognition results.

The tangent vectors were estimated using the method from Simard

et al. (1998) for modeling horizontal and vertical translation, rotation, and

scaling. Tangent vectors estimated by nearest neighbors were also used,

which illustrates the behavior of the algorithms with tangent vectors that

are linearly dependent on the training set. To indicate which tangent

types were employed for learning, in the results, a sub-index is added

to the method acronym showing “hvrs” for Simard’s method and “kθ”

for θ = {1, 2, 4, 8, 16, 32} nearest neighbors. The γ parameter was set to

be the same for all tangent types and was varied as explained in Section

3.1. The intermediate PCA/TPCA and the final subspace dimensionalities

were varied between 1 and 256 and the best result for each technique is

the one presented. The ρ for SRDA was varied and adjusted like the other

parameters, and did not rely on an automatic method (Chen et al., 2009).

As a reference and to show that supervised subspace learning meth-

ods generally perform poorly when applied directly to high-dimensional

feature vectors, results for other linear and supervised techniques are in-

cluded: namely, Marginal Fisher Analysis (MFA) (Yan et al., 2007), Local-

ity Sensitive Discriminant Analysis (LSDA) (Cai et al., 2007), Supervised

Locality Preserving Projections (SLPP) (Zheng et al., 2007), and Nonpara-

metric Discriminant Analysis (NDA) (Bressan and Vitrià, 2003). The im-

plementations used for MFA, LSDA, SLPP, and SRDA were written by
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D. Cai and for NDA was written by J. Vitrià.

4.1. Recognition Performance

The results of the experiments for each dataset are presented in ta-

bles 1, 2, and 3, respectively. Included are the estimated classification

error rates, the subspace dimensionalities, and the training and testing

times. Note that the training times agree with the complexity analysis in

Section 3; however, the computation of the tangents was not optimized,

unlike the eigenvalue decomposition. Thus, the execution time of the

proposed methods could be significantly improved, especially consider-

ing that it is easily parallelizable.

As can be observed in the tables, in several cases the proposed meth-

ods show a statistically significant improvement when using Simard’s

tangents; in the rest of the cases, the performance remains the same. For

the gender dataset (Table 1), no results are shown for LDA or TLDAkθ

because the covariance matrix is singular. The proposed TLDAhvrs was

not affected by this singularity problem and, except for SRDA, obtains a

significantly better performance than all baseline techniques. The perfor-

mance of TLDA improves further when using a previous step of TPCA,

even when using tangent vectors obtained by nearest neighbors. Still, the

best result was when Simard’s tangents were used. In the expressions

dataset (Table 2), the improvement of TLDAhvrs with respect to LDA was

enormous, up to the point of being statistically the same as with PCA

preprocessing. In the case of SRDA, an improvement was also observed

when using tangents, although with a lower confidence level. Note that

for both TLDA and TSRDA, there was no further improvement with PCA

preprocessing; nevertheless, this is not necessarily a bad thing. Ideally,

the supervised dimensionality reduction should be done in the original

feature space so that no discriminative information is discarded. If the

method works well in the original space, it is not expected to get bet-

ter results when using PCA preprocessing. In the identification dataset

(Table 3), very competitive recognition rates were achieved, particularly

with TSRDA, even though a simple pixel based representation was used

in comparison to the Local Binary Pattern (LBP), which is known to be a

better representation for face recognition (Ahonen et al., 2006). For this

dataset, the improvement comparing SRDA and TSRDA was statistically

11



significant; however, the results for TLDA remained the same. Note that

the use of the tangent distance improved the performance further, con-

firming that the tangent vectors are also useful in the learned subspace.

Regarding the combination of different types of tangents (i.e., hvrs+kθ),

we did not observe that the performance improved further when more

tangent vector types were used. The reason for this may have been set-

ting the γ parameter to be the same for all tangent vectors. The problem

of using different factors for each tangent type and automatically obtain-

ing them is a topic that needs further research.

4.2. Robustness to Known Transformations

To analyze the robustness to the transformations considered during

learning, figures 2, 3, and 4 present plots of the relative improvement in

recognition of the proposed methods. These plots compare the methods

with or without the tangents as the test samples are artificially trans-

formed. All the graphs have the same y-axis range in order to make it

easier to compare them with each other.

For the gender dataset, only LDA shows marginal improvement. How-

ever, it must be taken into account that gender recognition is a two-class

problem and the target space dimensionality is only one, so it is a chal-

lenging task. In contrast, for the other two datasets (expressions and iden-

tification), a much greater improvement is observed. As the transforma-

tions of the images grow, when the tangents are used (TPCA+TLDAhvrs

and TSRDAhvrs), each time the relative improvement is greater than with-

out them (PCA+LDA and SRDA). This shows that the subspaces learned

with the tangents are more robust to these transformations. This is ob-

served even though the Euclidean distance is employed, which is not

invariant to these transformations. This effect can be explained by the

fact that without the tangents, those directions of variability are not taken

into account and might be removed by the learned projection. Interest-

ingly, a better transformation invariance was obtained for LDA than for

SRDA on the three datasets.

5. Conclusions

In this paper, two supervised dimensionality reduction techniques,

Linear Discriminant Analysis (LDA) and the state-of-the-art Spectral Re-
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gression Discriminant Analysis (SRDA), have been analyzed and modi-

fications that use the tangent vector information have been proposed for

them.

Experiments were conducted using three facial image recognition tasks:

gender, expressions, and identification. Depending on the dataset, the

proposed methods, TLDA and TSRDA, provided a significantly better

recognition performance, and in no case did we observe a degradation.

In the case of TLDA, the singularity of the covariance matrix due to the

limited number of training samples was avoided. Another result was that

the subspaces learned tended to be more robust to the transformations

that were used during learning. Furthermore, an additional gain was ob-

tained by using the same dimensionality reduction for the tangents and

by employing a tangent distance.

The parameters γ1, . . . , γL, which weight the importance that is given

to each of the tangent types (e.g. rotation, nearest neighbor, etc.), were set

to be the equal, i.e., γ1 = γ2 = . . . = γL. This seemed to prevent further

improvements when combining several tangent types. The γ parameters

could be set to be different for each tangent type and adjusted using cross-

validation or a Markov Chain Monte Carlo. By doing this, better results

would be expected; however, the cost of the algorithm could increase

dramatically. A future direction for research is to develop a better method

to find adequate values for these parameters. Another interesting idea to

explore would be to use an optimization criterion based on the single-

sided tangent distance, which can eliminate the need to estimate such

parameters.

The same ideas presented here could be used to improve other ex-

isting subspace learning methods. Interesting examples are the works

by Yang et al. (2011) and Villegas and Paredes (2011), which try to learn

the subspace while also considering what the subsequent classifier will

be. Another example would be the family of methods based on preserv-

ing the neighborhood such as the recent work of Gui et al. (2012).

Another important direction for future research is the development

of methods for estimating tangent vectors for other tasks so that these

techniques can be used in more applications, not only the ones related to

image recognition. We plan to apply this approach to the bag-of-words

representation to model word-count variability.
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Table 1: Results for the face gender recognition dataset.

Approach
Error Rate (%)

Dim.
Tr. time Test time

[95% conf. int.]† [s] [ms]

Orig. Space 19.6 [ 17.9 – 21.4 ] 1280 - 0.880
PCA 17.7 [ 16.0 – 19.4 ] 64 9.13 0.356
MFA 35.7 [ 33.6 – 37.9 ] 2 6.21 0.323
LSDA 35.7 [ 33.6 – 37.9 ] 2 8.81 0.321
SLPP 34.0 [ 31.9 – 36.2 ] 1 5.28 0.328
NDA 29.6 [ 27.6 – 31.7 ] 24 75.00 0.389

PCA+LDA 16.2 [ 14.6 – 18.0 ] 1 9.21 0.330
SRDA 10.4 [ 9.1 – 11.9 ] 1 0.57 0.347

TPCA+TLDAk16 11.3 [ 10.0 – 12.8 ] 1 18.75 0.353
TPCA+TLDAhvrs+k4 11.0 [ 9.7 – 12.5 ] 1 15.49 0.387
TPCA+TLDAhvrs 10.6 [ 9.3 – 12.1 ] 1 12.66 0.380

TPCA+TSRDAhvrs 11.0 [ 9.7 – 12.5 ] 1 11.88 0.349
TPCA+TSRDAk8 10.8 [ 9.5 – 12.5 ] 1 14.50 0.329
TPCA+TSRDAhvrs+k8 10.8 [ 9.5 – 12.3 ] 1 17.30 0.332

TLDAhvrs+k4 15.3 [ 13.7 – 17.0 ] 1 54.87 0.357

TLDAhvrs 13.3‡ [ 11.8 – 14.9 ] 1 53.48 0.335

TSRDAhvrs 10.5 [ 9.2 – 12.0 ] 1 2.45 0.322
TSRDAk8 10.3 [ 9.0 – 11.8 ] 1 4.56 0.332
TSRDAhvrs+k8 10.2 [ 8.9 – 11.6 ] 1 7.10 0.328

†Wilson interval estimation.
‡TLDAhvrs better than all baselines (except SRDA) for a confidence level of 99%.
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Table 2: Results for the 8 facial expressions dataset.

Approach
Error Rate (%)

Dim.
Tr. time Test time

[95% conf. int.]† [s] [ms]

Orig. Space 35.6 [ 33.5 – 37.8 ] 1024 - 0.543
PCA 30.6 [ 28.5 – 32.6 ] 16 6.82 0.115
LSDA 80.7 [ 78.9 – 82.4 ] 1 4.64 0.124
SLPP 30.2 [ 28.2 – 32.3 ] 7 3.01 0.124
MFA 63.7 [ 61.6 – 65.7 ] 16 2.71 0.123
NDA 50.9 [ 48.6 – 53.1 ] 64 55.53 0.160

LDA 30.2‡ [ 28.2 – 32.3 ] 7 39.98 0.118

SRDA 20.0§ [ 18.2 – 21.8 ] 7 0.46 0.116

TPCA+TLDAhvrs 20.9 [ 19.1 – 22.7 ] 7 9.21 0.120
TPCA+TLDAk16 22.1 [ 20.2 – 23.9 ] 7 14.48 0.125
TPCA+TLDAhvrs+k8 20.4 [ 18.6 – 22.2 ] 7 13.24 0.146

TPCA+TSRDAhvrs 20.6 [ 18.8 – 22.4 ] 7 9.80 0.122
TPCA+TSRDAk2 21.6 [ 19.7 – 23.4 ] 7 8.63 0.119
TPCA+TSRDAhvrs+k4 19.8 [ 18.0 – 21.5 ] 7 11.12 0.114

TLDAhvrs 21.4‡ [ 19.6 – 23.2 ] 7 40.55 0.127
TLDAk4 28.5 [ 26.5 – 30.6 ] 7 41.71 0.126

TLDAhvrs+k4 20.6‡ [ 18.8 – 22.4 ] 7 44.16 0.117

TSRDAhvrs 18.4§ [ 16.6 – 20.1 ] 7 1.84 0.110
TSRDAk8 19.7 [ 17.9 – 21.5 ] 7 3.53 0.136
TSRDAhvrs+k4 19.5 [ 17.7 – 21.3 ] 7 3.94 0.134

†Wilson interval estimation.
‡TLDAhvrs better than LDA for a confidence level of 99%.
§TSRDAhvrs better than SRDA for a confidence level of 90%.
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Table 3: Results for the face identification dataset.

Approach Dist.
Error Rate (%)

Dim.
Tr. time Test time

[95% conf. int.]† [s] [ms]

Laplacianfaces Euc. 15.0 [ 13.5 – 16.6 ] 100 Unk.‡ Unk.‡

L-Fisherfaces Euc. 9.5 [ 8.3 – 10.9 ] 140 Unk.‡ Unk.‡

LBP + Dual LLD χ2 7.4 [ 6.3 – 8.6 ] 500 Unk.‡ Unk.‡

Orig. Space Euc. 29.3 [ 27.3 – 31.3 ] 1280 - 0.811
PCA Euc. 31.2 [ 29.2 – 33.3 ] 256 7.49 0.196
MFA Euc. 53.2 [ 51.0 – 55.4 ] 16 3.26 0.118
LSDA Euc. 86.9 [ 85.4 – 88.3 ] 16 10.16 0.126
SLPP Euc. 86.3 [ 84.7 – 87.7 ] 16 9.94 0.145
NDA Euc. 14.9 [ 13.4 – 16.5 ] 115 26.80 0.159

PCA+LDA Euc. 6.1 [ 5.1 – 7.2 ] 64 7.87 0.137

SRDA Euc. 7.3§ [ 6.2 – 8.5 ] 115 0.89 0.145

TPCA+TLDAhvrs Euc. 6.3 [ 5.3 – 7.5 ] 64 13.41 0.162
TPCA+TLDAhvrs TD 6.1 [ 5.1 – 7.2 ] 64 13.41 95.5
TPCA+TLDAhvrs OTD 5.9 [ 4.9 – 7.0 ] 64 13.41 1.088
TPCA+TLDAhvrs RTD 5.9 [ 4.9 – 7.0 ] 64 13.41 0.762

TSRDAhvrs Euc. 6.9♯ [ 5.9 – 8.1 ] 115 2.76 0.191

TSRDAhvrs TD 5.1§♯ [ 4.2 – 6.2 ] 115 2.76 101.5
TSRDAhvrs OTD 6.3 [ 5.3 – 7.5 ] 115 2.76 2.274
TSRDAhvrs RTD 6.3 [ 5.3 – 7.5 ] 115 2.76 1.672

†Wilson interval estimation.
‡Result obtained from Zhao et al. (2007), execution times are not available.
§TSRDAhvrs,TD better than SRDAEuc. for a confidence level of 95%.
♯TSRDAhvrs,TD better than TSRDAhvrs,Euc. for a confidence level of 95%.
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Figure 2: Relative improvement for face gender recognition when varying for the test
samples: horizontal/vertical translation, angle of rotation, and scaling factor. Classifica-
tion is done with the Euclidean distance.
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Figure 3: Relative improvement for face expression recognition when varying for the
test samples: horizontal/vertical translation, angle of rotation, and scaling factor. Clas-
sification is done with the Euclidean distance.
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Figure 4: Relative improvement for face identification when varying for the test samples:
horizontal/vertical translation, angle of rotation, and scaling factor. Classification is
done with the Euclidean distance.
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